
24/7 Characterization of Petascale I/O Workloads
Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439
{carns,robl,rross,iskra,slang}@mcs.anl.gov

Katherine Riley
Argonne Leadership Computing Facility

Argonne National Laboratory
Argonne, IL 60439
riley@mcs.anl.gov

Abstract—Developing and tuning computational science ap-
plications to run on extreme scale systems are increasingly
complicated processes. Challenges such as managing memory
access and tuning message-passing behavior are made easier by
tools designed specifically to aid in these processes. Tools that can
help users better understand the behavior of their application
with respect to I/O have not yet reached the level of utility
necessary to play a central role in application development and
tuning. This deficiency in the tool set means that we have a poor
understanding of how specific applications interact with storage.
Worse, the community has little knowledge of what sorts of access
patterns are common in today’s applications, leading to confusion
in the storage research community as to the pressing needs of
the computational science community.

This paper describes the Darshan I/O characterization tool.
Darshan is designed to capture an accurate picture of appli-
cation I/O behavior, including properties such as patterns of
access within files, with the minimum possible overhead. This
characterization can shed important light on the I/O behavior
of applications at extreme scale. Darshan also can enable re-
searchers to gain greater insight into the overall patterns of access
exhibited by such applications, helping the storage community
to understand how to best serve current computational science
applications and better predict the needs of future applications.
In this work we demonstrate Darshan’s ability to characterize
the I/O behavior of four scientific applications and show that it
induces negligible overhead for I/O intensive jobs with as many
as 65,536 processes.

I. INTRODUCTION

Efficient use of extreme-scale computing resources often
requires extensive application tuning. To tune applications
most effectively, application developers need to be able to
observe the behavior of applications before and after changes
are made, so that they can assess the impact of tuning efforts.
In the areas of memory and communication subsystem be-
havior, many tools are available that provide insight into how
the application is interacting with the subsystem [1], [2], [3],
[4]. These utilities play an important role in the performance
tuning of applications at extreme scale.

Unfortunately, similar tools are not available for I/O. Ex-
isting I/O tools typically fall into two categories. The first
category relies on tracing and logging each individual I/O
operation, a task that becomes increasingly expensive at larger
scale. These tools often lack postprocessing capabilities nec-
essary to identify salient characteristics. The second category
relies on profiling and sampling in order to reduce overhead,
but in doing so these tools sacrifice detail about the access

patterns being generated. Just as successful tools for memory
and communication characterization have been tailored to
high-perfromance computing (HPC) demands and patterns,
tools for extreme scale I/O characterization must be crafted
to capture an appropriate level of detail with minimal impact
on behavior.

Additionally, there exists an overall lack of understanding of
how today’s computational science applications interact with
the storage system. This lack of understanding has created
confusion in the storage research community as to how to best
focus effort. If analysis tools for application I/O incurred little
overhead, these tools could be enabled for all application runs.
Doing so would allow us to identify trends in applications,
help us understand successful I/O strategies, and inform the
storage research community as to the needs of computational
science.

In order to fit these two roles, a parallel I/O workload
characterization tool must meet the following goals:

• Reflection of application-level behavior
• Transparency to users
• Leadership-class scalability
Reflection of application-level behavior. A 24/7 character-

ization tool should capture application-level behavior in order
to distinguish between jobs and identify how each one interacts
with the storage system. This is a straightforward goal with
subtle implications.

Most HPC job workloads include a mixture of MPI-IO and
traditional POSIX interface usage. Both should be captured
in order to accurately represent all applications. File-system-
level instrumentation is insufficient because MPI-IO or I/O
forwarding may have already transformed the access pattern
expressed by the application before it reaches the file system.
Tying characterization to a specific file system or storage
device limits portability as well.

Transparency to users. A characterization tool must be
transparent to end users in order to be suitable for long-
term deployment for all applications. Any burden on users
or administrators acts as a barrier to participation, particularly
if the goal is to characterize the entire system. Even more
important, a characterization tool must minimize resource
usage to the point that it has negligible impact on applica-
tion performance. Performance is the foremost priority of a
leadership computing platform and cannot be compromised
by full-time characterization. Further, the characterization tool

itself should be robust enough that it does not add additional
points of failure to the system.

Leadership-class scalability. Today’s largest HPC deploy-
ments consists of hundreds of thousands of cores. A charac-
terization tool must continue to work efficiently even at this
scale in order to be practical for full-time use. Properties of
scalable characterization tools include bounded data set sizes,
elimination of redundant information, a “shared-nothing” ar-
chitecture for data collection, and scalable intercommunication
algorithms. The data set size can be bounded through the
use of statistical metrics and space efficient data structures.
Redundant data can be eliminated by general-purpose com-
pression algorithms or data-specific reduction operators. In this
context, a shared-nothing architecture means that each process
operates independently such that more processes can be added
without increasing contention. This can be implemented by
avoiding the use of shared resources at run time. Scalable
intercommunication can be achieved by leveraging collective
operations in existing high-quality MPI implementations.

In this paper we present Darshan, a parallel I/O charac-
terization tool that provides insight into application behavior
and is suitable for 24/7 deployment on petascale systems.
In Section II we discuss prior work in I/O characterization
for computational science and existing tools for analysis of
I/O in parallel applications. In Section III we describe the
Blue Gene/P system on which we ran our experiments. In
Section IV we describe the Darshan implementation, including
techniques for minimizing measurement overhead, and show
how it addresses all three of the goals set forth for a petascale
I/O characterization tool. In Section V we show examples
of the use of Darshan and give preliminary insight into the
behavior of four relevant scientific application case studies. In
Section VI we demonstrate the scalability of Darshan on an
I/O-intensive 65,536-process job. In Section VII we conclude
and point to areas of future development.

II. RELATED WORK

Nieuwejaar et al. initiated the Charisma project in 1993 to
study multiprocessor I/O workloads [5]. This culminated in
an analysis of three weeks of data from two dissimilar HPC
systems with up to 512 processes in order to identify common
trends in parallel I/O. Their study identified several access
pattern characteristics and established common terminology
to describe them. The Charisma data-capture methodology
consisted of each process recording trace information for every
I/O operation, buffering it locally, and then sending it to a
centralized trace server. The data was then postprocessed to
identify workload characteristics.

