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Abstract. In this paper, we develop a 2D and 3D segmentation pipelines for fully
automated cardiac MR image segmentation using Deep Convolutional Neural
Networks (CNN). Our models are trained end-to-end from scratch using the
ACD Challenge 2017 dataset comprising of 100 studies, each containing Cardiac
MR images in End Diastole and End Systole phase. We show that both our
segmentation models achieve near state-of-the-art performance scores in terms of
distance metrics and have convincing accuracy in terms of clinical parameters. A
comparative analysis is provided by introducing a novel dice loss function and its
combination with cross entropy loss. By exploring different network structures
and comprehensive experiments, we discuss several key insights to obtain optimal
model performance, which also is central to the theme of this challenge.

Keywords: Deep Learning, Medical Image Analysis, Computer Vision, MR Seg-
mentation

1 Introduction

MR imaging is an effective non-invasive procedure for diagnosis and treatment of known
or suspected Cardiac diseases. Cardiac MR images can produce highly detailed pictures
of different structures within the heart. Delineation of these structures can provide
relevant diagnostic information and evaluate the overall functioning of the heart. Seg-
mentation of left ventricle, right ventricle and the myocardium can be used to calculate
relevant diagnostics parameters such as ejection fraction and myocardial mass. Due to
massive volumes of cardiac image data, relying on manual delineations can be a time-
consuming process, often prone to error and rater variability. Hence there is a critical
need for accurate, reproducible and fully-automated methods for cardiac segmentation.

In recent works, Deep Learning and Convolutional Neural Networks (CNNs) have
shown tremendous progress in fully-automated segmentation tasks. The growing success
of CNNs in solving computer vision problems such as image recognition and classification
[1,2] can be attributed to its ability in learning a hierarchical representation of the input
data, without relying on hand-crafted features. Deep learning techniques for segmen-
tation have defined the state-of-the-art using Fully Convolutional Networks (FCN) [3].
The idea behind FCN is to use a contracting path to extract features at different spatial
scales followed by an expanding path to upsample and increase the spatial resolution of
learned features.

For segmentation in medical images, U-Net[6] is a well established 2D CNN archi-
tecture that builds upon the FCN. By adding skip connections between the contracting
and expanding paths, the U-Net model showed reasonable segmentation accuracy with
very few training samples. Cardiac segmentation based on original FCN have been pro-
posed [4] with modifications to make it faster and memory efficient [5]. As raw 3D MR
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Fig. 1. 2D Model Architecture.

volumes are fed slice-by-slice as inputs to these 2D CNN models, they fail to capture
the spatial contextual information required to segment the whole heart. To that end,
U-Net3D[7] extends the 2D U-Net model by replacing its 2D convolutional operations
with its 3D counterparts. In similar way, V-Net[8] employs a 3D CNN model with a
novel dice loss function showing convincing results in medical image segmentation. To
our best knowledge, there are very few methods that have applied 3D CNNs for Cardiac
Segmentation and have obtained satisfactory performance.

In our work, we develop a fully-automated 2D and 3D CNN models designed to
segment the Left Ventricle, Right Ventricle and Myocardium. This segmentation task
is part of the Automatic Cardiac Detection Challenge 2017 [9]. The 2D segmentation
model is trained slice-by-slice, whereas we compute volumetric segmentation for the 3D
model. Our models are easy to implement, have modular architecture, and relatively
short training and testing times. We introduce a new dice loss function, and compare
its performance with traditional cross entropy loss and combined cross entropy-dice
loss. Through our experiments we also compare and analyze the performance of our 2D
and 3D models, both which achieve near state-of-the-art accuracy scores in terms of
geometric metrics and clinical validity.

2 Method

2.1 Network Architecture

We develop a 2D segmentation model architecture that is adapted from U-Net [6]
as illustrated in Fig. 1. On left side is the “contracting” stage and on the right side
is“expanding” stage. At the bottom is a base layer. We provide an option to feed vary-
ing number (N) of image slices that can be passed as input channels to the model. Here,
N can be 1 for single image slice or more. Every step on the contracting path consists
of a series of a 3x3 convolutions (conv 3x3), batch normalization (bn) [10], rectified
linear unit (ReLU) and conv 3x3 in a sequence that forms a conv bn relu block. Two of
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Fig. 2. 3D Model Architecture.

conv bn relu blocks in succession forms a Conv block that doubles the number of feature
channels. The contracting path downsamples the image with a 2x2 maxpool operation
of stride 2. Similar to contracting stage, every step in expanding stage has a sequence
of conv 3x3, bn, ReLU and conv 3x3 in a series of two consecutive blocks. The images
are upsampled with a 2x2 up-convolution (upconv 2x2) with stride 2. For upsampling of
images, a sequence of 2x2 up-convolution (upconv 2x2) with stride 2, concatenations and
a Conv block forms a deconv block. A final 1x1 convolution layer maps the 32 feature
channels to 4 classes.

