Relational Incentive Contracts

By JONATHAN LEVIN*

Standard incentive theory models provide a rich framework for studying informa-
tional problems but assume that contracts can be perfectly enforced. This paper
studies the design of self-enforced relational contracts. I show that optimal con-
tracts often can take a simple stationary form, but that self-enforcement restricts
promised compensation and affects incentive provision. With hidden information, it
may be optimal for an agent to supply the same inefficient effort regardless of cost
conditions. With moral hazard, optimal contracts involve just two levels of com-
pensation. This is true even if performance measures are subjective, in which case
optimal contracts terminate following poor performance. (JEL C73, D82, L14)

Incentive problems arise in many economic
relationships. Contracts that tie compensation to
performance can mitigate incentive problems, but
writing completely effective contracts is often
impractical.1 As a result, real-world incentives fre-
quently are informal. Within firms, compensa-
tion and promotion often are based on difficult
to verify aspects of performance such as team-
work, leadership, or initiative. Employees un-
derstand this without the precise details being
codified in a formal contract and firms live up to
their promises because they care about their
labor market reputation.2 Similarly, firms often
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' For example, it may not be practical to precisely cap-
ture what is desired in a written contract. It may be difficult
even to explain the details of performance to an outsider
such as the court. In some cases, the best measure of
performance may be a subjective judgment. In other cases,
shortcomings in the court system itself may prevent effec-
tive contractual enforcement.

2 As an example of failed relational contracting, consider
the case of United Airlines in the summer of 2001. During
contract negotiations, the pilots’ union urged its members to
work “to the letter of our agreement.” What followed was a
summer of delays and cancelled flights that cost United
$700 million. United’s management contemplated going to
court, but determined that it could not afford to further
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expect a level of flexibility and adaptation from
suppliers that goes well beyond contractual re-
quirements. The give and take of the relation-
ship allows prices or details of delivery to adjust
in response to specific circumstances.

The need for a relational contract is a matter
of degree. Sovereign nations comply with trade
agreements and repay foreign debt because they
desire the continued goodwill of trading part-
ners. Politicians have an incentive to assist large
donors because they will need to raise money in
future campaigns. On the other hand, when a
firm contracts with its employees or other firms,
or when a government agency regulates an in-
dustry, a formal contract may provide a reason-
able starting point. In these cases, good faith
allows for more flexibility and nuance in incor-
porating information.

Information plays the same role in relational
contracting as in standard incentive theory. Bet-
ter performance measures generate more effec-
tive incentives. But a relational contract can
incorporate a much broader range of subjective
information. For instance, the best gauge of
employee performance is often the subjective
evaluations of peers or supervisors. Firms reg-
ularly use such measures for compensation and
promotion decisions. In a survey of law firm
compensation by the consulting firm Altman
Weil, Inc., 50 percent of law firms report using

antagonize the pilots. Ultimately, negotiations resulted in a
large salary increase (Roger Lowenstein, 2002).
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subjective measures of performance to deter-
mine partner compensation (Altman Weil,
2000). Subjective measures are also commonly
used by Wall Street firms to help determine the
year-end discretionary bonuses that constitute a
significant fraction of compensation.

The combination of subjectivity and discre-
tion can give rise to costly differences of opin-
ion. James B. Stewart (1993) describes the
turmoil at First Boston in the early 1990’s after
year-end bonuses were lower than expected.
Senior managers were incensed at what they
perceived as a breach of trust. Meanwhile
Credit Suisse, First Boston’s parent company,
argued that the bonuses merely reflected disap-
pointing financial results. The dispute ended
with many top managers leaving the firm. Lisa
Endlich (1999) details a related wave of depar-
tures that occurred when Goldman Sachs dra-
matically cut year-end bonuses in 1994.
Employees at all levels, who felt they had been
promised more, quit despite the fact that senior
management was predicting rapid growth.

In this paper, I provide a simple analysis of
optimal relational contracting in a broad range
of settings. This includes settings where there
are problems of moral hazard or hidden infor-
mation as well as environments where perfor-
mance evaluation is purely subjective. I first
show that to characterize optimal contracts it
often suffices to focus on a simple class of
stationary contracts in which the same compen-
sation scheme is used at every date. Using this
result, I explain how self-enforcement limits the
scope of incentive provision and characterize
optimal incentive schemes. I also show how the
use of subjective performance measures necessar-
ily gives rises to costly disputes, although optimal
incentive contracts are still relatively simple.

The results are established in a general and
broadly applicable agency setting. There are a
principal and agent who can trade repeatedly.
They can contractually specify some fixed pay-
ment and can incorporate further performance
measures in a relational contract that specifies
how payments and future trade will adjust to
reflect performance. In the case of employment,
the fixed compensation can be interpreted as a
salary, while the relational contract describes
how discretionary bonuses, raises, and promo-
tions will be awarded based on performance.
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In principle a relational contract can be quite
complicated because performance in any given
period can affect the whole future course of
the relationship. Nevertheless, I show that to
characterize Pareto-optimal contracts in set-
tings of moral hazard or hidden information it
suffices to consider only stationary contracts
in which the principal promises the same
contingent compensation in each period. This
can be understood as follows. Even with a
complex agreement, the parties have only two
instruments to provide incentives—present
compensation and continuation payoffs. These
instruments are substitutable given risk neutral-
ity. Thus an incentive scheme that uses contin-
uation payoffs to reward or punish an agent can
be replicated by a scheme that uses only imme-
diate compensation. The one caveat is that di-
rect compensation cannot replicate an outcome
that punishes both parties. However, I show that
when the principal’s behavior is perfectly ob-
served, optimal contracts never involve joint
punishments in equilibrium. It follows that sta-
tionary contracts are optimal.

In economic terms, this result says that rela-
tionships should optimally respond to variable
outcomes through adjustments in price rather
than through changes in the underlying incentives.
In practice, a pricing system that grants discounts
to customers whose last delivery was flawed, or
a compensation system that bases raises or bo-
nuses on a review of the previous year’s perfor-
mance, can serve precisely this purpose.

The simple structure of stationary contracts
makes it easy to characterize optimal relational
incentive schemes. These schemes differ from
standard incentive theory because contracts are
self-enforced. Under a relational contract, each
party has an incentive to pay promised compen-
sation because reneging would bias future trade
terms against the deviator or even end the rela-
tionship. But because each party has the option
to walk away, the gap between the highest and
lowest payments promised as a function of per-
formance cannot exceed the present value of the
relationship. This constraint limits what can be
achieved in terms of incentives.

As an example, suppose that the agent has
private information each period about his cost
conditions. A well-known result is that optimal
screening contracts will perfectly separate cost
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types under certain regularity conditions. More-
over, such contracts never distort the choices of
the most efficient agents. In contrast, when self-
enforcement is a binding constraint, an optimal
relational contract never fully distinguishes be-
tween different cost conditions and never asks for
efficient effort. Indeed, the agent may be asked to
provide the same (inefficient) performance with-
out any regard for his cost conditions. These dis-
tortions arise because self-enforcement creates a
shadow cost to providing effective incentives by
limiting the variability of compensation.

The model predicts that relationships will be
more flexible in adapting to changing cost con-
ditions when trading is more frequent or when
parties rely more on each other. The literature
on vertical supply contracting suggests that
adaptability is a key feature of successful long-
term relationships (Oliver E. Williamson,
1985). Here, if a relationship does not generate
a great deal of surplus, the terms of the rela-
tional contract will be quite rigid. In contrast, if
the relationship is more productive, there will
be scope to fine-tune performance to current
conditions.