Vetter and McCracken investigated MPI application scala-
bility using statistical analysis with the mpiP tool [6]. Rather
than capture a verbatim trace of MPI activity, it summarizes
statistics at a per process level at run time and merges the
statistics at the completion of the job. This technique scales
well and has been tested on jobs with as many as 4,096
processes [7]. While mpiP does include MPI-IO functions in
its analysis, it focuses primarily on MPI messaging and does

Fig. 1. IBM Blue Gene/P I/O system

not attempt to characterize file access patterns. It also does not
capture POSIX API activity.

Byna et al. have utilized tracing and characterization of
I/O patterns as a means to improve MPI-IO prefetching [8].
Their method consists of running an application job once to
generate a complete MPI-IO trace, postanalyzing the trace
to create an I/O signature, and then using the signature to
guide prefetching on subsequent jobs. The I/O signature is a
compact, parameterized representation of the stride, repetition,
timing, size, and other features. This signature technique holds
promise for I/O workload studies as well if it can be adapted
to operate at run time.

Noeth et al. have explored both intra- and internode runtime
compression techniques for MPI communication traces in
order to to reduce memory usage and log file size [9]. Their
work does not explore the execution time overhead, nor does
it capture file access patterns.

The HPC community has produced a wide variety of
modern tools for generating traces of individual I/O operations
in large-scale parallel applications, including HPCT-IO [10],
LANL-Trace [11], and IOT [12]. Various tools are also avail-
able for general-purpose instrumentation, profiling, and tracing
of general MPI and CPU activity, including Jumpshot [1], [2],
FPMPI [13], TAU [3], and STAT [4]. However, these tools
focus primarily on in-depth analysis of individual application
runs rather than long-running workload characterization.

III. BACKGROUND

The experiments in this paper were conducted on two IBM
Blue Gene/P (BG/P) systems at the Argonne Leadership Com-
puting Facility (ALCF) at Argonne National Laboratory. The
first is a 4,096-core research and development system named
Surveyor. Surveyor’s storage subsystem consists of four file
servers running PVFS and a DataDirect Networks S2A9550
SAN. The second BG/P system is a 163,840-core production
system named Intrepid. Intrepid provides 80 TBytes of RAM
and a peak performance of 556 teraflops. Its storage system
consists of 128 file servers running both PVFS and GPFS and
16 DataDirect Networks S2A9900 SANs. The Intrepid parallel
file systems have a total capacity of 5.2 PBytes and a peak
I/O rate of approximately 78 GBytes/s.

Figure 1 illustrates the I/O architecture of the ALCF BG/P
systems. I/O forwarding is used to minimize the number of
compute processes visible to the file system. Each set of 64
quad-core compute nodes (CNs) forwards system calls to an

intermediate I/O node (ION) via a custom tree network. A
daemon on the ION known as the CIOD (Control and I/O
Daemon) is responsible for accepting system call requests and
invoking them on behalf of the compute node kernel. This
is the same approach as used in the previous Blue Gene/L
systems [14]. Each ION is identical to a CN except that
it runs a Linux kernel and possesses an additional network
connection. A commodity-switched 10 Gb/s Myrinet network
connects all IONs to all file servers, while a point-to-point
InfiniBand network connects file servers to the SAN devices.

Unless otherwise noted, all experiments in this paper were
carried out using the production Parallel Virtual File System
volume on Intrepid. The PVFS project is a multi-institution
collaborative effort to design and implement an open source,
production parallel file system for HPC applications at extreme
scale [15], [16].

The MPI implementation on the BG/P systems is based on
MPICH [17], including MPI-IO support through ROMIO [18].
The MPI-IO abstract device implementation used on BG/P
systems converts all I/O into POSIX operations for I/O for-
warding purposes. It does not use the native PVFS library
interface.

IV. DARSHAN

Darshan is a parallel I/O characterization tool designed to
meet the goals set forth in Section I. It is implemented as a set
of user space libraries. These libraries require no source code
modification and can be added transparently during the link
phase of MPI compiler scripts such as mpicc or mpif90.
This approach is a compromise to the transparency goal in that
existing binaries must be recompiled (or relinked) in order
to use Darshan. However, it can be automatically applied
to newly compiled applications or introduced as part of an
MPI upgrade. In exchange for this compromise, Darshan can
utilize portable, low-overhead mechanisms for intercepting I/O
routines.

Darshan captures MPI-IO routines using the profiling
(PMPI) interface to MPI. POSIX routines are captured by
inserting wrapper functions via the GNU linker’s --wrap ar-
gument. These mechanisms have been tested with the MPICH
MPI implementation for both GNU and IBM C, C++, and
Fortran compilers. It also works correctly for both static
and dynamic compilation, requires no additional supporting
infrastructure for instrumentation, and is compatible with other
MPI implementations and compilers.

Rather than capture a complete trace of all I/O operations,
Darshan characterizes the application by using statistics and
cumulative timing information. The advantage of this approach
is that the data can be stored compactly using a bounded
amount of memory. The data is recorded independently on
each process at run time and then merged and stored as the
job is shutting down. Darshan invokes no communication or
storage routines until the end of the job. It therefore reduces
the scope of the scalability challenge to a single shutdown rou-
tine. The following subsections discuss the function wrapping

TABLE I
BG/P FUNCTION WRAPPING LATENCY

Function Time (ns) Est. Overhead (%)
read (1 byte) /dev/zero 65937 0.52
read (1 byte) PVFS 814500 0.042

overhead, statistical metrics, memory overhead, and storage
techniques in greater detail.

