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Abstract

It has been 25 years since the formalization of the Sensory Drive hypothesis was published in the

American Naturalist (1992). Since then, there has been an explosion of research identifying its util-

ity in contributing to our understanding of inter- and intra-specific variation in sensory systems and

signaling properties. The main tenet of Sensory Drive is that environmental characteristics will

influence the evolutionary trajectory of both sensory (detecting capabilities) and signaling (detect-

able features and behaviors) traits in predictable directions. We review the accumulating evidence

in 154 studies addressing these questions and categorized their approach in terms of testing for

environmental influence on sensory tuning, signal characteristics, or both. For the subset of studies

that examined sensory tuning, there was greater support for Sensory Drive processes shaping vis-

ual than auditory tuning, and it was more prevalent in aquatic than terrestrial habitats. Terrestrial

habitats and visual traits were the prevalent habitat and sensory modality in the 104 studies show-

ing support for environmental influence on signaling properties. An additional 19 studies that

found no supporting evidence for environmental influence on signaling traits were all based in ter-

restrial ecosystems and almost exclusively involved auditory signals. Only 29 studies examined

the complete coevolutionary process between sensory and signaling traits and were dominated by

fish visual communication. We discuss biophysical factors that may contribute to the visual and

aquatic bias for Sensory Drive evidence, as well as biotic factors that may contribute to the lack of

Sensory Drive processes in terrestrial acoustic signaling systems.
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The Origins of Sensory Drive

When reviewing the evidence or impact of a particular scientific hy-

pothesis, it is useful to provide the historical context in which it origi-

nated. At the time of the late 1980s, there were three main models for

the evolution of female mate choice and the traits that males evolve to

secure matings; Fisher’s runaway, Direct benefits, and Indirect bene-

fits (good genes). For all three of these, the specific features of the

male signal evolved to either genetically run away with female choice

genes, indicate direct benefits to females, or indicate indirect benefits

to offspring, and the direction of evolution was assumed to be arbi-

trary (Bradbury et al., 1987). At the time, the purpose of all of these

models was to explain how male signaling traits could become com-

mon within a population. Meanwhile, there was little scientific dis-

cussion put forth for proposing models to predict which traits, or the

specific features of male traits, that would be selected for under sexual

selection, nor was there much interest in the effects of the signalling

environment and sensory processes.

At the same time that sexual selection models in the 1980s were

largely blind to sensory inputs, the field of sensory ecology was al-

ready well established and fully focused on how signaling traits and

sensory systems are shaped by environments. Interest in the diversity

of birdsong led researchers to test whether differential transmission
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properties of species’ habitats was at the source of this variation

(“the environmental selection hypothesis” Morton 1975; Richards

and Wiley 1980). Similarly, visual ecology pioneers such as John

Lythgoe, William McFarland, and others were taking a highly quan-

titative approach to determine whether visual pigments covaried

with different underwater optical environments (McFarland and

Munz 1975; Lythgoe 1979). Given the highly predictive power of

sensory ecology coupled with the absence of predictive sexual selec-

tion models at this time, it is perhaps not surprising that a number

of “sensory-”based models for female mate choice/male signaling

trait evolution emerged on the scene in the early 1990s. Endler pre-

sented Sensory Drive in a discussion during the Dahlem Conference

on Sexual Selection in 1987 and a follow-up symposium (Endler

1992a) from which the first formal description of Sensory Drive

emerged (Endler 1992b). The idea spread and features of this model

were explored in more detail by several people. Among these were

Sensory Exploitation (Ryan and Rand 1990); Pre-existing Bias

(Basolo 1990, 1995) and Sensory Traps (Christy 1995). All of these

“sensory” models can be placed in the Sensory Drive scheme (see

Endler and Basolo 1998 for a comparative review of these models),

but for the purposes of this review we will restrict our focus to

describing and accumulating evidence for the overall Sensory Drive

model (Figure 1). While all sensory or receiver bias models contend

that male signal evolution is predicted by female sensory biases, only

the Sensory Drive model (described in detail below) explicitly

describes from where those sensory biases arise and include the

effects of the environment on both the signaller and senses (Endler

1992b; Endler and Basolo 1998).

What is Sensory Drive?

The Sensory Drive model outlined by Endler (1992b, 1993) was a

truly comprehensive and predictive model for the origins of commu-

nication traits. In this model, both signal receiver preference func-

tions and signal transmitter traits are predictable characters based

on features of a species’ environment. The two main components of

a communication dyad (receiver behavior and signaling traits) both

co-evolve under the constraints of the abiotic (physical) and biotic

(predatory and foraging) environment. While this model built upon

previous sensory ecology insights into how the environment is likely

to shape sensory systems and imposes constraints on signal transmis-

sion properties, it broadened the model to include how these envir-

onmental features influence key behaviors involved in the sexual

selection process (mate choice and display behavior) and put it to-

gether in a larger evolutionary model. To quote directly from Endler

(1992b), “These suites of traits should coevolve in predictable direc-

tions, determined by environmental biophysics, neurobiology and

the genetics of the suites of traits- hence the term ‘sensory drive’.”

The critical feature that encapsulates the Sensory Drive hypoth-

esis is the environment. As shown in Figure 1 (modified from Endler

1992b), the environmental conditions during communication events

place selective pressures on the sensory systems to detect important

features in its specific habitat (foraging items or other important

traits under natural selection) and this influences receiver responses

during mate choice encounters. Receivers with a sensory bias shaped

by the biophysical properties of their habitat are likely to detect

some stimuli better than others. This detection bias will result in

receiver biases during mate choice and other choice encounters.