The use of subjective performance measures
presents problems that do not arise when there
is asymmetric information about costs or when
performance measures are simply noisy. The
reason is that a successful contract must simul-
taneously give the agent an incentive to perform
and the principal an incentive to assess perfor-
mance honestly. This makes stationary con-
tracts ineffective. Nevertheless, if the principal
reviews performance each period, an optimal
contract still has a straightforward structure.
The principal pays the agent a base salary each
period, adding a fixed bonus if she judges per-
formance to be above some threshold. If the
principal claims nonperformance and withholds
the bonus, a dispute results and the agent walks
away. The optimal contract displays both in-
formation compression—the reduction of a
potentially nuanced signal into just two pay
levels—and conflict. Interestingly, conflict of
this sort does not arise in earlier relational
contracting models where parties can agree on
performance measures. In contrast, the combi-
nation of subjectivity and discretion provides an
explanation for the real-world compensation
disputes described above.
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Related Literature—Many authors, and not
just economists, have emphasized the role of
ongoing relationships in contracting [early ref-
erences include Stewart Macaulay (1963) and
Ian R. Macneil (1974)]. In contrast to the
present paper, previous relational contracting
models have generally focused on environments
where the parties have symmetric information
[for instance, Benjamin Klein and Keith Leffler
(1981); Carl Shapiro and Joseph E. Stiglitz
(1984); Clive Bull (1987); and David M. Kreps
(1990)]. W. Bentley MacLeod and James M.
Malcomson (1989) provide a definitive treat-
ment of this model. They show that optimal
contracts can take a variety of forms: from
efficiency wages where the principal pays a
high fixed salary and threatens to terminate an
agent for poor performance, to a system of
performance bonuses paid by the principal in each
period (see also MacLeod and Malcomson, 1998).

The assumption of symmetric information
contrasts with the traditional incentive theory
view that asymmetric information, rather than
enforcement, is the central impediment to effec-
tive contracting (e.g., Bengt Holmstrom, 1979;
Jean-Jacques Laffont and Jean Tirole, 1993).
This paper brings these views together. I show
that the connection is in fact quite close. In
essence, with risk neutrality, optimal relational
contracts are distinguished from standard opti-
mal incentive contracts by the presence of a
single enforcement constraint that limits the
range of contingent payments.> This is true even
if there is hidden information, moral hazard, or
subjective performance evaluation.

In practice, real-world contracting often in-
volves both formal and relational incentives. For
instance, a procurement contract may include ex-
plicit penalties for late delivery, while the prospect
of getting repeat business supplies the incentive to
be flexible in making (nonverifiable) adaptations.
George Baker et al. (1994) develop an agency
model in which the principal has available both a

3 A dynamic contracting literature in macroeconomics
includes some papers that model contractual self-enforcement.
Early examples include Jonathan Thomas and Tim Worrall
(1988) and Andrew Atkeson (1991). This line of research
focuses on the insurance and consumption-smoothing as-
pects of long-term relationships, problems that are absent in
the present risk-neutral setup.
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verifiable and a nonverifiable performance mea-
sure. They show that the principal can benefit
from using both measures, but do not characterize
fully optimal agreements.* Here I focus only on
nonverifiable performance measures, but many of
the results on optimal contracting extend to envi-
ronments where richer formal contracts are possi-
ble (see Section II for discussion).

B. Douglas Bernheim and Michael D. Whin-
ston (1998) develop the theme of formal and
informal incentives further, arguing that when
some performance measures are not verifiable,
parties may deliberately leave formal contracts
incomplete. This “strategic ambiguity” allows a
contract to be adapted in the face of observable
but nonverifiable information. Effective con-
tracts in this paper have precisely the strategic
ambiguity described by Bernheim and Whin-
ston—the parties specify a fixed payment but
leave open the possibility of adjusting this pay-
ment ex post. This flexibility is crucial because
it allows good performance to be rewarded.

The basic problem I address—how to struc-
ture contractual relationships when the parties
have useful information that cannot be effec-
tively translated into an enforceable formal
contract—also bears some relationship to anal-
yses of the hold-up problem. Hold-ups arise
when one party to a relationship makes a spe-
cific investment that is not contractible. Without
contractual protection, the investing party may
be unable to appropriate the returns to his in-
vestment. There are many potential responses to
this problem. Sanford Grossman and Oliver
Hart (1986) argue that vertical integration can
substitute for contractual protection, while
Aaron S. Edlin and Stefan Reichelstein (1996)
show that standard legal remedies such as spe-
cific performance and expectation damages may
suffice to encourage investment.

These remedies to noncontractibility do not
depend on repeated interaction, but rather on the
ability of the parties to renegotiate the terms of
trade after performance is observed but before
trade occurs. The parties structure their initial
agreement to frame this renegotiation. In con-

4 See also Klaus Schmidt and Monika Schnitzer (1995),
David G. Pearce and Ennio Stacchetti (1998), and Luis
Rayo (2002).
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trast, I focus on problems where the benefit of
the agent’s action accrues directly to the prin-
cipal. By the time performance can be assessed,
there is nothing left to negotiate over. The
present model naturally describes situations
where an agent performs an ongoing service for
the principal (such as an employment relation-
ship), or provides a product whose quality can
only be observed in the process of using it (such
as the advice provided by a consulting firm). On
the other hand, hold-ups often are associated
with large discrete investments of the sort that
might take place at the start of a relationship.’
Finally, my analysis of the dynamic structure of
relational contracts makes use of the repeated game
techniques developed by Dilip Abreu et al. (1990)
and Drew Fudenberg et al. (1994). The crucial
distinction between relational contracting and the
models studied in those papers is that here the
parties can use monetary transfers as well as changes
in equilibrium behavior to provide incentives. I
discuss this point in more detail in Section IL.

I. The Model
A. The Agency Problem

I consider two risk-neutral parties, a principal
and an agent, who have the opportunity to trade
at dates r = 0, 1, 2, .... At the beginning of
date #, the principal proposes a compensation
package to the agent. Compensation consists of
a fixed salary w, and a contingent payment
b,: ® 1 R, where ® is the set of observed
performance outcomes, to be described momen-
tarily. The agent chooses whether or not to
accept the principal’s offer. Let d, € {0, 1}
denote the agent’s decision.

If the agent accepts, he observes a cost
parameter 0,, representing variable aspects of
the environment such as task difficulty, the
cost of materials, or the opportunity cost of
time. The cost parameter is an independent
draw from a distribution P(-) with support
O = [0, 0]. The agent then chooses an action

5 Baker et al. (2002) integrate relational contracting with
the hold-up literature by developing a model of repeated
specific investments.

¢ Allowing the agent to propose compensation, and the
principal to accept or reject, leads to an equivalent analysis.
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e, € E C [0, e], incurring a cost c(e,, 0,).
The agent’s cost is increasing in e with c(e =
0, 6) = 0 for all 6. The agent’s action
generates a stochastic benefit y, for the prin-
cipal, where y, has distribution F( -+ |e) and
support Y = [y, y]. Then S(e, 6) = [, [y|e]
— c(e, 0) denotes the expected joint surplus
as a function of 0 and e.

During the course of trade, the agent ob-
serves all of the relevant information: his cost
parameter 0,, his action e, and the principal’s
benefit y,. The principal observes her benefit
¥, but may or may not observe 0, and e,. In
this way, the model allows for problems of
hidden information (8 is private) and moral
hazard (e is private) as well as symmetric
information. The performance outcome is the
subset ¢, C {0,, e,, y,} observed by both
parties. Let @ be the set of possible realiza-
tions of ¢,.”

At the end of date 7, the principal is obligated
to pay the fixed salary w,. The parties then
choose whether to adjust this by the contingent
payment b,(¢,). This decision belongs to the
principal if b, > 0 and to the agent if b, < 0.
Let W, denote the total payment actually made
from principal to agent—either w, + b(¢,) if
the agreed payment is made, or w, if not. Thus
the agent’s payoff is W, — c(e,, 0,) while the
principal’s is y, — W,.

If the agent rejects the principal’s original
offer, both parties receive fixed payoffs: u for
the agent and 1 for the principal. I assume these
outside opportunities are less desirable than ef-
ficient trade, but sufficiently attractive that the
parties weakly prefer not to trade if the agent
cannot be given incentives to perform. Defining
s = u + ar, I assume that for all 6, max_,S(e,
6) > s = 50, 9).

Over the course of repeated interaction, the
parties care about their discounted payoff
stream. Starting from date 7, the respective pay-
offs for principal and agent, discounted by a
common discount factor & € [0, 1), are:

"If both 0, and e, are private to the agent, the par-
ties can generally benefit from having the agent an-
nounce 6, prior to choosing e, and using this
announcement to tailor incentives. I ignore this possibil-
ity as it does not benefit the parties in the main cases of
interest.
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mo=(1-3E > 8 d.(y. — W,)

T=1

+ (1 —d,)m},

u,= (1= 3)E > 8 {d.(W,

—cle,, 0,)) + (1 —d,)u}.