A. Function Wrapping Overhead

The PMPI interface and link-time wrappers are used to in-
tercept I/O function calls, while the MPI_Wtime() function
is used to collect timing information. MPI_Wtime() reports
elapsed time in seconds as a floating-point value. While these
methods are highly portable, we must take care to ensure that
they are light weight enough to meet the Darshan goal of per-
formance transparency. We found that each MPI_Wtime()
call introduces 165 ns of latency, while the function wrapping
accounts for 14 ns of latency. While this wrapping and
timing method would be considered expensive for fine-grained
computation, it is more than adequate for comparatively coarse
grained I/O operations. Table I shows the projected percentage
overhead of this approach for two different read operations.
The read from /dev/zero represents the lowest-latency I/O
operation possible on the Blue Gene, as it is forwarded only
as far as the I/O node and does not interact with the storage
system. The read from PVFS represents the latency of an I/O
operation that must retrieve data from a parallel file system.
The overhead in these cases is projected to be 0.52% and
0.042%, respectively. This relative cost would be even lower
for I/O operations that transfer more than one byte of data at
a time.

Darshan also provides a mechanism to disable the timing
of function calls both at run time (via environment variables)
and at compile time. Significant characterization is still pos-
sible even if it is deployed on a system where the cost of
MPI_Wtime() is too high relative to I/O latencies.

B. Statistical Metrics

Darshan characterizes applications by recording compact
statistical metrics. It creates a file record in memory for each
opened file and tracks the rank of the process and the last
11 characters of the file name. Full paths are avoided for
space reasons, but the last characters of the file name are often
sufficient to classify types of files opened by the application.
Darshan also records a 64-bit hash of the full file path name.
This hash serves as a compact way to uniquely identify
common files across processes. The hash algorithm is Jenkins’
64-bit lookup8 routine, which is optimized to use 41 + 5× n
instructions that can be executed in parallel on superscalar
CPUs [19]. We expect file names to often differ by only a
single byte in HPC workloads (for example, if the process rank
is used in the name). The choice of hash algorithm is therefore
critical in order to minimize the probability of collision.

Each file record also contains a fixed-size array of counters,
with each counter consisting of either a 64-bit integer or a
double-precision floating-point variable. Each counter is set

Fig. 2. Darshan file record

or incremented by an MPI-IO or POSIX function wrapper or,
in some cases, deduced from a combination of a wrapper and
the previous state of the counters. Following are examples of
the metrics recorded:

• Counters for POSIX operations: read, write, open, seek,
stat, mmap, fopen, and the like

• Counters for MPI-IO operations: collective, independent,
split, or nonblocking read and write

• Counters for MPI-IO datatypes and hints
• Counters for unaligned, sequential, consecutive, and

strided access
• Timestamps for open, close, first I/O, and last I/O
• Cumulative bytes read and written
• Cumulative time spent within POSIX and MPI-IO I/O

operations
• Histograms of access, stride, datatype, and extent sizes
Darshan also tracks a small amount of job-level information,

including the user id, start and end times, number of processes,
and command line arguments. Where possible, we have used
terminology that is consistent with that of Charisma [5]. In the
Charisma terminology, sequential accesses begin at any offset
higher than the end of the previous access, while consecutive
accesses begin precisely at the end of the previous access.
Strides are recurring patterns of gaps between accesses.

In a longer-running system workload study Darshan could
also yield aggregate statistics, such as the average size of files,
the users accounting for the most I/O activity, the adoption rate
of MPI-IO, the number of files opened per job, the percentage
of system time that is spent performing I/O, and the ratio of
read to write activity. These statistics provide insight into HPC
storage systems that are normally treated as a black box.

C. Memory Overhead

Darshan maintains a record in local process memory for
each file accessed over the lifetime of the job (up to a limit that
will be discussed shortly). Figure 2 illustrates how Darshan
utilizes file records. A file record is indexed by three open
hash tables, each with 28 indices, that correspond to file name,
POSIX file descriptor, and MPI-IO file handle. The indexing
ensures that the record uniquely identifies the file regardless of
access mechanism. The file descriptor and MPI-IO file handle

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 128 256 384 512 640 768 896 1024

Ti
m

e
(n

se
cs

)

Number of files

32 access sizes per file
1 access size per file

Fig. 3. Darshan operation characterization latency on BG/P

indexes are updated to refer to the same record if the file is
closed and reopened later. The file name is already hashed
for identification purposes as described in Section IV-B. The
file descriptor value itself is bitmasked to serve as an index
into the second hash table, since we expect it to be naturally
well distributed. The file handle is an opaque type that we
hash in the same manner as file names. In addition, each
process maintains a most recently used (MRU) pointer. We
have observed that a given file is often accessed repeatedly by
an application before switching to another file, in which cases
the MRU avoids the need to search hash tables at all.

Once the file record is identified, Darshan records metrics in
an array of counters that are stored persistently when the job
completes. In addition, Darshan maintains a frequency count
of the most common access and stride sizes. These frequency
counts are kept in independent red-black binary trees for each
file record. The trees are limited to 32 elements each and
are implemented by using the GNU C Library tsearch()
routine. Once the job is complete, Darshan iterates through
these trees and records the four most popular strides and access
sizes in the persistent counters. Each file record consumes a
total of between 1,168 and 2,064 bytes of memory at run time
depending on the complexity of the access patterns for that
file. When the job completes, all of this is discarded except
for the 1,088 byte counter array.

Darshan imposes a tunable limit of 1,024 files that will be
tracked per process. This limits the total file record memory
consumption to approximately two megabytes per process in
the worst case. Once the file count limit has been reached,
Darshan condenses all file records into a single record for all
files and continues gathering statistics. Thus, applications that
open more than 1,024 files will still be characterized but at
an aggregate level rather than differentiating per file. As an
example, an application that writes a single checkpoint file
every 30 minutes can run continuously for 21 days before
Darshan falls back to aggregate characterization.