For example, males that have communication features that match

a female’s detectability bias will enjoy a detectability advantage

(seen, heard, smelled or felt first and/or with the greatest sensory

stimulation); this portion of Sensory Drive is known as Sensory

Exploitation (Endler 1992b; Endler and Basolo 1998).

Part of the difficulty in reviewing the presence or absence of sup-

port for Sensory Drive is clarifying which portion of the Sensory Drive

model is under examination; and/or whether researchers are able to

test Sensory Drive in its entirety. There are many interacting steps

involved in Sensory Drive (Figure 1) and researchers have taken a

number of different approaches or have emphasized different subsets

of steps in the model. To organize our discussion we divide Sensory

Drive into two components, sensory and signalling. The sensory com-

ponent of the Sensory Drive model predicts a tight correlation between

receiver sensory detection properties and features within a species’

physical environment outside the realm of reproduction. The other

major component of the Sensory Drive model, the signaling compo-

nent, relates to the evolution of signaling traits in the communication

dyad. It focuses on the strength of environmental constraints in shap-

ing signal evolution to both match environmentally-induced sensory

biases of the signal receiver and environmental transmission or other

habitat features. Here, we present the evidence that has accumulated

over 25years in more detail, and examine some of the patterns that

are emerging across habitats, modalities, and taxa.

Figure 1. The Sensory Drive Model (modified from Endler 1992b). Steps

coded in green represent the sensory component of the Sensory Drive model

as the environment places selective forces on the evolution of sensory sys-

tem properties for food detection but that also influences female mate choice

criteria. Steps of the model that incorporate sensory exploitation are indi-

cated by asteriesk. Steps colored in blue represent the signalling component

of the Sensory Drive model describing the evolution of signaling characteris-

tics (ornament features, behavioral displays, and choice of microhabitat for

display) that are predictable products of environmental constraints and/or

responses to environmentally shaped female response biases. Note that the

environment is featured in both components (sensory and signal tuning),

hence that box is bi-colored. Except for those arrows with text, the arrows

indicate evolutionary relationships. The combined effects of microhabitat

choice and behaviour have immediate effects on the signalling environment.

Neural crest cells affect colour patterns directly but are developmentally

related to other cells in the neural system. This is a new component of

Sensory Drive.
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Evidence for Sensory Drive

Since the early 1990s, much work has examined whether environmen-

tal variation can predict variation in the coevolution of sensory sys-

tems and signal design. Recent reviews of the model have found much

empirical support for Sensory Drive processes (Cole 2013; Ryan and

Cummings 2013; Price 2017), as well as some studies finding little evi-

dence for its role in signal differentiation (Ey and Fischer 2009;

Malone et al. 2014). In our review, we decided to examine the evi-

dence for Sensory Drive in its most classic form — with an emphasis

on environmental influence. Hence, we have limited our review to

studies that examine whether environmental variation can predict

variation in sensory tuning, signal characteristics or both. This means

that several excellent studies that study Sensory Exploitation/Pre-

existing Bias without an environmental component are not included

in this current review (e.g., Basolo 1990; Ryan and Rand 1990;

Rosenthal and Evans 1998; and others reviewed in Ryan and

Cummings 2013). This exclusion is not meant to diminish the import-

ance of Sensory Exploitation sensu strictu (the binding glue between

sensory and signal coevolution) but rather focus our review around

the feature that sets this coevolutionary process in motion (according

to Sensory Drive) — the environment. It also allows us to ask ques-

tions about habitat bias in Sensory Drive studies, and whether some

habitats show more support for Sensory Drive processes than others.

We also ask whether certain components in the Sensory Drive model

are better supported than others; and whether the support for Sensory

Drive is biased for specific sensory modalities or taxonomic groups.

To examine the evidence for Sensory Drive and probe for habi-

tat, modality, and taxonomic bias, we conducted a literature review

of empirical studies in the field. For habitat classification, we catego-

rized organisms communicating in either terrestrial or aquatic (both

marine and freshwater) ecosystems. We searched for taxonomic bias

by comparing the evidence for and against Sensory Drive between

invertebrates and the major vertebrate classes; there were insuffi-

cient invertebrate studies to subdivide them by taxa. We restricted

our analysis to the two most commonly investigated sensory modal-

ities — vision and audition (with a modicum of vibration) due to the

relative paucity of studies in other modes such as electroreception

and chemoreception. While tests of Sensory Drive within chemo-

reception are beginning to accumulate (see references within Cole

2013), they are both few and relatively recent and we encourage fu-

ture reviews to probe for habitat or taxonomic biases for chemosen-

sory Sensory Drive processes.

Overall, we identified 154 studies that examined the evidence for

some (or most) steps in the sensory drive model. Of these studies,

132 (86%) found evidence for Sensory Drive and 22 (14%) did not

(Tables 1 and 2). While we should expect some portion of this lop-

sided ledger to be driven by a reporting bias for positive results, our

aim with this review is to identify any patterns that are emerging in

terms of where, in what sensory modality, and with what organism

do we see greater or lesser support for the sensory drive model.

We examine the evidence for and against sensory drive in each of

the main components of sensory drive (sensory and signaling) separ-

ately as well as the model as a whole. For each of these examina-

tions, we then compare the evidence in terms of habitat, modality

and taxonomic support.