Here, I multiply through by 1 — & to express
payoffs as a per-period average.

B. Relational Contracts

Because contingent compensation is merely
promised, there is a temptation to renege on pay-
ments once production occurs. In a one-time in-
teraction this means that the principal can credibly
promise only the fixed salary w. As this provides
no performance incentive, mutually beneficial
trade cannot occur in static equilibrium and both
parties receive their outside options. In contrast,
ongoing interaction allows the parties to base fu-
ture terms of trade on the success of present
trade—potentially allowing for a good faith agree-
ment that provides effective incentives.

A relational contract is a complete plan for
the relationship. Let h' = (wq, do, ©0, Wo, ... ,
w, 1, d;,_ 1, ¢, 1, W,_ ) denote the history
up to date ¢, and FH{’ the set of possible date ¢
histories. Then for each date ¢ and every history
h’ € H’, a relational contract describes: (i) the
compensation the principal should offer (and
which should be paid); (ii) whether the agent
should accept or reject the offer; and in the
event of acceptance, (iii) the action the agent
should take as a function of his realized costs 0,.
Such a contract is self-enforcing if it describes a
perfect public equilibrium of the repeated
game.® Note that a relational contract describes
behavior both on the equilibrium path and off—
for instance after a party reneges on a payment.

8 Perfect public equilibrium requires that play following
each history be a Nash equilibrium. Here, it essentially
imposes the same sequential rationality requirement that
subgame perfection would impose in a complete informa-
tion model (Fudenberg et al., 1994).
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In general, there may be many self-enforcing
contracts, leading to a question of which to
select. In an important sense, however, the
problem of efficient contracting can be sepa-
rated from the problem of distribution: if there
is a self-enforcing contract that generates some
surplus beyond the outside surplus s, it can be
divided in any way that respects the parties’
participation constraints.

THEOREM 1: If there is a self-enforcing
contract that generates expected surplus
s > s, then there are self-enforcing contracts that
give as expected payoffs any pair (u, ) satis-
fingu =u, w=mmandu + T = s.

The reasoning behind Theorem 1 is that by
changing the fixed compensation in the initial
period of the contract, the parties can redistrib-
ute surplus without changing the incentives that
are provided after the initial compensation is
proposed and accepted.

Given this result, it is natural to focus on
contracts that maximize the parties’ joint sur-
plus (subject to the constraint of being self-
enforcing). I say that a self-enforced contract is
optimal if no other self-enforcing contract gen-
erates higher expected surplus.

II. Stationary Contracts

This section shows that the problem of de-
scribing optimal relational contracts can be sig-
nificantly simplified by focusing on contracts
that take a stationary form.

Definition 1: A contract is stationary if on the
equilibrium path W, = w + b(¢,) and e, =
e(0,) atevery datet, forsomew €E R, b : @ 1
R,ande: 0 1 E.

Under a stationary contract, the principal
always offers the same compensation plan
w€ Randb: ®1 R, and the agent always
acts according to the same rule e : ® 1 E.
The contract must also specify what happens
if a party fails to make a specified payment or
if the principal fails to offer the expected
compensation. Since these events never occur
in equilibrium, there is no loss in assuming
that the parties respond by breaking off trade,
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as this is the worst equilibrium outcome
(Abreu, 1988).°

THEOREM 2: If an optimal contract exists,
there are stationary contracts that are optimal.

Theorem 2 says that instead of conditioning
future trade on the agent’s performance, the
parties can “settle up” each period using discre-
tionary payments and then proceed to the same
optimal agreement at the next date.

To understand the argument behind Theorem
2, consider a simple example where the agent
has constant cost conditions and chooses an
effort that results in either Low or High output.
To induce the agent to exert effort, an agree-
ment must reward the agent following High
output. This reward could come in one of two
forms: through an immediate payment or from
moving to a continuation equilibrium that gives
a high expected payoff. Given risk neutrality,
the agent views these as equivalent. Thus, for
any contract that relies on changes in the equi-
librium behavior to provide incentives, it should
be possible to provide the same incentives with
payments alone. The potential catch is that dis-
cretionary payments can redistribute surplus but
cannot replicate the creation or destruction of
surplus that might occur if, for instance, the
contract called for the agent to be fired follow-
ing Low output. Because the principal’s behav-
ior is observed perfectly, however, an optimal
contract would never call for surplus to be de-
stroyed on the equilibrium path. Thus stationary
contracts suffice for optimality.'

One small point pertains to the issue of rene-
gotiation. The proof of Theorem 2 shows that
optimal stationary contracts can be constructed
to split the surplus arbitrarily provided the par-
ticipation constraints are satisfied. This means
that even in the event of a deviation there is no

 More specifically, one can assume the parties revert to
statically optimizing behavior. This means that if the prin-
cipal deviates by offering (w’, b") # (w, b) with w' > u,
the agent will accept the offer but exert zero effort.

'91n contrast a contract that generates less than the optimal
surplus might call for variation in the joint surplus over time.
By placing some additional structure on the model, however,
Theorem 2 can be strengthened to say that a stationary contract
can achieve any surplus between s and the optimal surplus.
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need to terminate the relationship. Instead, the
terms of trade can be altered to hold the deviating
party to his or her outside option. Say that a
self-enforcing contract is strongly optimal if given
any history h" € FH", the continuation contract
from h’ is optimal. A strongly optimal contract has
the desirable property that even off the equilib-
rium path the parties cannot jointly benefit from
renegotiating to a new self-enforcing contract.

COROLLARY 1: For any optimal stationary
contract, there is a strongly optimal stationary
contract with the same equilibrium behavior.

The results in this section can be applied to a
variety of other contracting settings. To see why
this is the case, it is useful to connect with the
general theory of repeated games. Recall that in
a repeated game with perfect information, opti-
mal equilibria can always be stationary because
deviations are never observed in equilibrium
(Abreu, 1988). This observation applies to
MacLeod and Malcomson’s (1989) symmetric
information model of relational contracting.
Here, however, the agent’s behavior is not per-
fectly observed. Performance might appear good
or bad in equilibrium and must be rewarded and
punished accordingly. In the models of Edward
J. Green and Robert H. Porter (1984), Abreu et
al. (1990), Fudenberg et al. (1994), and Susan
Athey and Kyle Bagwell (2001), it is precisely
this sort of imperfect monitoring that cause op-
timal equilibria to be nonstationary.

Two features make stationary relational con-
tracts optimal despite monitoring imperfections.
First, the combination of quasi-linear utility and
monetary transfers means discretionary trans-
fers can substitute for variation in continuation
payoffs.'! Second, the fact that the principal’s
actions are perfectly observed means that these
transfers can be balanced.'? Because Theorem 2

' The underlying connection between continuation payoffs
in repeated games and monetary payments in contracting prob-
lems is already highlighted, and plays a fundamental role, in
Fudenberg et al.’s (1994) derivation of the Folk Theorem.

'2 This follows because optimal continuation payoffs are
necessarily on the (linear) frontier of the equilibrium payoff
set. Note that this type of sequential optimality is also a
feature of the complete contracting agency models of
Fudenberg et al. (1990) and Malcomson and Frans
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continues to hold in any repeated game setting
with these features, it can be used to character-
ize optimal relational contracts in environments
well beyond the ones here. One example is the
model considered by Baker et al. (2002) in their
study of relational contracts as a solution to
repeated hold-up problems.

III. Optimal Incentive Provision

The previous section showed that in a broad
range of environments it is possible to study op-
timal relational contracts by considering only a
smaller class of stationary agreements. This sec-
tion uses this observation to study optimal incen-
tive provision in response to problems of hidden
information and moral hazard. These two infor-
mational problems have been the central focus of
research in incentive theory and its applications to
labor and credit markets, procurement and regu-
lation, macroeconomics and international trade.

I start by observing that relational contracts
have a particular limitation. Because parties
have the option to renege on payments, there are
bounds on the compensation that can be credi-
bly promised. I show how these bounds affect
the structure of optimal incentives and how the
resulting distortions differ from those in the
classic incentive theory models where contract
enforcement is not a problem.