Figure 3 shows the time needed for Darshan to locate
a file record and store statistics for I/O operations on a
BG/P compute node. This experiment measures a worst-case
scenario in which every operation is performed on a different
file descriptor in round-robin fashion. This is an unlikely

TABLE II
DARSHAN BINARY OUTPUT FILE SIZE EXAMPLES, 32,768 PROCESSES

Files Without Reduction Uncompressed Final Size
1 34.0 MBytes 2.2 KBytes 203 Bytes

262,144 272.0 MBytes 272.0 MBytes 13.3 MBytes

access pattern in practice, but it helps illustrate an upper
bound on the search time because the MRU pointer is not a
factor. The experiment was performed for two cases: one with
the same access size in all cases and one with 32 random
access sizes. The single-access size case measures the base
cost of locating a file and characterizing the access. The 32-
access size case adds the extra overhead of searching a fully
populated binary tree. This search and characterization require
1.38 microseconds in the worst case, which is likely to be
indistinguishable from normal variance in an 814.50 microsec-
ond single-byte file system read as measured in Section IV-A.

When we combine these results with the function wrapping
and timing overhead measured in Section IV-A, the total
overhead to characterize a 1-byte PVFS read on Intrepid comes
to between 0.09% and 0.2%, depending on the complexity of
the access patterns.

D. Characterization Output Techniques

Each MPI process using Darshan tracks data independently
until MPI_Finalize() time. At that point Darshan com-
bines the data and stores it persistently in a single output file
for the job. This approach is the key to achieving scalability
because it is the only time that Darshan performs communi-
cation or storage activity. Although the approach outlined in
Section IV-C maintains a small counter footprint in memory,
petascale jobs would still generate an unwieldy amount of
aggregate data if the counters were written naively to disk.
Darshan takes three steps to mitigate this problem. First, it
identifies shared files and reduces them to a single record.
Second, it compresses all data in parallel at each process.
Third, it uses MPI-IO collective writes to leverage machine-
specific optimizations for concurrent I/O.

In order to identify shared files, the rank 0 process broad-
casts its list of file name hashes to all other process for
comparison. An MPI_Allreduce() is then used to con-
struct a mask of shared records. MPI_Allreduce() is a
collective operation that combines and distributes data from
all processes. The shared records are then reduced to rank 0
by using a custom operator. All records are finally compressed
in parallel with zlib and then written collectively to an output
file. The resulting file is fully gzip compatible and can be
processed by using serial or parallel utilities. Note that this
algorithm currently identifies only globally shared files, but
it could be extended to identify shared files on subsets of
processes as well.

Table II shows examples of output file sizes generated by
Darshan. The first row is from an application that opens a
single shared file across 32,768 processes. Naively writing
characterization data from each process would result in 34
MBytes of data, but reduction and compression bring the
output size down to 203 bytes. The second row is from an

 0

 1

 2

 3

 4

 5

 6

 7

1 shared

1024 shared

1 unique

1024 unique

1 shared

1024 shared

1 unique

1024 unique

1 shared

1024 shared

1 unique

1024 unique

1 shared

1024 shared

1 unique

1024 unique

1 shared

1024 shared

1 unique

1024 unique

Ti
m

e
(s

ec
s)

Write
Gzip

Reduce

64K32K16K8K4K

Fig. 4. Darshan output time for varying BG/P job sizes

application in which each process opened 8 unique files. In this
case, reduction was not applicable, but compression was still
able to limit the output file to 13.3 MBytes. The data produced
by Darshan lends itself well to compression. Most applications
exercise only a subset of POSIX and MPI-IO functionality,
which leads to many counters with a default value of zero.
In the examples of Table II, zlib was able to achieve 90.6%
compression on a single record and 95.1% on 8 records per
process. Note that zlib consumes a memory footprint of up
to 256 KBytes per process for compression, but this can be
tuned at run time.

Figure 4 shows the cost of the reduction, compression, and
collective write phases of Darshan at job shutdown time on
Intrepid. Each data point represents the best time out of three
runs in order to eliminate the impact of transient shared file-
system load. All output files were written to PVFS. Five job
sizes were tested, ranging from 4,096 to 65,336 MPI processes
and doubling the scale each time. All jobs were executed
using four processes per compute node. Four scenarios were
tested at each data point using a synthetic benchmark: a single
shared file, 1,024 shared files, 1 unique file per process, and
1,024 unique files per process. Note that the 1,024 unique files
per process case, at the largest size shown here, emulates an
application that accessed 67 million total files in a single run.
This is unlikely behavior in practice but is used here as an
example of scalability.

The cost of all scenarios in the experiment is dominated
by the time needed to write output to the file system, which
includes creating, writing, closing, and renaming the output
file. The most expensive reduction steps occur when 1,024
shared files must be reduced. The largest example with 1,024
shared files across 65,536 MPI processes took 220 millisec-
onds to reduce. The most expensive gzip steps occur when
1,024 unique file records must be compressed at each process.
The largest example with 1,024 unique files across 65,536 MPI
processes took 161 milliseconds to compress in parallel.

In all cases, Darshan reduced, compressed, and wrote its
output file in less than 7 seconds. In fact, there is little change
in the cost of writing output for each job size until the 65,556
process example, when the cost increases slightly because of
the overhead of accessing a single small file at that scale. This

TABLE III
MADBENCH2 I/O CHARACTERISTICS

Characteristic Count Percentage (%)
POSIX reads and writes 16384
MPI-IO reads and writes 16384
18.66 MByte access size 16384 100
1920 Byte stride 12288 75
Aligned in file 32 0.002
Named datatype 16384 100
Consecutive access 0 0
Sequential access 14344 88
Read/write alternation 7168 44

extra shutdown time is not likely to be noticeable, because jobs
at this scale on Intrepid typically take several minutes to boot
and shut down.

E. Limitations

Darshan is designed to identify salient I/O characteristics
while introducing negligible overhead in production environ-
ments. However, there are limitations to the information that
Darshan can provide. For example, it cannot provide the level
of detail, cross-process correlation, or temporal information of
a traditional tracing tool. It also cannot map access to specific
lines of application code as in traditional instrumentation
or sample-based profiling tools. This kind of information is
best gathered through focused analysis with more invasive
developer tools.