Evidence for the environment influencing sensory

components
We identified 56 empirical studies (Table 1) that directly tested the

sensory component predictions of the sensory drive model (green

steps in Figure 1). These studies found overwhelming support for the

sensory component of the sensory drive model with 53 studies iden-

tifying support of sensory drive while 3 did not. Researchers inter-

ested in testing this component of the Sensory Drive hypothesis have

often compared biophysical measurements from species-specific

habitats with physiological measurements of sensory perception

(e.g., Cummings and Partridge 2001; Cheroske et al. 2003; Fuller

et al. 2003, 2004; Cummings 2004, 2007; Carleton et al. 2005;

Seehausen et al. 2008; Fuller and Noa 2010; Veilleux et al. 2013;

Veilleux and Cummings 2012; Bloch 2015; Bloch et al. 2015a;

Sandkam et al. 2015; Tuset et al. 2016). Yet, in order to determine

if this detectability bias has pleiotropic effects spilling into the sexual

selection domain requires determining if these biases play a role in

mate choice decisions. A few researchers have comprehensively

tested this logistically complex question (e.g., Boughman 2001;

Rodd et al. 2002; Garcia and Ramirez 2005; Maan et al. 2006;

Seehausen et al. 2008; Arnqvist and Kolm 2010).

Of the studies that found evidence for sensory drive processes

influencing sensory system tuning, 57% were in aquatic environ-

ments (Figure 2) and 83% involved vision (Figure 3). These studies

were also dominated by teleost fish (45%) followed by invertebrates

(19%), birds (15%), mammals (9%), and reptiles (8%, Figure 4).

Using a Freeman–Halton exact test to compare the evidence for and

against the sensory component of sensory drive, we found no signifi-

cant differences in habitat, modality, or taxonomic group (Table 2).

However, given so few studies in the “no evidence” column, a statis-

tical approach to identify patterns is anemic from the beginning.

Nonetheless, it is worth noting that the vast majority of these sen-

sory studies fell in the domain of vision. Is this because human

researchers are visually biased? Or is it because visual tuning is an

easier modality to test in the lab and field? Or does vision

respond more to the optical environment than the auditory senses to

the auditory environment? Patterns could be entirely different in

other sensory modes, for which there are still few data.

Environmental tuning mechanisms favor vision over

other modalities?
Is there a mechanistic advantage of vision to respond to the environ-

ment more than the other sensory modalities? Vision scientists have

been able to document how responsive the visual pathway is to

environmental inputs in a number of taxa. Since the 1960s, it has

been well documented that many teleosts employ a mixed chromo-

phore strategy (different proportions of A1 and A2 prosthetic

groups in photoreceptor outer segments) to tune their spectral sensi-

tivity to ambient light conditions (Dartnall et al. 1961; Bridges

1965, 1972; Munz and Beatty 1965; Allen 1971; Loew and Dartnall

1976; Levine and MacNichol 1979; Muntz and Mouat 1984). More

recent work has also shown how differential expression of multiple

opsin proteins in photoreceptor outer segments is biased based on

optical inputs during development (Carleton and Kocher 2001;

Fuller et al. 2004; Shand et al. 2008; Hofmann et al. 2010) as well

as dietary influences (Sandkam et al. 2016). And we have become

even more aware that sensory tuning can shift across the course of

a day (Johnson et al. 2013); or as a function of steroid hormonal

exposure (e.g., Friesen et al. 2017).

Note that many of these visual “tuning” mechanisms are

restricted to certain aquatic taxa. Some fish and amphibian species

contain dual chromophores in their retina (A1 and A2). By changing

the ratio of A1:A2 in each photoreceptor’s outersegment, these

aquatic and semi-aquatic species can tune the absorption maxima of

the photoreceptor to match properties of their ambient light
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Table 1. Characterization of 154 studies evaluating sensory drive processes by taxonomic grouping, sensory modality, habitat, and whether

they demonstrated support for the sensory, signaling components of the sensory drive model.

Major taxonomic

group

Species group Sense Habitat Sensory

support

Signal

support

Citation

Invertebrates Beetle Vision Terrestrial Yes Yes Théry et al. (2008)

Invertebrates Bladder grasshoppers Auditory Terrestrial Yes Couldridge and van Staaden (2004)

Invertebrates Butterflies Vision Terrestrial Yes Rutkowski et al. (2007)

Invertebrates Cicadas Auditory Terrestrial No Sueur and Aubin (2003)

Invertebrates Crabs Vision Terrestrial Yes Christy (1988)

Invertebrates Crabs Vision Terrestrial Yes Yes Christy (1995)

Invertebrates Crabs Vision Terrestrial Yes Christy et al. (2002)

Invertebrates Crabs Vision Terrestrial Yes Yes Christy et al. (2003)

Invertebrates Crabs Vision Terrestrial Kim et al. (2007)

Invertebrates Crickets Auditory Terrestrial No Forrest (1991)

Invertebrates Crickets Auditory Terrestrial No Jain and Balakrishnan (2012)

Invertebrates Crickets Auditory Terrestrial No Mendelson and Shaw (2005)

Invertebrates Green Lacewings Auditory Terrestrial No Noh and Henry (2010)

Invertebrates Green Lacewings Auditory Terrestrial No Henry and Wells (2004)

Invertebrates Moths Auditory Terrestrial Yes Conner (1987)

Invertebrates Water Mites* Vibratory* Aquatic Yes Yes Proctor (1991)

Invertebrates Water Mites* Vibratory* Aquatic Yes Yes Proctor (1992)

Invertebrates Spiders Vision Terrestrial Yes Scheffer et al. (1996)

Invertebrates Spiders Vision Terrestrial Yes Clark (2011)

Invertebrates Spiders Vision Terrestrial Yes Wilgers and Hebets (2011)

Invertebrates Spiders* Vibratory* Terrestrial Yes Elias et al. (2010)

