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2D-1D Coupling in Cleaved Edge Overgrowth
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We study the scattering properties of an interface between a one-dimensional (1D) wire and a two-
dimensional (2D) electron gas. Experiments were conducted in the highly controlled geometry provided
by molecular bean epitaxy overgrowth onto the cleaved edge of a high quality GaAs�AlGaAs quantum
well. Such structures allow for the creation of variable length 1D-2D coupling sections. We find ballistic
1D electron transport through these interaction regions with a mean free path as long as 6 mm. Our
results explain the origin of the puzzling nonuniversal conductance quantization observed previously in
such 1D wires.

PACS numbers: 73.20.Dx, 73.23.Ad
A perfect one-dimensional (1D) wire with ideal contacts
at both ends is expected to exhibit a quantized conductance
in multiples of the universal value g0 � 2e2�h. As suc-
cessive 1D electronic subbands are filled with electrons
the conductance increases in a series of steps with plateau
values equal to g0 multiplied by the number of occupied
wire modes. This behavior is unique to 1D and does not
occur in higher dimensions [1–12].

Wires fabricated in the GaAs�AlGaAs material system
via the cleaved edge overgrowth (CEO) technique [13–16]
represent one of the most precise implementations of the
1D concept. Such structures are controlled to atomic pre-
cision, leading to very uniform electron confinement with
subband spacings as large as 25 meV. In addition, the
cleanliness of the molecular beam epitaxy (MBE) envi-
ronment results in wires with a backscattering mean free
path, lB, as long as 20 mm. Indeed such wires show well-
quantized conductance plateaus. However, surprisingly,
the values of the measured conductances fall short of the
universal values by as much as 25%. This behavior is ob-
served in wires much shorter than lB [13,16], implying that
1D backscattering alone cannot account for this deficit. In-
stead, it has been suggested that the observed nonuniver-
sality is associated either with electron scattering between
the 1D wire and its 2D contacts [13,17] or with disorder
combined with e-e interactions in the wire [13,16,18].

An ideal Ohmic contact to a conductor should fill all
outgoing states up to an electrochemical potential m and
absorb all incoming particles [1]. In 1D such an ideal
contact takes the form of an adiabatic funnel—slowly re-
ducing the cross section of a two- or three-dimensional
conductor until the 1D wire is formed at its end. The adia-
baticity of the dimensional changeover avoids reflections
at the entrance to the wire and thus ensures filling of all
the outgoing states [6]. Nearly adiabatic funnels can be
fabricated in semiconductor structures by using two litho-
graphically defined gates to progressively narrow a two-
dimensional electron gas (2DEG) in order to form a wire
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[19]. When the distance between the funnels is shrunk to a
point, as in quantum point contacts, essentially quantized
conductance values can be observed [20,21]. However, 1D
wires of a finite length that are fabricated by lithography
suffer from small 1D subband energy separation leading to
possible mode mixing. Moreover, random width fluctua-
tions can create discrete quantum point contacts along the
wire that may dominate the conductance.

In CEO the 1D wire is contacted via a 2DEG, as
illustrated in Fig. 1. While this figure displays the more
complex three terminal CEO device to be addressed later, it
contains all the ingredients of a generic 2DEG contact to a
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FIG. 1. (a) The geometry of the CEO device; see text.
(b) Conduction band profile in the [011] direction at the
quantum well level away from gates A and B. The 2DEG and
the 1DEG modes are illustrated. (c) Dispersion relation for
electrons in the 2DEG and 1D wire. The Fermi wave vectors
of the two systems are indicated.
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CEO wire. Its fabrication starts with a high quality 2DEG
created by MBE growth of a unilaterally doped GaAs
quantum well (QW) onto a [001] GaAs substrate. The re-
sultant 2DEG has a carrier density ns � 2.5 3 1011 cm22,
and mobility m � 4 3 106 cm2�V s. Subsequently, this
wafer is cleaved inside the MBE chamber to expose a
clean and atomically smooth [110] surface, which is
immediately overgrown with a modulation-doped epi-
taxial layer sequence. The additional remote Si dopants
that are introduced by this overgrowth step lead to a
higher electron density near the cleaved edge of the QW.
As in conventional modulation-doped samples, a strong
built-in electric field binds this excess charge to the
cleaved edge interface, creating 1D bound states all along
the edge of the GaAs QW. This channel contains �10
electronic modes and is referred to as the “1DEG.” The
2DEG, residing in the QW plane, couples to the 1DEG
from the side.