At this time, Darshan is also limited to MPI applications,
even though it records both POSIX and MPI-IO activity. It is
feasible to adapt it for other environments, however, minus the
file record reduction capability.

V. CASE STUDIES

In this section we present four case studies of scientific
application benchmarks that have been characterized by using
Darshan, highlighting relevant characteristics in each case.
Each of these benchmarks was executed at relatively small
scale on the Surveyor BG/P system. Although this is far from
a complete workload survey, it does give an example of the
kind of information that Darshan can provide to an application
developer or administrator.

A. MADBench2

MADBench2 is a benchmark derived from a cosmology
application that analyzes Cosmic Microwave Background data
sets [20]. It operates primarily on floating-point matrices that
are too large to maintain simultaneously in main memory.
MADBench2 therefore leverages an out-of-core algorithm in
which matrices are written to disk when calculated and then
read back later as needed. We executed MADBench2 on
Surveyor with 1,024 processes in order to capture a Darshan
characterization. MADBench2 was configured as an I/O-only
benchmark, using MPI-IO in shared file mode, with four
matrices of size 50, 0482 each.

Table III summarizes a subset of interesting Darshan char-
acteristics for MADBench2. The same file was opened exactly
once by all processes. Each process performed 8 MPI write

operations and 8 MPI read operations. These corresponded
to the same number of underlying POSIX I/O operations.
Although the file was opened collectively, all I/O was per-
formed independently. The MPI-IO model appears to be a
direct translation of POSIX read() and write() calls to
MPI_File_read() and MPI_File_write() calls. The
same access size (18.66 MBytes) was used for all reads and
writes. These were not consecutive, however, and instead
exhibited a stride of 1,920 bytes between accesses. Further
investigation indicated that this was a result of the file block
size argument to MADBench2. The MADBench2 file block
size was set to 4,096 for this job, which caused MADBench2
to seek 1,920 bytes in order to align reads and writes on
a block boundary. However, the PVFS file system was con-
figured with a stripe unit (and corresponding reported block
size) of 4 MBytes. Darshan correctly detected that only 32
of the accesses were aligned in file, rather than all 16,384 as
one might expect. The out-of-core algorithm for MADBench2
resulted in each process alternating between read and write
several times within the same file (7 per process). It also
resulted in 12% of access being nonsequential, as processes
seeked backwards to read previously written data.

Darshan also indicated that MADBench2 spent approxi-
mately 81% of its total run time within MPI-IO read or write
calls. The file size grew to a maximum of 74.65 Tbytes, but
almost twice that amount was both written to and read from
the file over time. Overall, MADBench2 is a well-behaved
application with respect to I/O. It reads and writes data using
large buffers and makes an explicit effort to align I/O to block
boundaries. Its most unusual characteristic is that it spends a
significant portion of its time overwriting data.

MADBench2 offers little room for MPI-IO optimization
or tuning, since all data is accessed contiguously by using
named datatypes and independent access. This apparent limi-
tation, however, presents an opportunity to measure the basic
overhead of using MPI-IO rather than POSIX for rudimentary
access patterns. Over the life of the job, MPI-IO added less
than 0.02% overhead for reads and 0.01% overhead for writes.

B. Chombo I/O Benchmark

Chombo is a framework for adaptive mesh refinement
scientific applications [21]. The Chombo I/O benchmark is
derived from this framework [22]. It creates simulated Chombo
data structures and writes them to a single file using the
HDF5 high-level I/O library [23]. Chombo accesses a variety
of small auxiliary files at run time, but for the purpose of this
case study we will focus on characterization of the large data
file only. Darshan simplifies this task by reporting seperate
characteristics for each file opened by the application.

The Chombo I/O benchmark (Nov. 27, 2007, version) was
executed on Surveyor with 512 processes and the in.r444
example control file provided with the benchmark. This sce-
nario writes an output file that is approximately 18.24 GBytes
in size. HDF5 uses MPI-IO internally for all I/O operations,
and Darshan indicates that the benchmark spent 75% of its
aggregate run time in MPI-IO write function calls.

 0

 20

 40

 60

 80

 100

0-100
100-1K

1K-10K

10K-100K

100K-1M

C
ou

nt
 (t

ot
al

, 5
12

 p
ro

ce
ss

es
)

Write size ranges

(45123)
(51587)

Fig. 5. Chombo write size histogram

TABLE IV
CHOMBO CHARACTERISTICS

(a) most common accesses
Size (bytes) Count

28800 15622
16000 15109

480896 13818
254592 11428

(b) most common strides
Size (bytes) Count

2885376 2725
2530944 1654
1752192 1567

86400 1481

(c) I/O patterns

Characteristic Count Percentage (%)
POSIX writes 96783 –
MPI-IO writes 96783 –
Writes preceded by seek 49123 50.76
Consecutive 47661 49.25
Sequential 96762 99.98
Unaligned in file 96780 99.99

Figure 5 illustrates a histogram of write sizes generated
by the application. The overwhelming number of writes were
between 10 KByte and 1 MByte in size, with none in the larger
size ranges. Tables IV(a) and IV(b) show the specific values of
the four most common access sizes and stride sizes observed
by Darshan. Chombo generates a very large number of small
writes by parallel file system standards, and it frequently skips
through the file to different positions.

As in the MADBench2 example from Section V-A, Chombo
issues exactly the same number of independent MPI-IO writes
as POSIX writes. This one-to-one mapping indicates that each
MPI-IO write is describing only one contiguous datatype.
Table IV(c) highlights several other I/O pattern details. Ap-
proximately half the writes followed a stride, but nearly all
were sequential. Although Chombo accesses many disjoint
regions, it never seeks backwards on a given process. Nearly
every access was unaligned in the file system.