Invertebrates Stomatopods Vision Aquatic Yes Cronin et al. (2001)

Invertebrates Stomatopods Vision Aquatic Yes Cronin and Caldwell (2002)

Invertebrates Stomatopods Vision Aquatic Yes Cheroske et al. (2003)

Invertebrates Stomatopods Vision Aquatic Yes Cheroske et al. (2006)

Invertebrates Treehoppers* Vibratory* Terrestrial Yes Sullivan-Beckers and Cocroft (2010)

Invertebrates Treehoppers* Vibratory* Terrestrial Yes McNett and Cocroft (2008)

Fish Characins Vision Aquatic Yes Yes Arnqvist and Kolm (2010)

Fish Lake Malawi Cichlids Vision Aquatic No Smith et al. (2012)

Fish Lake Victoria Cichlids Vision Aquatic Yes Seehausen et al. (1997)

Fish Lake Victoria Cichlids Vision Aquatic Yes Yes Maan et al. (2017)

Fish Lake Victoria Cichlids Vision Aquatic Yes Carleton et al. (2005)

Fish Lake Victoria Cichlids Vision Aquatic Yes Yes Seehausen et al. (2008)

Fish Lake Victoria Cichlids Vision Aquatic Yes Yes Maan et al. (2006)

Fish Goodeids Vision Aquatic Yes Yes Garcia and Ramirez (2005)

Fish Guppies Vision Aquatic Yes Endler (1980)

Fish Guppies Vision Aquatic Yes Yes Endler (1983)

Fish Guppies Vision Aquatic Yes Endler (1987)

Fish Guppies Vision Aquatic Yes Yes Endler (1991)

Fish Guppies Vision Aquatic Yes Yes Endler (1995)

Fish Guppies Vision Aquatic Yes Cole and Endler (2016)

Fish Guppies Vision Aquatic Yes Long and Rosenqvist (1998)

Fish Guppies Vision Aquatic Yes Chapman et al. (2009)

Fish Guppies Vision Aquatic Yes Yes Rodd et al. (2002)

Fish Guppies Vision Aquatic Yes Yes Gamble et al. (2003)

Fish Guppies Vision Aquatic Yes Sandkam et al. (2015)

Fish Killifish Vision Aquatic Yes Fuller et al. (2003)

Fish Killifish Vision Aquatic Yes Fuller et al. (2005)

Fish Killifish Vision Aquatic Yes Yes Fuller and Noa (2010)

Fish Killifish Vision Aquatic Yes Fuller (2002)

Fish Killifish Vision Aquatic Yes Fuller and Travis (2004)

Fish Ornate Rainbow Fish Vision Aquatic Yes Hancox et al. (2013)

Fish Reef fish Vision Aquatic Yes Yes Marshall (2000)

Fish Rockfish Auditory Aquatic Yes Tuset et al. (2016)

Fish Southern Pygmy perch Vision Aquatic Yes Morrongiello et al. (2010)

Fish Sticklebacks Vision Aquatic Yes Reimchen (1989)

Fish Sticklebacks Vision Aquatic Yes Yes Boughman (2001)

Fish Sticklebacks Vision Aquatic Yes Yes Smith et al. (2004)

Fish Sticklebacks Vision Aquatic Yes Veen et al. (2017)

Fish Sticklebacks Vision Aquatic Yes Yes Brock et al. (2017)

(continued)
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Table 1. (continued)

Major taxonomic

group

Species group Sense Habitat Sensory

support

Signal

support

Citation

Fish Suluwesi Fish Vision Aquatic Yes Gray et al. (2008)

Fish Surfperch Vision Aquatic Yes Cummings and Partridge (2001)

Fish Surfperch Vision Aquatic Yes Cummings (2004)

Fish Surfperch Vision Aquatic Yes Yes Cummings (2007)

Amphibians Bolivian frogs Auditory Terrestrial No Bosch and Riva (2004)

Amphibians Central Amazon frogs Auditory Terrestrial No Zimmerman (1983)

Amphibians Central Amazon frogs Auditory Terrestrial No Kime et al. (2000)

Amphibians Chorus frogs Auditory Terrestrial No Malone et al. (2014)

Amphibians Concave-eared Torrent frog Auditory Terrestrial Yes Yes Feng et al. (2006)

Amphibians Cricket frogs Auditory Terrestrial Yes Ryan et al. (1990)

Amphibians Cricket frogs Auditory Terrestrial Yes Gamble et al. (2008)

Amphibians Cricket frogs Auditory Terrestrial Yes Witte et al. (2005)

Amphibians Green toads Auditory Terrestrial No Castellano et al. (2003)

Amphibians Poison Frogs Vision Terrestrial Yes Maan and Cummings (2012)

Amphibians Poison Frogs Vision Terrestrial Yes Cummings and Crothers (2013)

Amphibians Rock Frogs Vision Terrestrial Yes Grafe et al. (2012)

Amphibians Rock skipper frog Auditory Terrestrial Yes Boeckle et al. (2009)

Amphibians South American frogs Auditory Terrestrial No Penna and Solis (1998)

Amphibians Streambank frogs Auditory Terrestrial Yes Odendaal et al. (1986)

Amphibians Thailand frogs Auditory Terrestrial Yes Sun and Narins (2005)

Amphibians Toads Auditory Terrestrial Yes Ryan and Sullivan (1989)

Amphibians Treefrogs Auditory Terrestrial Yes Ziegler et al. (2011)

Amphibians Tree-hole frogs Auditory Terrestrial Yes Lardner and Lakim (2002)