To separate the 2DEG from the 1DEG, a prefabricated
tungsten gate electrode (e.g., gate A in Fig. 1) is used to
deplete the 2DEG from underneath it, leaving only the 1D
channel in this region along the edge. We refer to this
isolated 1D channel in front of the gate as the “wire.” The
width of the tungsten gate defines the length L of the wire.
The 2DEGs on both sides function as contacts. Increasing
the gate voltage beyond depletion of the 2DEG provides
a convenient tool to control the number of occupied 1D-
wire modes. In this geometry, the 1DEG is coupled to the
2DEG on either side of the wire for practically an infinite
length. Such extensive overlap seems to insure efficient
electron transfer. However, an electron that is transferred
from the 2DEG into the 1DEG far away from the entrance
to the wire might backscatter within the 1DEG or scatter
back into the 2DEG. Therefore, a combination of lB and the
2D-1D scattering length, l2D$1D , establishes an effective
contact length which affects the efficiency with which the
outgoing 1D states are filled by the 2DEG source. Such a
reduced contact emissivity gives rise to a larger contact
resistance which, in a two terminal (2T) measurement,
subtracts from the ideal quantized conductance value. To
elucidate whether such interplay between both scattering
processes accounts for the conduction deficit observed in
CEO wires requires a determination of these length scales,
which is the focus of our investigation.

Study of the 2D-1D scattering length requires a well-
defined, controllable geometry. This can be achieved by
splitting the top tungsten gate in two [gates A and B in
Fig. 1(a)], creating between the gates a section of control-
lable length, W , where a 2DEG strip interacts with the
1DEG. In such a geometry, electrons are injected from the
2DEG into the 1DEG in the source region and travel bal-
listically through the short wire in front of gate A. The
electrons then proceed into the 1DEG in the central tap re-
gion, where they interact with a floating 2DEG for a length
W before entering wire B and finally reaching the drain.
Such a geometry allows one to determine the length scale
over which the 2DEG reservoir couples efficiently to the
1DEG and a good contact is formed [1,3].

Transport data for such a device at a temperature of
u � 300 mK are shown in Fig. 2. The 2T conductance,
g1, through a �2 mm long wire A is shown by the dashed
line in this figure. Equivalent results are obtained for
wire B (not shown). For these measurements a single
gate (A or B) is activated. We observe clear conduc-
tance plateaus with a step height of g1 � 0.8g0, about 20%
smaller than the expected value g0. With both gates acti-
vated, we measure the overall conductance, g2, of both
wires plus the (floating) tap in series. Here, gate B is
used to establish a single 1D mode in wire B while the
voltage applied to gate A is scanned. The solid line in
the inset of Fig. 2 shows the result for a W � 10 mm
long tap. When both wires support a single mode we
find g2 � 0.4g0 � 1