This characterization of Chombo indicates that its I/O
performance may be constrained primarily by the number of
small, strided writes expressed using independent operations
for each contiguous region. Without use of noncontiguous
datatypes or collective I/O operations, the MPI-IO implemen-
tation is unable to aggregate access using data sieving or two-
phase I/O. These characteristics indicate that Chombo will be

TABLE V
BG/P FORWARDING BANDWIDTH BY MEMORY ALIGNMENT

Alignment Read (MB/s) Write (MB/s)
8 bytes 503.2 188.7

16 bytes 506.8 666.1

a challenging benchmark for the file system, especially at large
scale. The Chombo benchmark does include a compile time
option to use collective operations, but we were unsuccessful
in using it at the time of this writing.

Darshan also recorded 70 writes that were not aligned on a
16-byte boundary in memory. This is only a small fraction of
the total number of writes and thus does not have a significant
impact on this code, but it may be a significant factor for
other applications. Table V shows the result of an additional
experiment to measure the impact of memory alignment for
transfers between a BG/P compute node and I/O node. This
experiment used 4 MByte buffers that were aligned 16 byte
or 8 byte boundaries. Each buffer was written to /dev/zero
to exercise the forwarding infrastructure without interference
from an external file system. The tree network requires 16-byte
alignment and must perform an extra copy for unaligned data.
A performance degradation is therefore expected for unaligned
access, but the 60% drop-off observed here is surprising. Note
that the Darshan memory alignment threshold used by Darshan
is a compile time choice that can be altered for different
architectures.

C. S3D-IO

The S3D application [24] simulates turbulent combustion
using direct numerical simulation of a compressible Navier-
Stokes flow. The domain is decomposed among MPI processes
in 3D. Periodically, all processes participate in writing out a
restart file. This restart file can be used both as a means to
resume computation and as input for visualization and analysis
tools. S3D-IO extracts just the portion of S3D concerning
restart dumps, allowing us to focus on strictly I/O charac-
teristics. It supports multiple output methods, but we tested
using Parallel-netCDF (pnetcdf) [25].

S3D-IO uses the pnetcdf collective interface, but through the
use of MPI-IO hints we were able to evaluate both collective
and independent I/O. The collective version spent 10% of
its run time in MPI-IO write calls. Initial independent I/O
performance was quite poor, spending 99% of runtime in I/O.
Once we identified an issue that limited performance, we were
able to reduce the runtime spent performing I/O in independent
mode to 44%.

Table VI and Figure 6 show some characteristics of S3D at
small scale in three different modes: collective I/O, indepen-
dent without data sieving, and independent with data sieving.
In truth, we only inadvertently benchmarked independent I/O
without data sieving, but it is illustrative to discuss how and
why that happened. Our trace of S3D-IO with collective I/O
performed as expected: Darshan reported that the MPI-IO
library optimized writes such that the restart data could be
written out in a few multimegabyte calls. When we disabled

TABLE VI
S3D/PNETCDF CHARACTERISTICS, 16 PROCESSES

Coll. Indep. Indep. Sieving
POSIX writes 5 102401 81
POSIX reads 0 0 80
MPI-IO writes 64 64 64
Unaligned in file 4 102399 80
Total written (MByte) 6.25 6.25 87.11
Run time (s) 6 1443 11
MPI-IO time/proc (s) 0.60 1426.47 4.82

 0

 10

 20

 30

 40

 50

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M-4M

4M-10M

C
ou

nt
 (t

ot
al

, 1
6

pr
oc

es
se

s)

Write size ranges

(102400)

collective
independent

indep. w/ sieving
MPI datatype sizes

Fig. 6. S3D/PnetCDF write size histogram, 16 processes

collective I/O, however, independent I/O performed aston-
ishingly poorly. Darshan showed the application issuing one
million 8-byte writes. On Blue Gene, this workload is a recipe
for disaster because of I/O forwarding latency and the lack
of write caching at the compute node. The MPI-IO library
has fewer opportunities for optimization in the independent
I/O case, but Darshan clearly showed that the MPI-IO library
was making zero optimizations. A quick check of the source
code showed why: S3D-IO disabled a key independent I/O
optimization.

S3D-IO was initially developed on a Cray XT-3. Because
of a poor interaction between the MPI-IO library on that
system and the Lustre file system, performance is actually
better in some cases if certain optimizations are disabled.
An MPI-IO hint can disable the data sieving optimization,
which will result in many smaller writes but does not require
acquiring an explicit user-level lock. While this approach gives
good performance on the Cray system, it is perhaps the worst
possible approach one could take on Blue Gene.

With data-sieving re-enabled, Darshan clearly demonstrated
the benefits and the costs of that optimization. In data sieving,
the MPI-IO library services a noncontiguous I/O request by
operating on a single, large contiguous block. The library will
end up transferring unnecessary data in this case. It makes
up for this, however, by replacing many latency-bound small
operations with a few large operations that are much more
efficient. Thus, while the S3D restart file in this case was only
6 MBytes, the MPI-IO library wrote out 91 MBytes of data.
Seeing this information makes it clear why S3D performs so
much better in the collective I/O mode.

Collective I/O on Blue Gene is almost always a win; but

TABLE VII
HOMME’S MOST COMMON ACCESS SIZES

(a) Collective
Size (bytes) Count

6078464 1
16777216 128

8388608 59
4194304 4

(b) Independent

Size (bytes) Count
30848 864000

– –
– –
– –

if for some reason an application cannot use collective I/O
routines, Darshan gives us some insight on how to tune some
of the MPI-IO parameters. In Figure 6, the histogram suggests
the independent case with data sieving might perform better if
we increased the intermediate buffer to something larger like
6 MBytes.

D. HOMME

The HOMME (High-order Multiscale Modeling Environ-
ment) [26] application models atmosphere physics using spec-
tral element techniques. It periodically writes out restart files
directly through MPI-IO. We can compile HOMME to write
out these restart files in either independent or collective mode,
providing an illustrative example of the differences from an
application perspective. We ran a 2048-processor “aquaplanet”
simulation with HOMME and traced the output of the restart
file in both independent and collective mode. Both cases create
several small files and a 2.5 GB restart file.