A stationary contract is described by an effort
schedule e(0) and a payment plan W(¢) =
w + b(e) that the principal offers the agent
in each period. Such a contract provides per-
period payoffs:

w=[E, [y — Wip)le =e(0)],
u="[E, [W(e) — cle =e(0)].

The expected joint surplus depends only on the
effort schedule:

s = Eo, [y — cle(0)].

For the compensation schedule to be

Spinnewyn (1988). In those models, risk aversion can create
an intertemporal smoothing reason to use future utility to
reward good performance.
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self-enforcing, neither the principal nor the agent
must have an incentive to renege. Assuming that
failure to pay results in the worst possible future
outcome, a self-enforcing contract must satisfy

B
T—s(m— ™= sup b(¢)

so that the principal will not walk away, and

3]
1—23

(u — u) = —inf b(¢p)

¢

so that the agent will not walk away.

A key point here is that by adjusting the fixed
component of compensation, w, up or down,
slack can be transferred from one payment con-
straint to the other. Thus what matters is the
difference between the highest payment speci-
fied under the contract and the lowest payment.
This observation allows a characterization of
the set of self-enforcing stationary contracts.

THEOREM 3: An effort schedule e(8) that gen-
erates expected surplus s can be implemented with
a stationary contract if and only if there is a
payment schedule W : ® 1 R satisfying:

(IC) e(8) € argmax E[W(e)le] — cle, 0)

forall 8 € O, and

(DE)

T3 (s —5) = sup W(e) — inf W(gp).
¢ ¢

The dynamic enforcement (DE) constraint
states that the variation in contingent payments
is limited by the future gains from the relation-
ship. The tightness of this restriction depends on
the discount factor 9, as well as on the produc-
tivity of the relationship relative to the outside
option 5. If 3 is near one, the range of payments
is essentially unbounded.'® On the other hand, if

'3 As a consequence, the principal can induce first-best
effort. As the agent is risk neutral, there may be many ways
to do this, but one way is to pay the agent the full benefit y
minus some constant.
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d is near zero, the range of payments may be so
limited that incentives cannot be provided. The
interesting question that I now address is what
happens when self-enforcement is a binding
constraint, but trade is nevertheless possible.

A. Hidden Information

Problems of hidden information arise when the
principal cannot observe the precise details of the
agent’s environment. A classic example is a reg-
ulatory agency that can observe the quality and
quantity of the delivered product, but not the mar-
ginal costs of the regulated firm. Efficiency dic-
tates lowering price and increasing production
when costs are low, but regulated firms always
have an incentive to claim high costs. Similar
problems arise in procurement if production costs
are unknown to the procuring firm. I capture this
by assuming the principal can observe the agent’s
behavior e, but not his cost parameter 0,.

An optimal relational contract displays two
striking features when enforcement is a binding
constraint. First, it distorts production away from
the efficient level regardless of realized cost con-
ditions. Second, even under the regularity condi-
tions that ensure full separation of cost types in
standard incentive theory models, an optimal re-
lational contract does not fully distinguish be-
tween different cost conditions. Indeed, if
enforcement is very limited, it requires the same
production level regardless of cost conditions.

To proceed, I place some further structure on
the model. I take both total and marginal costs
to be increasing in 8 and make standard assump-
tions about the production process. I assume
that effort choice is continuous, £ = [0, e], and
that the cost function c is differentiable with c,,
Coe > 0,09 =0, cyg > 0, and Cgp, Chepg = 0.
I also assume that for each 0, S(e, 0) is differ-
entiable and concave in e with an interior max-
imizer e””(9). Finally I assume the distribution
of costs P is concave and admits a density p.
These conditions ensure that the optimal con-
tracting problem is concave and would also
ensure full separation of cost types (i.e., no
pooling) in a standard self-selection setting.'*

'* The usual regularity assumption is that log P is con-
cave (i.e., that P/p is nondecreasing), which is implied by
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The first step to characterizing optimal incen-
tives is to specialize Theorem 3 to the hidden
information context.

THEOREM 4: With hidden information, an ef-
fort schedule e(0) that generates expected surplus
s can be implemented by a stationary contract if
and only if (i) e(0) is nonincreasing and (ii)

(IC-DE) (s —5)

Theorem 4 uses self-selection arguments to
combine the (IC) and (DE) constraints from
Theorem 3. The basic idea is that the payment
schedule W : [0, e] T R must perform two
tasks. First, it must induce each type 8 to select
the designated effort e(0) rather than mimick-
ing some other type & # 6 and choosing e(6)
(similar to standard incentive compatibility).
Second, it must deter all types from choosing an
effort é that is not on the schedule (similar to
standard interim participation).

Of these latter deviations, none is more at-
tractive than choosing zero effort. Thus take
W(0) to be the lowest payment. The compen-
sation schedule is then pinned down by self-
selection: for all 9,

()  W(e(8)) = W(0) + c(e(6), 0)

+ I cy(e(0), 0) db.

0

The final term is the information rent to in-
duce self-selection. The highest transfer is W(e())
and dynamic enforcement implies that W(e(8)) —
W(0) must be less than the future gains from the
relationship. This gives Theorem 4.

the assumption that P is concave. This assumption and the
assumption that e”®(0) is interior are easily relaxed. See
Appendix B for a discussion.
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The optimal contract solves:

max s = I {E[y|e(8)] — c(e(®), 8)} dP(6)

e(6)

(s —%)

subject to T3

0

=c(e(9), 8) + I co(e(0), 6) de,

0

and e (0) is nonincreasing.

The standard approach to solving self-selection
problems is to ignore the monotonicity con-
straint [that e(0) is nonincreasing] and solve the
relaxed problem by pointwise optimization. It
turns out, however, that the monotonicity con-
straint always binds so that approach cannot be
used.

Instead I adopt a control theory approach.
Define y(0) = é(0) as the control variable, and
let . and v(0) denote the multipliers on, respec-
tively, the (IC-DE) and monotonicity con-
straints. The Appendix shows that a necessary
and sufficient condition for e(0) [along with
v(0), 1, v(8)] to solve the optimal contract
problem is that:

(2) S.(e(8), 6)p(6)

1
= LS Cop(e(0), 8) ——v(0)[.
W

1+M—1—8

At the optimum, the marginal benefit of in-
creasing the agent’s effort in the event of each
cost realization 0 is equated with a shadow cost
arising from the (/C-DE) and monotonicity
constraints. The solution must also satisfy the
complementary slackness conditions:

(3) v(6) =0, y(6) =0 and v(0)y(8) = 0,

and two boundary conditions:

@) v(8) = pc.(e(),9) and v(0) =0.
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The form of the optimal schedule depends on
the degree to which self-enforcement is a bind-
ing constraint. At one extreme, if 8 is small or
outside opportunities appealing, no schedule
may satisfy the constraints making production
under a relational contract impossible. At the
other extreme, the (/C-DE) constraint is slack.
Then w = 0 and the first-best schedule er50)
is optimally chosen.

Interesting outcomes arise when production
is possible but self-enforcement binds so that . >
0. In this case, the boundary conditions imply that
(@) > 0, so by complementary slackness é(8) =
0. That is, the most efficient cost types are pooled
at a single effort level. This then gives rise to two
possibilities. When the enforcement constraint is
very restrictive, all types are pooled at some con-
stant effort level. When the enforcement con-
straint is somewhat less restrictive, the most
efficient types are pooled at a relatively high effort
level, while less efficient types are screened to
progressively lower effort levels.

THEOREM 5: If production is possible under
a relational contract with hidden information,
the optimal effort schedule e(8) takes one of
three forms:

1. Pooling: e(0) is the same for all cost types.

2. Partial Pooling: e(8) is constant on [8, 01,
and strictly decreasing on (8, 01, for some
b€ @ 0.

3. First-Best: e(8) = e"™2(9) for all cost types.

In either second-best scenario,
e"™(9) for all .

e(0) <

Surprisingly, second-best contracts call for
inefficient effort regardless of cost conditions.
There is a simple intuition for this. Asking for
more effort from a given cost type requires an
increase in the slope of the transfer schedule.
Because the total variation in payments is lim-
ited, this will mean decreasing the incentives of
some other cost type. Consequently, requiring
an efficient level of effort for a given cost type
cannot be optimal: at the margin, it would have
zero benefit and a positive shadow cost.