2g1 (Fig. 2 inset, shaded area). This
indicates complete 1D momentum randomization in the
tap, leading to an Ohmic combination of the resistances
of the two wires in series. The same measurement with
a short tap, W � 2mm, leaves the overall conductance
nearly unaltered, g2 � 0.75g0 � 0.94g1 (Fig. 2, shaded
area). This clearly demonstrates ballistic 1D transport
through the 2 mm long tap. For an intermediate tap length
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FIG. 2. Two terminal conductances of the junction. Dashed
line: conductance, g1, of the 2 mm long wire A, plotted against
the voltage applied to gate A. Solid line: conductance, g2, of two
wires in series with a 2 mm long floating tap plotted versus the
voltage applied to gate A, while wire B sustains only one mode.
Dashed-dotted line: conductance, gt , from a 2 mm long tap into
both sides of the junction plotted versus the voltage applied to
gate A, while wire B sustains only one mode. The contributions
of the first three modes, dgi, are indicated. The experimental
setups used for the various measurements are sketched. Arrows
correspond to current flow direction, and points correspond to a
voltage measurement port. The shaded regions correspond to a
single mode in both wires A and B. A standard lock-in technique
with an excitation current smaller than 1 nA at a temperature,
u � 300 mK was used. Inset: g1 and g2 (same as main figure)
for a 10 mm long tap.
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of W � 6 mm we find g2 � 0.6g0 � 0.75g1 (not shown).
This value falls about halfway between the “Ohmic tap” re-
sult, 1

2g1, and the “no tap” value, g1.
The smaller value of g2 as compared to g1 is directly

related to backscattering in the 1D that is induced by the
tap. Seemingly, 1D backscattering might be modified by
the mere presence of the tap even without 2D-1D charge
transfer. However, e-e scattering that involves momen-
tum exchange without charge transfer cannot occur since
k2D

F , k1D
F [see Figs. 1(b) and 1(c)]. Further, k2D

F is too
small for efficient screening of the disorder potential by
the 2DEG at the wave vectors relevant for 1D backscatter-
ing. The backscattering length in a wire, lwire

B , is therefore
expected to be very similar to the backscattering length in
the 1DEG, l1DEG

B . Thus, the smaller value of g2 is directly
related to charge transmission across the 1D-2D interface,
or to the invasiveness of the tap [3]. Since this 2DEG is
floating, each electron that scatters from the 1DEG into
the 2DEG at the tap is replaced by an electron that scat-
ters in the reverse direction. This latter electron, however,
has an equal probability to scatter into either direction;
1k1D

F or 2k1D
F and the momentum of the original elec-

tron are completely lost on average. Thus, the longer the
tap is, the more invasive it is, and the more it induces 1D
momentum loss, leading to a smaller value of g2. Our
measurements thus determine a 2D-1D mean free path of
l2D$1D � 6 mm.

The 2D-1D scattering length establishes the quality of
the contacts and hence determines the 2T conductance g1.
A theoretical model [13] for a 1D wire placed between
2DEG contacts derives an expression for the 2T conduc-
tance g1 � g1�1 1 2l2D$1D�l1DEG

B �21�2 in terms of the
two length scales l1DEG

B and l2D$1D . Our measurements
determine directly l2D$1D , which was not possible in any
of the previous 2T measurements. Using l2D$1D � 6 mm
and the 1D backscattering length l1DEG

B � lwire
B � 20 mm

in such wires [13] and placing it in the above expression
yields g1 � �0.79 6 0.04�g0 for the 2T conductance [22].
The so-derived 2T conductance value is in excellent agree-
ment with our measured 2T conductance of g1 � 0.8g0.
Our result demonstrates that the origin of the nonuniver-
sal conductance in CEO wires is 2D-1D scattering in the
contact regions. This is the central finding of our mea-
surements. Beyond CEO wires, such considerations are
relevant for standard contact schemes, generally used for
one-dimensional molecules [23–26], where electrons are
envisioned to enter and leave the wire “all along the length”
of some evaporated contacts.

Our device allows us to perform three terminal (3T)
measurements on a wire by using the tap as a third ter-
minal. Thus far, such measurements, with a weakly in-
vasive third port, have not been possible in 1D systems.
As an example, we show the result of a particular 3T con-
figuration in Fig. 3. The current is driven from the cen-
ter tap and sunk solely at the drain, while the source is
1732
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FIG. 3. A three terminal conductance measurement. A current,
It , is driven from a 2 mm long tap to the drain while both
tap and source voltages (Vt and Vs, respectively) are measured.
Dashed-dotted line: It�Vt plotted against the voltage applied to
gate A while wire B sustains only one mode. The contributions
of the first three modes, dgi, are indicated. Solid line: three
terminal conductance, It�Vs, plotted against the voltage applied
to gate A. Dashed line: two terminal conductance, g1, of the
2 mm long wire A, plotted against the voltage applied to gate A.
The experimental setups used for the various measurements are
sketched. Arrows correspond to current flow direction, and
points correspond to a voltage measurement port. The shaded
region corresponds to a single mode in both wires A and B.