The collective versus independent comparison in HOMME
is slightly different from that of S3D-IO. In S3D we had to
compare independent versus collective by adjusting MPI-IO
hints. In HOMME’s collective case, it constructs an MPI file
view using an indexed-block type to describe the file layout
of a process’s data and then writes all the records in a single
collective call. In independent mode, HOMME processes just
iterate over the records, writing them out one at a time.
Those familiar with I/O on large systems will recognize the
benefits of the collective I/O call, yet on several systems the
HOMME developers found buggy MPI-IO implementations.
The independent approach proved easier for these buggy
implementations to handle.

Using Darshan, we can demonstrate and quantify just how
much better suited the collective I/O approach is to the storage
system on Blue Gene. In Table VII we see the most common
access sizes for the two approaches. The 864,000 small (30k)
writes are too tiny for the Blue Gene storage system to handle
efficiently. Far better is the collective story, where there are far
fewer operations and the vast majority are large (16 MBytes).
This 16 MByte value is the default buffer size for a key MPI-
IO collective optimization. The Darshan output suggests that
we might be able to extract somewhat better performance by
increasing this buffer to 24 MBytes or 32 MBytes.

The datatype histogram in Figure 7(a) shows
how often each type showed up as inspected with
MPI_Type_get_envelope() (both on I/O calls and
set views). The final column shows the number of times
set view was called. It confirms our understanding of the
HOMME code: the collective I/O case constructs a type to

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

named

dup
contiguous

vector

hvector_integer

hvector

indexed

hindexed_integer

hindexed

indexed_block

struct_integer

struct
subarray

darray

f90_real

f90_complex

f90_integer

resized

views

C
ou

nt
 (t

ot
al

, 2
04

8
pr

oc
es

se
s)

(86400)
collective

independent

(a) datatype histogram

 0

 10

 20

 30

 40

 50

 60

 70

collective

independent

S
ec

on
ds

file held open
MPI writes

POSIX writes

(b) average time per process operating on output file

Fig. 7. HOMME characteristics with 2048 processes

describe the I/O while the independent case uses only a
simple predefined (built-in) MPI datatype.

Figure 7(b) compares the average time per process spent
with the file open, in MPI write functions, and in POSIX
write functions. Collective mode is 10 times faster actually
writing, demonstrating again the importance of coalescing
small accesses into larger requests on this system. Collective
mode also spends more time organizing within the MPI write
routine than actually accessing the file system. It is curious
that independent I/O spends a lot of time with the file open
but not actually writing anything. The collective I/O run took
120 seconds, while the independent run took 176 seconds.
This graph accounts for the the entire 56-second difference in
execution time between the two runs.

Darshan provides one additional bit of insight for which we
do not have a graph, but which shows up in the trace output
and has significant implications with regards to performance.
Collective I/O, because of optimizations in the MPI-IO layer,
wrote out data with perfect alignment in file. The independent
case, on the other hand, wrote out unaligned blocks nearly
every time. On PVFS, unaligned writes do not incur too large a
penalty, but on GPFS, unaligned writes may incur more signif-
icant overhead as the lock management must acquire exclusive
access to file system blocks to complete the operation.

 0

 50

 100

 150

 200

 250

 300

 350

Default

Darshan

Default

Darshan

Default

Darshan

Default

Darshan

Ti
m

e
(s

ec
s)

S_w
W_r

W_w
C_r

other

65,53632,40016,9008,100

Fig. 8. MADBench2 /dev/zero execution time for varying BG/P job sizes

VI. DARSHAN SCALABILITY ANALYSIS

Thus far we have outlined the design of Darshan and
demonstrated examples of characterization of four different
scientific applications. In this section, we choose one of
those applications, MADBench2, to measure the overhead of
Darshan at larger scale. This type of measurement is difficult
to perform on Intrepid because of performance variance from
competing jobs and various caching effects. To mitigate the
variance, we have modified MADBench2 to both read from
and write to /dev/zero rather than a normal file on PVFS.
Access to /dev/zero still utilizes the CIOD I/O forwarding
system, but it is not impacted by any shared resources or
storage devices. MADBench2 is a good candidate for this
modification because it opens only one file and does not
rely on the presence of valid data within the file at any
point. As indicated in Section IV-A, performing I/O to special
device files places an upper bound on the performance of
I/O operations. This configuration is therefore more likely to
illustrate overhead than access to a standard file system.

Figure 8 shows the execution time of each phase of MAD-
Bench2 at various scales on Intrepid. MADBench2 reports
I/O time for four different phases. S w and W w are write
phases, while W r and C r are read phases. In addition,
we analyzed time stamps from scheduler logs to determine
the complete execution time of each job. The difference
between the I/O phases and the overall job time, including time
needed to write the Darshan output to PVFS when Darshan
is enabled, is shown as “other” in this graph. The parameters
to MADBench2 were scaled at each job size in order to fully
utilize the compute node memory and move approximately the
same amount of data per compute node.

In Figure 8 we see that the overhead from Darshan is negli-
gible for MADBench2. The I/O costs and total run time were
nearly identical for a standard build and a Darshan-enabled
build. The largest example, with 65,536 processes, issued
1,048,576 total I/O operations and exceeded 175 GBytes/s
during writes to /dev/zero. The resulting Darshan output
file for each job ranged from 273 to 283 Bytes and yielded
similar characteristics to those shown in Section V-A. Based
on these results we believe that Darshan will have negligible
impact on the performance of most storage systems.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Understanding and tuning I/O behavior on extreme-scale
systems present an increasing challenge and yet are more
important than ever in order to make efficient use of such
systems. In this work we have presented Darshan as a tool
to enable continuous characterization of I/O workloads with
negligible impact on users or administrators. We evaluated the
overhead of Darshan and then used it to characterize four rele-
vant scientific application benchmarks. We also demonstrated
that Darshan scales effectively to at least 65,536 processes
without noticeable impact on application performance. Our
experiments confirm that Darshan is a viable mechanism for
24/7 characterization of petascale I/O workloads.