The limit on compensation is also responsible
for the pooling or partial pooling in a second-best
contract. Starting from zero effort, compensation
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need not be increased much to raise the effort level
uniformly, so it is optimal to do so. But as the
effort level rises, it becomes expensive to raise the
effort of less efficient types and hence optimal to
screen them to lower levels of effort while the
effort level of more efficient types continues to rise.

One implication is that optimal contracts are
more flexible when the surplus from a relation-
ship is greater or the interaction more frequent.
Relationships that create a small amount of sur-
plus cannot adapt to changing cost conditions.
As an illustration, imagine a supply relationship
in manufacturing. Even with simple fixed-price
contracts each period, a functioning relationship
may allow a base level of noncontractible qual-
ity above the bare minimum. A close supply
relationship can make it possible to tailor details
of delivery or specific quality requirements
more closely to current cost conditions, even if
these conditions are known only to one party.

In the present setting, an optimal contract
balances efficiency with what is effectively a
limit on total incentives. In contrast, in the clas-
sical screening problem where the principal of-
fers a profit-maximizing contract to the agent
subject to an interim participation constraint,
the fundamental trade-off is between efficiency
and rent extraction. Increased incentives boost
efficiency but mean that the principal must
leave information rents to the agent. For a given
type 0, this leads to a shadow cost of incentives
that is proportional to P(60)/p(8). Since P(8) =
0, the most efficient type produces efficiently,
but not the others. Here, Theorem 1 implies that
rent extraction is not an issue; rather, the prob-
lem is self-enforcement. The different trade-offs
generate quite different predictions.

Although the motivation is different, the limit
on contingent compensation imposed by self-
enforcement also can be interpreted as repre-
senting a form of limited liability—.e., a
requirement that W < W(e) < W for some
(here endogenous) liability limits W and W.
Models of contracting under limited liability
date back to David Sappington (1983), who
studied hidden information problems under the
one-sided constraint that W(e) = 0.'° Sapping-

'>Many papers study moral hazard problems with a
one-sided limited liability constraint on the agent. The idea
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ton’s work showed that a one-sided constraint
has the same qualitative effect as the standard
interim participation constraint. An implication
of Theorem 5 is that hidden information incen-
tives differ dramatically when both parties have
limited resources.

B. Moral Hazard

With hidden information, optimal contracts
can reflect a rich trade-off between screening,
incentives, and enforcement. In moral hazard
environments, where the principal observes only a
noisy measure of performance, self-enforce-
ment leads to a very stark form of optimal
contract. Although there may be many levels of
measured performance, an optimal contract
compresses this information into just two levels
of compensation. The principal sets a base pay-
ment that is adjusted up if y, exceeds some
threshold or down if y, misses the threshold.

To focus on moral hazard, I now assume that
the agent’s cost parameter 8, is observable but
that his action e, is not. Thus a stationary con-
tract specifies compensation W(8, y) = w +
b(8, y) and an associated effort schedule e(6).
As in the previous section, I assume that effort
is a continuous choice and that ¢, c,, > 0. In
addition, I assume the Mirrlees-Rogerson con-
ditions are satisfied: that is, the density of
F(y|e) has the monotone likelihood ratio prop-
erty and F(yle = ¢~ (x; 0)) is convex in x for
any 0.6

THEOREM 6: An optimal contract implements
some effort schedule e(0) = ¢'(0). For each
0, either e(0) = ¢"2(0) ore(0) < e’™(0) and
the payments W(0, y) are “one-step”: W(0, y)
equals W for ally < $(0) and W for all y =

5
W + — (s — 5) and

$(0), where W = s

is that it becomes costly (in terms of rents) for the principal
to provide incentives even if the agent is risk neutral.
Rosella Levaggi (1999) sets up, but does not solve out, a
hidden information problem with two-sided limited liabil-
ity.

'®These conditions ensure that the agent’s incentive
compatibility constraint can be replaced with a first-order
condition for his action choice (William P. Rogerson,
1985).
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¥(8) is the point at which the likelihood ratio
(fIf)(y|e(0)) switches from negative to posi-
tive as a function of y.

The intuition for Theorem 6 is that the par-
ties’ risk neutrality makes it desirable to use the
strongest possible incentives. Self-enforcement
limits the maximal reward and punishment. The
“one-step” scheme that results is reminiscent of
the static model of Robert D. Innes (1990).
Innes shows that under a one-sided limited lia-
bility requirement that W(y) = 0 and the fur-
ther requirement that W(y) = y, the optimal
contract pays 0 for low outcomes and y for high
outcomes. Here self-enforcement imposes a
similar lower bound and also a fixed upper bound.
These bounds define the two payment levels.

IV. Subjective Performance Measures

The previous sections assumed that although
performance measures might be imperfect and
noncontractible, the parties at least could agree on
them. In practice, relational contracting often in-
volves performance measures that are inherently
subjective—for instance, the opinions of supervi-
sors or peers. Firms that rely heavily on their
incentive systems, such as the Lincoln Electric
Company (Norman Fast and Norman Berg, 1975),
often make extensive use of subjective perfor-
mance reviews. Incorporating subjective assess-
ments allows for a more nuanced form of
compensation, but also creates the potential for
disputes over how to interpret past performance.

I model subjective performance measurement
by assuming that the agent’s action e, is pri-
vately chosen, while the principal privately ob-
serves the output y,. That is, the principal has a
noisy signal of the agent’s performance not
based on an objective measure the agent can
observe. Having learned y,, the principal can
deliver a report m, € M (where M is some
large set of possible messages). Compensation
at time 7 is composed of a base payment w, €
R and an adjustment b, : M T R. For simplic-
ity, I suppose that the agent’s environment is
not stochastic, i.e., ¢ : [0, e] T R is the same
in each period, and I maintain the assumptions
on costs and output from the previous section.

With subjective performance evaluation,
stationary contracts are no longer effective. To
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see why, observe that the principal will only be
willing to make distinct reports m and m' in
response to distinct outcomesy and y’ if the two
reports yield the same future profits [under a
stationary contract, this would require that
b(m) = b(m')]. Thus if a relational contract is
to provide both productive and monitoring in-
centives, the agent’s payoff going forward must
vary with performance but the principal’s must
not. It follows that production cannot be optimal
after every history. Joint punishments or dis-
putes must occur in equilibrium.

The question then is how best to provide
incentives for the agent while inducing the prin-
cipal to make honest evaluations. This problem
is complicated by the great flexibility in struc-
turing performance reviews over time.'” To
make progress, I focus on contracts where the
principal provides a full performance evaluation
after each period. That is, I consider contracts
with the following full review property: given
any history up to t and compensation offer at 7,
then any two outputs y, # y, must generate
distinct reports m, # m,."® Given this restric-
tion, it is natural to suppose that these contracts
simply call for the principal to report her true
assessment at each date—i.e., call for her to
report m, = y,.

To characterize optimal full review contracts,
I first define a simple form of termination con-
tract. Like a stationary contract, a termination
contract requires the same compensation in each
period that trade occurs, but it also allows for
the possibility that the parties might dissolve the
relationship.

Definition 2: A contract is a termination con-
tract if in every period ¢ that trade occurs, W, =
w + b(y,), e, = e, m, =y, and trade continues
beyond ¢ with probability o, = a(y,) and other-
wise ceases forever, for somew E R, b: Y1 R,
e€[0,el,anda: YT [0, 1]

'7 Specifically, this involves looking for optimal equilib-
ria in a repeated game with private monitoring, a problem
that has seen little theoretical progress.

'® The full review property means that in equilibrium, the
principal does not maintain any private information from pe-
riod to period. This restriction can also be stated in terms of the
equilibrium concept. I focus on perfect public equilibria of the
repeated game rather than sequential equilibria.
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In environments with subjective performance
measures, termination contracts are optimal
among all contracts with the full review property.
The logic is by now familiar. Rather than using
varied continuation behavior to provide incen-
tives, the parties can use a combination of imme-
diate compensation and termination. As above,
this means that rather than having to study a range
of potentially complex relational contracts, it is
possible to focus on a simple subset.