used as a voltage probe. We find the counterintuitive re-
sult of gtd,s � It�Vs � 1.49g0 � 2g2 (see Fig. 3), while
one would naively have expected g1. This result is a conse-
quence of the tap current flowing into both drain and source
wires. The source 2DEG reacts by increasing its elec-
trochemical potential to a value needed to send an equal
current in the opposite direction to satisfy the zero source
current condition.

In order to interpret our 3T linear response data, we
adopt the Landauer scattering approach [2–5], focusing
on a single 1D mode. Possible nonideal 2D-1D coupling
at the source and drain is modeled, as usual, by a reduced
contact emissivity, a. The finite length of the tap, W , leads
to a yet smaller tap emissivity: a T �W�, where T �W� is
the transmission probability from the tap 2DEG into either
direction in the first 1DEG mode. Assuming symmetric
coupling to both sides, the scattering matrix of the junction
depends on these two parameters alone, leading toΩ

Is � g0a�Vs 2 TVt� ,
It � g0aT �2Vt 2 Vs� .

The values of a and T are deduced from two inde-
pendent measurements. First, a is deduced from the
2T conductance of either wire; a � g1�g0 � 0.8. The
transmission T is measured by driving the current from
the tap into both the source and the drain and mea-
suring the tap conductance gt � It�V as shown by the
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dash-dotted line in Fig. 2. We find gt � 0.22g0, indicating
T � gt�2g1 � 0.14 for W � 2 mm. Without adjustable
parameters, we find excellent agreement between all
our 3T conductance measurements and this model. For
example, the expected overall conductance of both wires
in the series is g2 � a�1 2 T�2�g0 � 0.74g0, as com-
pared to the measured value of g2 � 0.75g0. Further-
more, the 3T measurement shown in Fig. 3 should
yield the same value as a 3T measurement performed
by driving the current from the source to the drain and
measuring the tap voltage. Both are related by an Onsager
symmetry in which current and voltage leads are inter-
changed. Indeed, we find gsd,t � 1.51g0 � gtd,s � 2g2
(not shown).

Finally, we address the multimode case. As can be seen
in Figs. 2 and 3, the contribution of the ith mode to the
overall tap conductance, dgi, is different for the different
modes. This indicates a different coupling between the
2DEG and the various 1DEG modes, as one might expect
in general. In order to derive the contribution of the various
modes to the overall 2T conductance one would need to de-
termine l1DEG

B and l2D$1D for each mode and also the scat-
tering length between modes, to which we have presently
no access. In general, one would expect these values to
vary, depending on the modes involved. This would lead to
a varying height of the 2T conductance steps as successive
modes are occupied. In contrast, the observed 2T conduc-
tance steps are of equal height and independent of mode
index to within 5%. In a simple model, only a fortuitous,
exact cancellation between the mode-to-mode variations in
l1DEG
B and l2D$1D could explain this result. This behavior

is surprising and points to unresolved physics in the trans-
port of multimode 1D wires. However, the simpler single
mode case has now been resolved and is understood quan-
titatively, as shown in the previous section.

In conclusion, we were able to study the coupling be-
tween a 2DEG and a 1D wire. Our measurements result
in a scattering mean free path of �6 mm. These results
show that the origin of the previously observed quantized
yet nonuniversal conductance is electron scattering across
the 2D-1D interface at the contacts. Beyond the well-
defined contact geometry of CEO wires, traditional evap-
orated metal contacts to one-dimensional molecules such
as carbon nanotubes, which are conjectured to inject and
remove electrons all along the contact length, may be sub-
ject to similar mechanisms.
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