The next step in our work will be to deploy Darshan for
production use on the BG/P systems at Argonne National
Laboratory. Our intent is to perform a long-running study
of workload characteristics for leadership-class systems, as
well as to help guide developers and administrators in tuning
efforts. These tasks will require the development of additional
analysis tools to extract information from a large collection
of jobs. We also hope to encourage the use of Darshan as
a common part of the application developer’s tool set. We
have taken steps toward this goal by developing a utility that
graphically summarizes high-level application I/O character-
istics. We intend to release Darshan publicly under an open
source license for community use.

In terms of extending Darshan itself, we would like to
add support for additional levels of the I/O software stack,
such as high-level libraries and I/O forwarding software. We
will also explore the possibility of adding more sophisticated
runtime analysis of access patterns. Our current experiments
indicate that we have room for additional computation without
impacting application performance. If we discover a need to
track a greater number of files, we will also explore techniques
such as runtime compression to reduce Darshan’s memory
footprint.

ACKNOWLEDGMENTS

We thank Ray Grout, Jacki Chen, and Wei-keng Liao for
providing the S3D-IO benchmark, Julian Borrill for providing
the MADBench2 benchmark, Mark Taylor for providing the
HOMME benchmark, and the Applied Numerical Algorithms
Group at NERSC for providing the Chombo I/O benchmark.

This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357.

REFERENCES

[1] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable per-
formance visualization with Jumpshot,” High Performance Computing
Applications, vol. 13, no. 2, pp. 277–288, Fall 1999.

[2] A. Chan, W. Gropp, and E. Lusk, “An efficient format for nearly
constant-time access to arbitrary time intervals in large trace files,”
Scientific Programming, vol. 16, no. 2-3, pp. 155–165, 2008.

[3] S. Shende and A. D. Malony, “The TAU parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–331, Summer 2006.

[4] D. Arnold, D. Ahn, B. de Supinski, G. Lee, B. Miller, and M. Schulz,
“Stack trace analysis for large scale debugging,” in Proceedings of
the IEEE International Parallel and Distributed Processing Symposium,
2007, March 2007, pp. 1–10.

[5] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and
M. Best, “File-access characteristics of parallel scientific workloads,”
IEEE Transactions on Parallel and Distributed Systems, vol. 7,
no. 10, pp. 1075–1089, October 1996. [Online]. Available: http:
//www.computer.org/tpds/td1996/l1075abs.htm.

[6] J. S. Vetter and M. O. McCracken, “Statistical scalability analysis
of communication operations in distributed applications,” SIGPLAN
Notices, vol. 36, no. 7, pp. 123–132, 2001.

[7] “mpiP: Lightweight, scalable MPI profiling,”
http://mpip.sourceforge.net/.

[8] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O
prefetching using MPI file caching and I/O signatures,” in SC ’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–12.

[9] M. Noeth, J. Marathe, F. Mueller, M. Schulz, and B. de Supinski,
“Scalable compression and replay of communication traces in massively
parallel environments,” in SC ’06: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing. New York, NY, USA: ACM, 2006.

[10] S. Seelam, I.-H. Chung, D.-Y. Hong, H.-F. Wen, and H. Yu, “Early
experiences in application level I/O tracing on Blue Gene systems,” in
Proceedings of the 2008 IEEE International Parallel and Distributed
Processing Symposium, 2008.

[11] “HPC-5 open source software projects: LANL-Trace,”
http://institute.lanl.gov/data/software/#lanl-trace.

[12] P. C. Roth, “Characterizing the I/O behavior of scientific applications
on the Cray XT,” in PDSW ’07: Proceedings of the 2nd International
Workshop on Petascale Data Storage. New York, NY, USA: ACM,
2007, pp. 50–55.

[13] “FPMPI-2 fast profiling library for MPI,”
http://www.mcs.anl.gov/research/projects/fpmpi/WWW/.

[14] J. J. Ritsko, I. Ames, S. I. Raider, and J. H. Robinson, “Blue Gene,”
IBM Journal of Research and Development, vol. 49, March/May 2005.

[15] “The Parallel Virtual File System,” http://www.pvfs.org/.
[16] R. Latham, N. Miller, R. B. Ross, and P. H. Carns, “A next-generation

parallel file system for Linux clusters,” LinuxWorld Magazine, January
2004. [Online]. Available: http://www.pvfs.org/documentation/papers/
linuxworld-JAN2004-PVFS2.pdf.

[17] E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable
implementation of the MPI message passing interface standard,” Parallel
Computing, vol. 22, pp. 789–828, 1996.

[18] R. Thakur and E. Lusk, “On implementing MPI-IO portably and with
high performance,” in Proceedings of the 6th Workshop on I/O in
Parallel and Distributed Systems. ACM Press, 1999, pp. 23–32.

[19] B. Jenkins, “Lookup8 hash algorithm,”
http://burtleburtle.net/bob/c/lookup8.c.

[20] J. Carter, J. Borrill, and L. Oliker, “Performance characteristics of a cos-
mology package on leading HPC architectures,” in HiPC:International
Conference on High Performance Computing. Springer, 2004, pp. 176–
188.

[21] “Chombo - infrastructure for adaptive mesh refinement,”
https://seesar.lbl.gov/ANAG/chombo/.

[22] “Chombo I/O benchmark,” http://www.nersc.gov/∼ndk/
ChomboBenchmarks/chomboIOBenchmark.html.

[23] “HDF5 home page,” http://www.hdfgroup.org/HDF5/.
[24] R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law, “Direct

numerical simulations of turbulent lean premixed combustion,” Journal
of Physics: Conference Series, vol. 46, pp. 38–42, 2006. [Online].
Available: http://stacks.iop.org/1742-6596/46/38

[25] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, R. Latham,
A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF: A high-
performance scientific I/O interface,” in Proceedings of Supercomputing,
2003.

[26] R. D. Nair and H. M. Tufo, “Petascale atmospheric general circulation
models,” Journal of Physics: Conference Series, vol. 78, p. 012078
(5pp), 2007. [Online]. Available: http://stacks.iop.org/1742-6596/78/
012078.