THEOREM 7: If an optimal full review con-
tract exists, a termination contract can achieve
this optimum. An optimal termination contract
takes a one-step form. It specifies some e = e*®
and a threshold y: if y, < 9, W, = w and the
relationship terminates; if y, = ¥, W, = w +
b and the relationship continues. Compensation
is given by w = u + c(e) + k and b
3

= :(s — s — k) for some k € [0, s —

5], where the expected surplus is
(1 =3)E[y — ¢ — 5|e]
1 —3[1 = F(3le)]

s=5

The reason for the one-step form of optimal
compensation is again that the strongest incen-
tives come from maximal and minimal rewards.
The difference here is that the principal must
not have a preference for reporting a bad out-
come. Thus an outputy < ¥ results in no bonus,
but also in separation.'?

The fact that even optimal contracts involve
disputes creates a role for mediation or dispute
resolution. Many firms use mediation systems
to resolve internal disputes or disputes with
suppliers. Proponents of these systems often
argue that they help preserve important relation-

' An additional difference here is that an optimal con-
tract cannot involve discretionary downward adjustments to
the base compensation. The reason is that a poor perfor-
mance review is always followed by termination so the
agent would never volunteer to take reduced compensation.
An optimal contract might involve discretionary bonuses,
b > 0, or simply a flat efficiency wage where effort is
motivated by the threat of being laid off. One consequence
is that explicit communication (i.e., the announcement m) is
unnecessary, since the principal can “communicate” simply
by unilaterally raising compensation or by firing the agent.
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ships (Todd Carver and Albert A. Vondra,
1994). Here, because inefficiency results from
the parties having different beliefs about perfor-
mance, a mediator can create value by provid-
ing objective information that narrows the space
of disagreement, hence allowing a transfer that
prevents the relationship from breaking up.?®

Even apart from instituting formal mecha-
nisms such as mediation, one might ask whether
there are alternative systems for subjective per-
formance evaluation that improve on the one
studied here. It turns out in this regard that a full
performance review each period is limiting in a
subtle way. Some evidence of this is provided
by the fact that even as 8 T 1 the optimal
surplus under a full review contract remains
bounded away from the first-best as a conse-
quence of endogenous separations.?' Work
by Abreu et al. (1991), Olivier Compte (1998),
and Michihiro Kandori and Hitoshi Matsus-
hima (1998) on repeated games suggests a
clever improvement. They suggest that the prin-
cipal could review performance only every T
periods. With a full review every T periods, the
optimal contract takes a similar form—a bonus
for a favorable review and termination follow-
ing a poor review— but the threshold for termi-
nation depends on performance in all T
preceding periods. For sufficiently large 9, the
delay in reviewing performance can improve
incentives by allowing the principal to more
accurately assess performance at each review
date.*?

29MacLeod (2003) extends the model in this section to
allow the agent to observe a signal that is correlated with the
principal’s assessment. He shows that higher correlation
increases efficiency.

2! See the secondary Appendix, available from the au-
thor, for a proof of this result.

22 In fact, a T-review contract can allow an approximately
first-best outcome as & T 1 if the parties also let 71 <. The
idea is that with T-review, the threshold for termination takes
the form of a likelihood ratio test. As T T o, the power of this
test becomes very high, allowing for very small termination
probabilities (see the cited papers for details).
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This leaves open the question of whether
there are still more effective systems of ongoing
performance review. The previous paragraph
suggests a benefit to infrequent reviews. But in
any realistic setting, there are likely to be ben-
efits to providing frequent feedback that go be-
yond adjusting compensation. To take an
obvious example, agents cannot learn from mis-
takes without being informed of them. Further
research is needed to understand how perfor-
mance review systems should resolve these
trade-offs.

V. Conclusion

Good faith is an essential ingredient to many
contracting relationships. This paper has taken
the view that even in relatively complex envi-
ronments where parties may not be able to pre-
cisely observe each other’s costs or efforts, it
may be possible to construct good faith agree-
ments that parties will live up to. These con-
tracts are limited relative to what could be
achieved if an infallible court system could
monitor and enforce all agreements. Neverthe-
less, I have shown that this limitation can be
characterized succinctly in the form of bounds
on promised compensation. As a result, optimal
relational incentive schemes can be character-
ized and compared with predictions from stan-
dard incentive theory. For instance, I showed
that optimal contracts will forgo screening for
private cost information unless parties are suf-
ficiently patient, and even then will involve
systematic distortions from efficiency. I also
considered the difference between objective and
subjective nonverifiable measures of perfor-
mance. More generally, the framework devel-
oped here may perhaps find application in many
areas where incentive theory has provided fruit-
ful insights—regulation, employment contract-
ing, vertical supply contracting—but where the
assumption that parties can perfectly commit
themselves via detailed written contracts is
strained.

APPENDIX A: STATIONARY CONTRACTS

This Appendix proves Theorems 1-3 and Corollary 1. To begin, consider a contract that in its
initial period calls for payments w, b(¢), and effort e(0). If the offer is made and accepted and the
discretionary payment made, suppose the continuation contract gives payoffs u(¢), m(¢) as a
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function of the observed outcome ¢. A deviation—an unexpected offer or rejection or a refusal to

make the discretionary payment—implies reversion to the static equilibrium. There is no loss in assum-

ing this worst punishment off the equilibrium path of play (Abreu, 1988). Define W(¢) = w + b(o).
Let u, m be the expected payoffs under this contract:

(1 = d)E,,[W(p) — cle(0)] + BE,, [u(e)]e(0)],

(1 = 3)Eq, [y — W(p)|e(8)] + Sy, [m(¢)[e(0)].

Let s = u +  denote the expected contract surplus:

u

w

(A1) s=(1—=8)E,[y — cle(®)] + 3y, [s(¢)|e(8)].
where s(¢) = u(¢) + (@) is the continuation surplus following outcome .

This contract is self-enforcing if and only if the following conditions hold: (i) the parties are
willing to initiate the contract:

(ii) for all 0, the agent is willing to choose ¢(0),

o
e(0) € arg max E,| W(op) + T3 u(p) e] — c(e, 9);

(iii) for all ¢, both parties are willing to make the discretionary payment,

, S _ 3
(cp)+l_8u(q>)—1_8u,

, 5 b
—ble) + 7)==

and (iv) each continuation contract is self-enforcing. In particular, for each ¢, the pair u(¢), w(¢)
correspond to a self-enforcing contract that will be initiated in the next period.

PROOF OF THEOREM 1:

Consider changing the initial compensation w in the above contract. This changes the expected payoffs
u, T but not the joint surplus s. If the original contract was self-enforcing, the altered contract will still
satisfy (ii)—(iv) as these do not depend on w, and will satisfy (i) so long as the resulting payoffs u’, '
satisfy u’ = u and 7w’ = . In this event, the new contract also will be self-enforcing.

Let s* be the maximum surplus generated by any self-enforcing contract. By Theorem 1, the set of

payoffs possible under a self-enforcing contract is then {(u, m):u = u, m = 7w and u + 7 = s*}. Thus
for a given contract described as above to be self-enforcing, its continuation payoffs for each ¢ must satisfy:

(u(e), m(@)) E{(u, w) :u=u, m=a, and u + 7w < s*}.
In particular, for all ¢, § = s(¢) = s*.

LEMMA 1: Any optimal contract is sequentially optimal. Following any history that occurs with
positive probability in equilibrium, it specifies an optimal continuation contract.
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PROOF OF LEMMA 1:

Consider increasing m(¢) for some ¢ in the above contract. This does not affect the effort
constraint (ii), relaxes the participation and payment constraints (i) and (iii), and is consistent with
a self-enforced continuation contract, (iv), so long as u(¢) + w(¢) = s*. Moreover, this change
increases the expected surplus s. Thus for a contract to be optimal, it must have u(¢) + m(p) =
s* for all ¢ that occur with positive probability. As this argument also applies to each continuation
contract, it follows that any optimal contract must be sequentially optimal.

PROOF OF THEOREM 2:

Suppose that the contract specified above is optimal and generates surplus s = s*. By Lemma 1,
s(¢@) = s* for all ¢ that occur with positive probability in the initial period. Hence if e(0) is the
initial effort schedule, (A1) implies that

Eo Ly — cle(6)] = s*.

I now construct a stationary contract that implements e(6 ) in every period and thus is optimal. The
idea is to take the original contract and transfer any variation in the continuation payoffs u(¢), w(¢)
into the discretionary payments.