Reptiles Anolis lizards Vision Terrestrial Yes Yes Sigmund (1983)

Reptiles Anolis lizards Vision Terrestrial Yes Yes Leal and Fleishman (2002)

Reptiles Anolis lizards Vision Terrestrial No Steinberg and Leal (2016)

Reptiles Anolis lizards Vision Terrestrial Yes Yes Fleishman (1992)

Reptiles Anolis lizards Vision Terrestrial Yes Yes Leal and Fleishman (2004)

Reptiles Anolis lizards Vision Terrestrial Yes LeBas and Marshall (2000)

Reptiles Anolis lizards Vision Terrestrial Yes Ord et al. (2007)

Reptiles Anolis lizards Vision Terrestrial Yes Peters and Evans (2003)

Reptiles Anolis lizards Vision Terrestrial Yes Peters et al. (2007)

Reptiles Chameleons Vision Terrestrial Yes Stuart-Fox et al. (2007)

Reptiles Chameleons Vision Terrestrial Yes Stuart-Fox and Moussalli (2008)

Birds Amazonian birds Auditory Terrestrial Yes Tobias et al. (2010)

Birds American redstarts Auditory Terrestrial No Date and Lemon (1993)

Birds Antbirds Auditory Terrestrial Yes Nemeth et al. (2001)

Birds Blue tits Auditory Terrestrial No Doutrelant and Lambrechts (2001)

Birds Bowerbirds Vision Terrestrial Yes Yes Madden and Tanner (2003)

Birds Bowerbirds Vision Terrestrial Yes Yes Endler and Day (2006)

Birds Bowerbirds Vision Terrestrial Yes Doucet and Montgomerie (2003)

Birds Bowerbirds Vision Terrestrial Yes Endler et al. (2010)

Birds Bowerbirds Vision Terrestrial Yes Kelley and Endler (2012)

Birds Bowerbirds Vision Terrestrial No Borgia and Keagy (2006)

Birds Carolina Wren Auditory Terrestrial Yes Gish and Morton (1981)

Birds Chickens Vision Terrestrial Yes Hart et al. (2006)

Birds Finches Auditory Terrestrial Yes Snell-Rood and Badyaev (2008)

Birds Finches Auditory Terrestrial No Podos (2010)

Birds Flycatchers Auditory Terrestrial Yes Francis et al. (2011)

Birds Forest Birds Auditory Terrestrial Yes Ryan and Brenowitz (1985)

Birds Forest Birds Vision Terrestrial Yes Endler and Théry (1996)

Birds Forest Birds Vision Terrestrial Yes Gomez and Théry (2004)

Birds Forest Birds Vision Terrestrial Yes Gomez and Théry, 2007.

Birds Forest Birds Vision Terrestrial Yes Uy and Stein (2007)

Birds Great tits Auditory Terrestrial Yes Yes Mockford and Marshall (2009)

Birds Great tits Auditory Terrestrial Yes Slabbekoorn and Peet (2003)

Birds Great tits Auditory Terrestrial Yes Slabbekoorn and der Boer-Vissor (2006)

Birds Green hylia Auditory Terrestrial Yes Kirschel et al. (2009)

Birds Grey breasted wood wren Auditory Terrestrial Yes Dingle et al. (2008)

Birds House finches Auditory Terrestrial Yes Bermudez-Cuamatzin et al. (2011)

Birds Juncos Auditory Terrestrial Yes Slabbekoorn et al. (2007)

(continued)
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conditions. Evidence for chromophore mixing to match spectral

properties of the underwater environment has been found in fresh-

water (Bridges 1972; Loew and Dartnall 1976), saltwater

(Cummings and Partridge 2001) and anadromous fish (Munz and

Beatty 1965; Muntz and Mouat 1984). Furthermore, teleosts have

shown greater plasticity than any other taxon in spectral tuning via

differential expression in opsin proteins within their photoreceptors

(Fuller et al. 2004, 2010; Hofmann et al. 2009, 2010; Carleton

2009; Parry et al. 2005). Moreover, marine invertebrates, such as

stomatopods, have multiple means to alter spectral sensitivity via

modification to intrarhabdomal filters, allowing for extensive tuna-

bility (Cronin et al. 2001; Marshall et al. 2007).

While terrestrial vertebrates (amphibians, reptiles, birds, and

mammals) do not possess as many tuning mechanisms as some of

the marine organisms [e.g., only a single chromophore (A1)], they

still exhibit tunable variation in visual sensitivities. Warblers exhibit

differential opsin expression between species that vary in optical

habitats (Bloch 2015), as well as genetic variation in opsin genes

that is functionally linked to changes in habitat use (Bloch et al.

2015a). Birds, in general, exhibit tremendous genetic variation in

UV-sensitive cone opsins (SWS1, Hart and Hunt 2007), and vari-

ation in the proportion of different photoreceptor cone types. This

variation has been attributed to variation in foraging ecology (Hart

2001). Furthermore, many birds and reptiles contain pigmented oil

droplets in the inner segments of their photoreceptors that reduce

the intensity and narrow the spectrum of light impinging upon the

visual pigment in the outer segment (Liebman and Granda 1971;

Bowmaker 1977; Loew et al. 2002); and the amount of this inner

segment colored pigment appears to vary by ambient light intensity

(Hart et al. 2006).