Our 3D model is an extension to our 2D model with few modifications, and finds
similarities with U-Net 3d [7]. First, we replace all 2D operations with its 3D counter-
parts. Second, due to memory constraints and less number of training examples we limit
the maximum number of feature maps to 256. Overall since the number of slices are
less across the dataset (9 avg.), we apply 3D 1x2x2 maxpooling operation only in X
and Y leaving out the Z dimension. This allows our 3D model to accept input volumes
of varying slices at training or inference stage. Similar to our 2D model, every step in
contracting and expanding stage consists of two repeating blocks, where each block is a
sequence of conv 3x3x3, bn, ReLU, conv 3x3x3. Due to symmetric nature of the model,
we can simultaneously add, remove or modify blocks across both paths. Additionally,
the size of input data and final outputs images remains the same for both our 2D and
3D models. Thus, we are able to maintain modularity for faster experimentation and
modification at the time of training and design. To prevent overfitting, we add dropout
layers [11] with probability values of 0.5 in the last and 0.3 in the second last layer of
the contracting stage, in both 2D and 3D models.

2.2 Dataset, Preprocessing and Augmentation

Our models are trained end-to-end from scratch using MICCAI’s ACD Challenge 2017
dataset. It contains 150 exams of fully-annotated cardiac MRI’s. Out of these 100 are
used for training phase and 50 for testing phase of this challenge. These exams are
obtained from multiple patients, each consisting of scans from End Diastole and End
Systole phase taken in short axis orientation.

Since the data acquisition can bring inconsistencies in dataset, its necessary to carry
preprocessing steps to ensure that the model receives uniform inputs. To remove noise
and enhance contrast, we use contrast limited adaptive histogram localization (CLAHE)
[12]. Then, we normalize the intensity values of all images between the range of 1-99
percentiles. Finally, we clip the image pixel values between 0 and 1.



To ensure both 2D and 3D model perceive heart features in similar proportion, we do
a resampling operation across all input volumes to a common voxel spacing of 1.5x1.5x10
mm. For 2D segmentation we resize and crop the images to fixed size of 256x256. Due
to maxpool operation applied only on height and width in our 3D segmentation model,
when testing the 3D model, we can feed it image volumes of varying number of slices.
At training, the 3D model is fed with raw input volumes that are resized and cropped
to 256x256x12.

We apply a light data augmentation techniques on-the-fly to efficiently feed the input
data volumes into our model. On a random basis, the data is rotated between -15 to +15
degree, and scaled between 0.9 - 1.1 range. This ensures slight robustness and variability
in training the network.

2.3 Training

We train the 2D segmentation model by feeding it raw input images slice-by-slice.
Whereas the 3D segmentation is trained by feeding it with entire 3D input volumes.
Both the 2D and 3D models are trained with different optimization functions described
more in detail in the following subsection.

During the training process, weights are updated using stochastic gradient descent
with a momentum of 0.99. The initial learning rate is decayed by a factor of 10 every 30
epochs. For the training phase of this challenge, we do a 5-fold cross validation, which
leaves 80 patients for training and 20 for validation. Training is completed after 300
epochs. Best models are checkpointed and stored for testing. For 2D segmentation we
use a batch size of 8, whereas for 3D segmentation we use a batch size of 4.

Our models are implemented entirely using the PyTorch [13] framework, due to
its flexibility in experimentation. We run all experiments on a standard workstation
equipped with 64 GB of memory, Intel(R) Core(TM) i7-6700K CPU clocking at 4.00GHz,
with a 12 GB NVidia Titan X Pascal GPU.

2.4 Optimization Function

In this section we describe three optimization functions that are used for training our
2D and 3D segmentation models. We use these functions to compare the performance
of 2D and 3D models. At training, we apply a pixel-wise softmax activation in the final
layer of the model to get the predicted probabilities p(x, i) for each class i at each pixel
x. The targets at location x is denoted by t(x).