Let u* € [u, s* — ] be given, and define stationary discretionary payments:

5 5
T o) — g u"

b*(¢) = b(e) +

From here, define the fixed payment w* so that the agent’s per-period payoff will be u*:
wk =u* — E, [b(e) — cle(0)].

Let W*(p) = w* + b*(o).

The stationary contract has the principal propose w*, b*(¢) in each period and the agent
respond with effort e(0). Any deviation causes reversion to static equilibrium behavior. This
contract gives the agent an expected payoff: E, [[W*(¢) — cle(8)] = u* and the principal m*
= s%¥ — u*.

To see that this stationary contract is self-enforcing, observe that (i) by definition u* = u and also
m* = 1. Moreover, the discretionary payments are defined so that for all ¢,

o o
(A2) b*(e) + T u* = ble) + 7—5 ulo).

Consequently, the agent’s expected future payoff at the time of choosing his effort and both parties’
expected payoffs at the time of making discretionary payments are precisely the same as in the initial
period of the original contract.

Substituting (A2) into (ii) and (iii) above implies that the stationary contract defined by w*,
b*(@), e(0), u*, and m* will satisfy (ii) and (iii). Thus the agent will choose e(6) and there is no
incentive to renege on a discretionary payment. Finally, because this stationary contract repeats in
each following period, the continuation contract is self-enforcing, (iv). Thus the constructed contract
is self-enforcing and gives a per-period surplus s*.

PROOF OF COROLLARY 1:
The proof of Theorem 2 constructs a family of optimal stationary contracts giving the agent any
payoff u* € [u, s* — ] and the principal a corresponding payoff w* = s* — u*. Each of these
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contracts remains optimal on the equilibrium path, but reverts to no trade following an observed
deviation. Suppose that in a period following an observed deviation, the parties instead initiate either
a stationary optimal contract that gives the agent u (if the agent deviated), or one that gives the
principal 7 (if the principal deviated). The resulting contract is still stationary, is optimal after any
history h’, and is self-enforcing because it provides a payoff-equivalent punishment for an observed
deviation.

PROOF OF THEOREM 3:

(=) Consider a self-enforcing stationary contract with effort (0 ), payments W(¢) = w + b(o),
and per-period payoffs u, . Since for any 6, the agent can choose e # e(08) and continue with the
contract, (IC) is a necessary condition for self-enforcement. Similarly, as either party can renege on
a discretionary payment and exit the relationship, then for all ¢:

)

o
5 w—w=-ble) and T—=(m—m)=ble)

1—-3

(A3)

The agent’s constraint must hold for inf, b6(¢) and the principal’s for sup, b(¢). Summing these
constraints implies that

3]
1—23

(s —5) = sup b(e) — inf b(p).

[ [

Since b(¢) = W(p) — w, this is equivalent to (DE).
(==) Conversely, suppose there is a payment schedule W(¢) and an effort profile (0 ) that satisfy
(IC) and (DE). Define:

b(¢) = W(e) — inf W(e),

¢
and a corresponding fixed payment:
w=u—[E, [b(e)— cle(d)].

Now consider a stationary contract with payments w, b(¢), and effort e(6) and deviations punished
with reversion to the static equilibrium. This contract gives per-period payoffs u to the agent and 7w =
s — u to the principal. By (DE), s = s, so m = 7 and both parties are willing to initiate the contract.
Moreover, (IC) implies that for any 60, the agent prefers e(8) to any e # e(0), while from (DE) it is easy
to check that (A3) both hold, so there is no incentive to renege on payments.

APPENDIX B: OpTIMAL INCENTIVE PROVISION

PROOF OF THEOREM 4:

By Theorem 3, there is a stationary self-enforcing contract with effort e(8) if and only if there exist
payments W(e) satisfying (IC) and (DE). I first derive necessary and sufficient conditions for e(6), W(e)
to satisfy (IC). I then extend this to conditions under which both (I/C) and (DE) can be satisfied.

Let W(e) be a stationary payment schedule and define U(0) as the resulting single-period payoff
for an agent with cost type 6:

U(B) = max W(e) — c(e, 0).

e



VOL. 93 NO. 3 LEVIN: RELATIONAL INCENTIVE CONTRACTS 851

Regardless of the payment schedule, U(0) will be decreasing in 6 as a consequence of the Envelope
Theorem.

Given that the agent selects his effort to maximize W(e) — c(e, 0), the schedule W(e) will induce
effort e(0) [i.e., will satisfy (IC)] if and only if (i) e(0) is nonincreasing; (ii) for all 6,

(B1) U(8) = W(e(6)) — cle(6), 8) = U(B) + I cy(e(6), 6) db;

0
and finally (iii) for all 6 and é ¢ {e(0)}yco,
(B2) UB) = W(e(0)) — c(e(0), 0) = W(eé) — c(é, 0).

Conditions (i) and (ii) follow from standard incentive compatibility arguments. They imply that
each type 0 prefers to choose ¢(8) rather than mimic type 8’ by choosing ¢(6"). Condition (iii)
implies that each type 0 prefers e(0) to some é that is not a specified choice for any cost type. It is
analogous to an interim participation constraint.

Now, assume e(0) and W(e) satisfy (IC). Then e(0) is nonincreasing, and rewriting (B1),

(B3) W(e(0)) = c(e(9), 8) + U(B) + I cy(e(h), 6) db.

0
Moreover, since any type can deviate to e = 0, and ¢(0, ) = 0, (iii) implies that
(B4) U(B) = W(e(6)) — c(e(), 6) = W(0).
Combining (B4) and (B3) implies that

0

W(e(8)) — W(0) = c(e(8), 8) + I cy(e(6), 0) d6.

8

Thus a necessary condition for e(0) and W(e) to satisfy both (IC) and (DE) is that

(s —5) =cle(0), ) + I cy(e(0), 0) db.

0

3]
1—-3

(IC-DE)

Conversely, suppose that e(0) is nonincreasing and satisfies (/C=DE). I construct a payment plan
W(e) that satisfies (/C) and (DE). Let W(0) be given arbitrarily. Define W(e(0)) to satisfy (B4) with
equality. Then U(0) = W(e(0)) — c(e(8), 6) = W(0). For each 6 € [8, 0), define W(e(0)) to satisfy (B3),
and for each é ¢ {e(0)}¢ce, define W(é) = W(0).

I now verify that e(6), W(e) satisfy both (IC) and (DE). By construction, e(0) and W(e)
automatically satisfy (i) and (ii). And because U(0) = max,W(e) — c(e, 0) is nonincreasing in 0
and c(é, 6) = 0, the fact that U(B) = W(0) by definition implies that (iii) is also satisfied.
Consequently, e(0), W(e) satisfy (IC). Now, because e(0) is nonincreasing, the construction of W
using (B3) implies that W assumes its largest value at W(e(8)) and smallest at W(0). Since (/IC-DE)

implies precisely that (s — 5) = W(e(®)) — W(0), it follows that (DE) is satisfied,

1 -3

completing the proof.
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Optimal Hidden Information Contracting—I1 now derive the solution to the optimal contracting
problem with hidden information. To formulate this as a problem in optimal control, take y(0) = é(0) to
be the control and e(8) to be a state variable. It is useful to define a second state variable,

0 S 5 B B B B 5
K(6) EI |mS(e(6), )p(8) — ¢, (e(6), e)] dé.

The control problem is given by the Hamiltonian:

3]
H = 5(e(6), 0)p(6) +n(6)y(0) + K(ﬂ)[m S(e(6), 0)p(6) — cy(e(), 9)],

with the monotonicity constraint:
y(0) =0

and the (/IC-DE) constraint (now rewritten as a boundary constraint):

(B5) K(®) =0 and K(8)— 5 —c(e(h), 8) = 0.

1—3 ==
Here () and \(0) are co-state variables assigned to ¢(8) and K(9).