Interestingly, there is robust evidence of olfactory systems being

tuned to their physical environment. Since early work in the 1970s

(Scholz et al. 1976), we have seen that the fish olfactory epithelium

responds to sensory input by a positive feedback process that allows

salmon to tune their olfactory pathway to detect the olfactory signa-

tures of their specific birth tributary (Harden et al. 2006). The olfac-

tory system may well be set up to be primed by early developmental

conditions to recognize certain odors for later olfactory discrimin-

ation (e.g., kin selection, Hinz et al. 2013). In fact, this phenomenon

may occur in a variety of taxa, including insects at various develop-

mental stages (Davis and Stamps 2004).

What is the evidence for sensory tuning to the acoustic environ-

ment? It is clear that the auditory systems from invertebrates

(Schmidt et al. 2011) to vertebrates (Witte et al. 2005; Bar-Yosef

Table 1. (continued)

Major taxonomic

group

Species group Sense Habitat Sensory

support

Signal

support

Citation

Birds Mannakins Vision Terrestrial Yes Uy and Endler (2004)

Birds Mannakins Vision Terrestrial Yes Heindl and Winkler (2003)

Birds Nightingales Auditory Terrestrial Yes Brumm (2004)

Birds Nightingales Auditory Terrestrial Yes Sorjonen (1986)

Birds North American oscines Auditory Terrestrial Yes Wiley (1991)

Birds Robins Auditory Terrestrial Yes Fuller et al. (2007)

Birds Silvereyes Auditory Terrestrial Yes Potvin et al. (2011)

Birds Song Sparrows Auditory Terrestrial Yes Shy and Morton (1986)

Birds Song Sparrows Auditory Terrestrial Yes Patten et al. (2004)

Birds South African birds Auditory Terrestrial No Saunders and Slotow (2004)

Birds Warblers Vision Terrestrial Yes Marchetti (1993)

Birds Warblers Auditory Terrestrial No Fotheringham et al. (1997)

Birds Warblers Vision Terrestrial Yes Bloch (2015)

Birds Warblers Vision Terrestrial Yes Bloch et al. (2015a)

Birds Warblers Vision Terrestrial Yes Bloch et al. (2015b)

Birds Warblers Vision Terrestrial Yes Price (2017)

Birds White Crown Sparrows Auditory Terrestrial Yes Derryberry (2009)

Mammals Baboons Auditory Terrestrial Yes Ey et al. (2009)

Mammals Bats Auditory Terrestrial Yes Arlettaz et al. (2001)

Mammals Bats Auditory Terrestrial Yes Jacobs et al. (2017)

Mammals Bats Auditory Terrestrial No Puechmaille et al. (2011)

Mammals Japanese macaques Auditory Terrestrial Yes Sugiura et al. (2006)

Mammals Lemurs Vision Terrestrial Yes Veilleux et al. (2013)

Mammals Marmots Auditory Terrestrial Yes de la Torre and Snowdon (2002)

Mammals Marmots Auditory Terrestrial Yes Daniel and Blumstein (1998)

Mammals New World Monkeys Auditory Terrestrial Yes Brumm et al. (2003)

Mammals Nocturnal mammals Vision Terrestrial Yes Veilleux and Cummings (2012)

Mammals Primates Vision Terrestrial Yes Fernandez and Morris (2007)

Mammals Primates Auditory Terrestrial Yes Waser and Waser (1977)

Mammals Primates Auditory Terrestrial Yes Mitani and Stuht (1998)

Mammals Rain forest monkeys Auditory Terrestrial Yes Brown et al. (1995)

Mammals Savannah monkeys Auditory Terrestrial No Brown et al. (1995)

Mammals Whales Auditory Aquatic Yes Miller et al. (2000)

Asterisk refers to examples of sensory drive that involve the vibratory sensory system (included in this table, but not included for statistical analyses in table 2

owing to small numbers).
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and Nelken 2007; Mockford and Marshall 2009) are modified by

background noise levels. Auditory systems can be selectively tuned

to respond to conspecific signals (e.g., auditory imprinting, Batista

et al. 2016), as well as be modified by steroid hormones (Coffin

et al. 2012). And some of the best examples of sensory tuning to the

environment include the evolution of selective ultrasonic hearing

capabilities among several species preyed upon by echolocating bats

(Conner 1987; Windmill et al. 2006).

Evidence for the environment influencing signal

components
Our literature search found more than twice the number of studies

exploring the signal components of the sensory drive model than

the sensory components (Table 1, Figures 2–4). We identified 126

empirical studies that directly tested the signal predictions of the

sensory drive model (blue components in Figure 1). Of these studies,

107 found support for sensory drive while 19 did not. Many

researchers have tested this part of sensory drive by examining cor-

relational patterns between male signaling characteristics and envir-

onmental parameters (Table 1: Morton 1975; Gish and Morton

1981; Reimchen 1989; Wiley 1991; Fleishman 1992; Marchetti

1993; Seehausen et al. 1997; Slabberkoorn and Peet 2003; Fuller

2002; Leal and Fleishman 2004; Gomez and Théry 2004, 2007; Ord

et al. 2007; Stuart-Fox et al. 2007; Gray et al. 2008; Derryberry

2009; Ey et al. 2009; Elias et al. 2010; Morrongiello et al. 2010;

Tobias et al. 2010; Potvin et al. 2011; Hancox et al. 2013; Brock

et al. 2017); or species-specific detection biases (Madden and

Tanner 2003; Feng et al. 2006; Cummings 2007; Arnqvist and Kolm

2010), or female mate preference functions (Boughman 2001; Maan

et al. 2006; Seehausen et al. 2008; Kelley and Endler 2012).