This problem is concave, so the Pontryagin conditions are both necessary and sufficient for
a solution (e.g., Daniel Léonard and Ngo van Long, 1992, pp. 250-51). Letting v(0) be the
multiplier on the monotonicity constraint and . the multiplier on the (/C-DE) inequality, the
solution satisfies:

v(0) = H, = n(6)

S
~110) = H, = S.(0).0p(0) 1+ AO)/=5) ~ NO)ees(c(6).0)
X@) = H =0

e(0) = H, = (0)

o
K(6) = Hy = 7= 5(c(6),00p(6) — ¢, ((0),0);

as well as the boundary conditions:
K(8) = 0, N(8) = ., n(8) = pc,(e(8), 8), and n(8) = 0,
the complementary slackness conditions on the monotonicity constraint:
v(0) =0, y(0)=0 and v(8)y(8) =0,

and the self-enforcement constraint:



VOL. 93 NO. 3 LEVIN: RELATIONAL INCENTIVE CONTRACTS 853

MEO, K(é) -

1_85—C(e(ﬂ),ﬂ)20

and | K(0) — 5 — c(e(g),g)] =0.

1—3

To obtain the conditions in the text, I make two observations. First, because A\(6) = 0 for all 6,
and \(0) = p, it must be that A(8) = w for all 0. In addition, because n(0) = v(0) for all 0, then
M(0) = 1(0) as well. Thus, itis possible to substitute for n(0) and A(8) in the above equations, leading
to the conditions in the text.

Beyond the conditions in the text, the solution must also satisfy the complementary slackness
conditions on the self-enforcement constraint. This leads to two cases, depending on whether
self-enforcement is binding.

Case 1: Suppose that w = 0. Then (/C-DE) is slack at the solution, so it suffices to consider the problem
of maximizing the joint surplus subject to the monotonicity constraint. Because ¢"”(8) is decreasing, it
both maximizes the joint surplus and satisfies monotonicity. Hence e(8) = () at the optimum.

Case 2: Suppose that i > 0. Then (/C-DE) binds at the solution. I proceed in a series of steps. I
first define the schedule e®(0) as the unique solution to:

n

(B6) S.(e"(6), 0)p(8) = {ca(e®(0), 0)}.

1+M—1—8

Under the assumptions in the text, eR(0) is decreasing in 6, and e®0) < e3(9) for all 6.
LEMMA 2: On any interval where the solution e(0) is decreasing, e(8) = e~(9).

PROOF:
On any interval where ¢(0) < 0, it must be that v(0) = 0. Hence ¥(8) = 0 as well. Eliminating
¥ in the Pontryagin condition (2) yields the result.

LEMMA 3: If for some 6, é(6) < 0, then e(0) is decreasing on [0, 6].

PROOF:

I argue by contradiction. Suppose that for some 6, e(0) is decreasing below 6, and constant
above it. By complementary slackness, v(8,) = 0 and v((-)g ) > 0. Hence 17(68,) > 0. Moreover, it
follows from the Pontryagin condition (2) that over any interval where e(0) is constant, #(6) must
be increasing (using the assumption that S, and p are decreasing in 6 and that c_q is increasing in
0). Thus, (0) is both positive and increasing above 6, Consequently v(6) > 0 for all 6 > 0,
contradicting the boundary condition that v(6) = 0.

PROOF OF THEOREM 5:

I use the two lemmas above and the optimality conditions in the text. First, observe that
at the optimum v(8) = pc.(e(8), 8). Thus, if self-enforcement is binding, v(8) > 0, which
implies by complementary slackness that é¢(8) = 0. So there must be pooling of the most
efficient types. Combined with the two lemmas, this yields two possibilities: either e(6) is
constant below some 6 € (@, 6) and decreasing above it, or e(8) is constant on the entire
interval [0, 0].
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If there is partial pooling, then for all 6 = 6, e(8) = e%(0), while for all 6 < 9, all types are
pooled at some é. By continuity, this means that ¢ = ¢"(6). To identify the “cut-off” type 6, observe
that v(8) = pc(e(8), 8) and v(®) = 0. Integrating the Pontryagin condition (2) from 6 up to 0, and
substituting these boundary conditions yields:

()
(B7) I 5. (e4(0), 0)p(8) db = ————{c,(e*(6), §)}.

8 L+ pi—s

From the assumptions on primitives, it is easy to check that there is at most one value 8§ € (8, ) that
satisfies (B7). If this § < 0, the solution has e(8) = e®(6) for 8 =< 6 and e(8) = e®(0) for 6 =
0. Furthermore, because the solution satisfies e(8) = e%(8) for all 8 and () < ¢ ?(8) for all
0, it follows that e(6) < ¢””(0) for all 6. B

In the event that there is no cut-off type & € (8, 0) that solves (B7), there is complete pooling at
some é. To identify €, the Pontryagin condition can _again be integrated from 6 up to 6 and
combined with the boundary conditions on v(8) and v(0) to yield:

I 5.(6. 0)p(68) db = ————{c,(¢. B},
8 1+ T—%

In this case é < e’(0), so e(0) = é < ¢™(0) for all 6.

Remark: The strong assumption that P is concave is used to guarantee that the separat-
ing schedule e®(0) defined by (B6) is decreasing. If the assumption is relaxed, a partial
pooling optimum still involves pooling of the least efficient cost types but may also in-
volve additional pooling regions. To derive the optimal contract, the boundary of the lower
pooling interval, 8, is identified as before but above & the candidate schedule e®(8) must
be “ironed” if it fails to satisfy monotonicity. It is still the case that all types choose less than
efficient effort.

The assumption that e””(0) is interior can also be relaxed. The only change is that even in a
second-best environment e(0) may equal e™B(0) for some cost types. Specifically, it may be that
e(8) = efB0) = 0 for very high costs or that e(0) = e™B(0) = e for very low costs.

PROOF OF THEOREM 6:
The optimal stationary contract e(8), W(8, y) = w + b(0, y) solves:

max s =, [y — cle(6)]

e(),W(-,)
d
subject to%{[E),[W(B, y) — cle, 0)|e = €(8)]} = 0 for all 0,

o
T35 (s —5) = sup W(6, y) — inf W(6, y).
0,y 0.y

In addition, the total compensation W(8, y) must be structured so that neither party will want to renege
on payments—this can be done as in Theorem 4. Here I have substituted the agent’s first-order condition
for the (IC) constraint. This is valid under the Mirrlees-Rogerson conditions. The result now follows from
the fact that the optimization problem is linear in W(0, y). I omit the details.
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APPENDIX C: SUBJECTIVE PERFORMANCE MEASURES

I sketch the analysis with subjective performance measures. Details are contained in a secondary
Appendix available from the author.

PROOF OF THEOREM 7:

Assume that an optimal full-review contract exists and generates surplus s*. The argument is first
to show that for any optimal full-review contract there is a termination contract that achieves the
same expected surplus. The next step is to argue that the optimal termination contract takes a cut-off
form.

1. The first observation is that, similar to Theorem 1, the set of payoffs that can be achieved with
a self-enforcing full-review contract is equal to {(u, m) :u = u, m = wand u + ™ = s*}.
2. The second step is to argue constructively, along the lines of Theorem 2, that a termination
contract can achieve the optimal surplus s*. To do this, one considers an optimal full-review
contract that in its initial period specifies payments w, b(y), effort e, and equilibrium path
continuation payoffs u(y), w(y), and continuation surplus s(y) = u(y) + w(y). A termination
contract is then constructed with payments w*, b*(y), effort e, continuation probabilities a*(y), and
(in the event of continuation) optimal continuation payoffs u* + m* = s*. The idea is to choose the
discretionary payments and continuation payoffs so as to exactly duplicate the incentive struc-

B
()t — W = b(y)

ture under the initial contract—in particular, so that b*(y) +

J’_

o
= 8u(y) and also —b*(y) + T Sa*(y)(q-r* — @ = —b(y) + mﬂrr(y). The fixed

compensation w* is chosen to ensure the per-period payoffs are u* and 7*. Given this construction
the termination contract will generate the same surplus as the original contract and be self-enforcing
as a result of the original being self-enforcing.

3. The final step is to argue that the optimal continuation contract will take a one-step form. Similar to
Theorem 6, this result follows from risk neutrality. To see that bad outcomes are followed by
termination consider the following argument. To provide effort incentives, good outcomes must
generate a high future payoff for the agent, and consequently a low future payoff for the principal. To
provide reporting incentives, the principal must be indifferent between outcomes. This means that bad
outcomes must result in a low future payoff for both parties. Optimization implies this low payoff
should be as low as possible—hence termination.
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