Table 2. Results of freeman-halton exact test results comparing dif-

ferences in habitat, modality, and taxonomic group characteristics

of supporting (yes) and non-supporting (no) studies testing the

sensory (A), signaling (B), or both components (C) of the sensory

drive model

A. Number studies testing the first component of Sensory Drive

(Sensory systems tuned to environmental parameters)

Habitat Yes No P¼ 0.58

Aquatic 30 1

Terrestrial 23 2

Order Yes No P ¼ 0.31

Invertebrates 10 0

Fishes 24 1

Amphibians 2 0

Reptiles 4 1

Birds 8 0

Mammals 5 1

Sense Yes No P ¼ 0.33

Vision 44 2

Auditory 7 1

B. Number of studies testing the second component of Sensory Drive

(Signalling traits varying by environmental parameters)

Habitat Yes No P ¼ 0.0036

Aquatic 30 0

Terrestrial 74 19

Order Yes No P ¼ 0.0055

Invertebrates 14 6

Fishes 27 0

Amphibians 12 6

Reptiles 10 0

Birds 32 6

Mammals 9 1

Sense Yes No P < 0.0001

Vision 59 1

Auditory 40 18

C. Number of studies testing both components of Sensory Drive (sensory

and signaling coevolution)

Habitat Yes No n.a.

Aquatic 18 0

Terrestrial 11 0

Order Yes No n.a.

Invertebrates 5 0

Fishes 16 0

Amphibians 1 0

Reptiles 4 0

Birds 3 0

Mammals 0 0

Sense Yes No n.a.

Vision 25 0

Auditory 2 0

Note vibratory studies listed in Table 1 are excluded for this analysis; and n.a.

refers to inapplicability of the statistical test when only 1 column has numbers

> 0.

Figure 2. Frequency waffle plots of studies supporting and not supporting the

sensory drive model by aquatic (red) or terrestrial (orange) habitats, including

studies that evaluated the sensory component of the sensory drive model,

studies that evaluated the signaling components of the sensory drive model,

and studies that evaluate the complete model (both major components). Note

for color blind readers (either deutanomaly or protanomaly) the aquatic

blocks will appear a dark green and the terrestrial a dark yellow).
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Still others have focused on the time and place of male signaling, to

determine whether or not signaling behavior maximizes conspicu-

ousness to females (Endler and Théry 1996; Long and Rosenqvist

1998; Doucet and Montgomerie 2003; Heindl and Winkler 2003;

Lardner and Lakim 2002; Uy and Endler 2004; Sun and Narins

2005; Heinsohn et al. 2005; Ord et al. 2007; Peters et al. 2007;

Rutkowski et al. 2007; Chapman et al. 2009; Cole and Endler

2016).

Of the supporting studies, 71% were in terrestrial systems

(Figure 2), 57% involved visual signaling (Figure 3), and taxonomic

representation was quite broad (31% birds, 26% fish, 13% inverte-

brates, 12% amphibians, 10% reptiles, and 9% mammals,

Figure 4). All of the 19 studies finding no support for sensory drive

were in terrestrial environments and 95% (18) involved auditory

signals across three taxonomic groups (invertebrates, amphibians,

and birds). Comparing the supporting and non-supporting studies

(Table 2), we found significant non-independence of support by

habitat (P¼0.0036), modality (P<0.0001), and taxon

(P¼0.0055).

The terrestrial environment dominated the studies finding

support for the signal components of the sensory drive model

(Figure 2). This is a reverse pattern from the relative habitat repre-

sentation observed for sensory component studies (Figure 2).

Why the difference? The difference may be a matter of human acces-

sibility between these two habitats. Or simply driven by the taxo-

nomic foci of different researchers (e.g., birds, reptiles, amphibians,

and several invertebrate orders are not found in the sea). In addition,

acoustic signaling is far more common in the terrestrial environment

than the aquatic environment, allowing signal researchers a broader

range of signal forms to study. While recent research is beginning to

discover the broad range of underwater sounds (Smith and van

Staaden 2009; Danley et al. 2012), the field of underwater acoustics

is still nascent relative to the long history of studying amphibian,

bird, and insect calls in terrestrial habitats.

3.4 Auditory signals and the biotic versus abiotic design

pressures
The terrestrial environment significantly dominated the category

of non-supporting sensory drive studies concentrating on signal

components (P¼0.0036, Table 2). The high concentration of these

non-supporting studies involved auditory signals, a pattern that sig-

nificantly deviated from random expectations (P<0.0001; Table 2).

Why do we find a disproportionate number of auditory studies

(of which most are in terrestrial environments) representing this cat-

egory of no support for sensory drive? One important feature to

consider is how sensory modes differ; auditory signals frequently

compete simultaneously with both biotic and abiotic noise. Unlike a

visual signal, which is directional and whose detection is based on

how it is perceived against highly localized abiotic backgrounds (the

adjacent surrounding area), auditory signals are essentially omnidir-

ectional so it is more difficult to disentangle them from background

noise coming from all directions. It is the competition to stand out

against the biotic din of competing signals that has been shown to

be the dominant predictor of divergence in a number of different

auditory signalling systems (e.g., insects: Greenfield 2015; frogs:

Wollerman and Wiley 2002; Amézquita et al. 2011; Malone et al.

2014; birds: Luther 2009; Grant and Grant 2010). As a general rule,

acoustic signal reception has to contend with significantly more bi-

otic interactions than visual signals. Hence, signal design in ecosys-

tems crowded with auditory communicators should be associated

with the biotic environmental soundscape being the better predictor

for signal differentiation than the abiotic factors. This has been born

out in a number of different animal taxa (Amézquita et al. 2011;

Wilkins et al. 2013). One of the most thorough examinations of

this principle comes from a large-scale comparison of 82 species of

tropical forest birds, wherein Luther (2009) found that bird song

divergence at dawn chorus was predicted by the composition of

competing songs at each given time interval, rather than physical

location or phylogenetic relatedness. Hence, for auditory signaling,

the communication environment is often dominated by biotic fac-

tors more than abiotic features, and it is the selective factor driving

signal diversification in predictable directions. However, auditory

evolution may be less predictable than visual signal evolution be-

cause the auditory biotic factors are often more variable in space,

and in both short-term and evolutionary time, than the largely

physical factors affecting vision.

Evidence for complete sensory drive model

(co-evolution of sensory and signaling features)
Of the 154 studies examining sensory drive processes, 29 tested and

found support for the complete sensory drive model (Table 1).

Figure 3. Frequency waffle plots of studies supporting and not supporting the

sensory drive model by sensory modality [vision (red), auditory (orange)]

including studies that evaluated the sensory component of the sensory drive

model, studies that evaluated the signaling components of the sensory drive

model, and studies that evaluate the complete model (both major compo-

nents). Note for color blind readers (either deutanomaly or protanomaly) the

vision blocks will appear a dark green and the auditory a dark yellow).
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Either tests not supporting the full model haven’t yet been conducted

or the authors could not publish their negative results. The support-

ing studies were overwhelmingly focused in visual traits (86%,

Figure 3) with a bias for aquatic environments (62%, Figure 2) and

a majority (55%, Figure 4) of fish representatives [followed by

invertebrates (17%), reptiles (14%), birds (10%), and amphibians

(3%)].

The close similarity between characteristics of studies finding

support for sensory components and the complete sensory drive

model is not surprising. After all, the sensory drive model starts with

the environment placing a directional change on sensory systems in

specific environmental conditions. To find evidence for the complete

Sensory Drive model, one needs to first find a match between sen-

sory system bias predicted by environmental constraints and then a

match between signals and that environmentally induced sensory

bias. To tackle both components is a daunting endeavor, so it should

come as no surprise that the subset of studies that completed this

challenge is not very large (about 1 per year since the inception of

Sensory Drive).

It is also not surprising that the majority of these few “full sup-

port studies” are mostly in aquatic environments. Since the early

days of sensory drive, it was noted that aquatic environments place

a more constraining force on the sensory environment than terres-

trial habitats, particularly in visual systems. The water medium,

unlike air, differentially absorbs and scatters wavelengths of light as

a function of depth as well as biotic and abiotic factors in the water

medium itself, such as tannins. Phytoplankton and zooplankton

blooms along with detritus and other inorganic materials can also

stain the waters in particular ways, leaving a very limited optical

spectrum for the visual senses to process. When spectra are

restricted, then sensory systems have fewer options for tuning and

the predicted direction of tuning and signals becomes predictable

based on first principles. However, when the spectrum is broad, the

system is permissive and multiple solutions are equally plausible

(Endler 1993a,1993b).

A comparison across the different types of cichlid fish and the

optical environments they inhabit demonstrate this principle quite

well. The Lake Victorian cichlids differ in optical environment due

to a predictable (and unidirectional) change in ambient spectra with

depth. As species-specific depth ranges increase, ambient spectral

bandwidth becomes narrower and redder. In this system, visual pig-

ments follow this depth gradient shift as well as predictable shifts in

male color reflectance to contrast against the shift in background

spectra (Seehausen et al. 2008) that is also reflected in female choice

for these signals (Maan et al. 2006). Meanwhile, in the Lake

Malawi cichlids that inhabit clearer waters with a broader spectrum

of ambient light, the optical environment is less constrained, and the

multiple (6 main opsins) show no correlated pattern with expression

and optical environment (Smith et al. 2012). This point was brought

up by Endler in the early stages of Sensory Drive (Endler 1993a,

1993b), that environments that are optically constrained to narrow

irradiance spectra favor a very specific color component for signal

evolution, whereas environments containing broad spectra are very

permissive, favouring diversity and making predictions more diffi-

cult. This same principle explains why there is strong support for

sensory drive in the surfperch fishes optically extreme environment

of an underwater kelp forest (Cummings 2007), yet more muted

support in birds dwelling in tropical terrestrial forests (Gomez and

Théry 2004; Maia et al. 2016).

Conclusions and Future Directions

There is broad support for the process of sensory drive in a variety

of taxa and environments but the distribution among taxa and envi-

ronments is uneven. The unevenness results from variation among

habitats as well as in sensory capacities and sensory biophysics.

Some combinations restrict what form sensory drive can take,

making it predictable, but other combinations are very permissive,

making predictions difficult or impossible. There may even be a

tradeoff between environmental constraints and diversity. This pre-

dicts more diversity of senses and signals, and more diversity of spe-

cies, in permissive habitats and species with multiple sensory modes

than those with fewer modes or which live in more restrictive

Figure 4. Frequency waffle plots of studies supporting and not supporting the sensory drive model by taxonomic group [supporting (red) and non-supporting

(orange)] including studies that evaluated the sensory component of the sensory drive model, studies that evaluated the signalling components of the sensory

drive model, and studies that evaluate the complete model (both major components). Note for color blind readers (either deutanomaly or protanomaly) the sup-

porting blocks will appear a dark green and the non-supporting a dark yellow).
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habitats. These ideas need testing in as many taxa and habitats as

possible. We also note that there is comparatively little work on sen-

sory drive in chemoreception, vibration reception, and electrorecep-

tion, and little work on the evolution of microhabitat and habitat

choice relative to sensory drive. There is clearly a lot more to be

done in exploring the directions and rates of sensory drive.
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