Cross Entropy Loss In segmentation tasks, the standard practice is to apply cross
entropy loss function to measure the pixel-wise probability error between the predicted
output and target and sum the errors across all the pixels. In addition to this, we apply
weights to each class (wi for class i) to offset the imbalance of pixel frequency across
different classes. Concretely, the weighted cross entropy loss LCE is defined as,

LCE = −

∑

x

wt(x) log(p(x, t(x))) (1)

Dice Loss The Dice’s Coefficient is a metric to measure the similarity between two
given samples. Extending it as a loss function as shown in [8], improves the performance
when dealing with situations where background pixels are higher than the labels. Here,
we introduce a novel dice loss Ldice that is a logarithmic value of the dice score, making
it easier to optimize. Similar to weighted cross entropy, we use weights to offset the class
imbalance. Dice loss Ldice is weighted sum of dice losses li for each class i is given as,



Ldice =
∑

i

wili (2)

For class i, let’s denote its binary map by ti. i.e,

ti(x) =

{

1, if t(x) = i

0, otherwise
(3)

Then, dice loss for class i is given by,

li = log

(

2−

∑

x
ti(x)p(x, i) + ǫ

∑

x
ti(x) + p(x, i) + ǫ

)

(4)

Combined Dice Cross Entropy Loss While cross-entropy loss optimizes for pixel-
level accuracy, the Dice loss function enhances the segmentation quality. Combining
these two objective functions, we define a weighted average of cross entropy LCE and
dice loss function Ldice formulated as Cross Entropy-Dice Loss LCE + dice in Eqn 5.
Here, λCE and λdice are weight parameters for cross entropy loss and Dice loss function
respectively.

LCE + dice = λCE ∗ LCE + λdice ∗ Ldice (5)

3 Results

In this section we evaluate the performance of the proposed 2D and 3D segmentation
models in terms of geometric or distance metrics and clinical metric scores for all 100
studies provided in the training phase of ACDC 2017 contest. Table 1 and Table 2
presents the distance metric scores for our 2D model and 3D model respectively. For
distance metric, we utilize the Dice Score and the Hausdorff Distance to measure the ac-
curacy of segmented Left Ventricle (LV), Right Ventricle (RV) and Myocardium (MYO)
in both end diastole (ED) and end systole (ES) phase. For each model, we compare the
performance of the three optimization functions namely, the Cross Entropy Loss (CE
Loss), Dice Loss and Combined Cross Entropy-Dice Loss (Dice-CE Loss). We observe
that our proposed dice loss function outperforms CE Loss and CE-Dice Loss functions
across all metrics in both 3D and 2D models. The Hausdorff distances in 3D models is
observed to be much higher than 2D models, due to false positives as far-off speckles in
3D space. Illustration of results for both 2D and 3D models are provided in Fig. 3 and
Fig. 4. Overall, we achieve near equal distance metric scores when compared to [14].

For clinical metrics, we use Correlation Coefficient (CC), Bias and Limits of Agree-
ment (LOA). Our clinical metric results for 2D and 3D models are presented in Table
3 and 4 respectively. For both 2D and 3D models, the performance using cross-entropy
and dice-loss functions for LV and RV is fairly similar, however the difference in perfor-
mance is significant for MYO where dice-loss outperforms cross-entropy optimization.
While distance metric scores are fairly similar for both 2D and 3D model, in clinical
parameters we observe that the 3D model outperforms the 2D model.

Although accuracy scores are important when making clinical decisions, run-time
efficiency and memory usage of the algorithm are also crucial to apply it in real-world
applications. Our 2D model takes 2.9 hours to train using 4GB of GPU memory. At
testing, it takes 0.3s and 1.2GB GPU memory to generate a single output(whole phase).
Whereas our 3D model requires 2.6 hours for training and 4GB of GPU memory. At test
time, it can generate output within 0.3s using 2GB GPU memory. This shows that our
2D and 3D models are efficient to train, are light-weight and relatively easy to deploy
in clinical settings.



Table 1. 2D Segmentation: Distance Metric Results

Dice Score Hausdorff Distance
LV RV MYO LV RV MYO

ED ES ED ES ED ES ED ES ED ES ED ES

CE Loss 0.95 0.90 0.87 0.76 0.79 0.82 13.92 17.67 27.40 27.73 23.81 22.11

Dice Loss 0.95 0.90 0.90 0.79 0.86 0.88 9.51 12.29 16.1 20.38 13.45 14.88

Dice-CE Loss 0.95 0.90 0.89 0.81 0.83 0.84 9.15 11.7 16.0 18.22 13.87 15.35

Table 2. 3D Segmentation: Distance Metric Results

Dice Score Hausdorff Distance
LV RV MYO LV RV MYO

ED ES ED ES ED ES ED ES ED ES ED ES

CE Loss 0.94 0.89 0.86 0.73 0.76 0.81 12.36 14.41 25.85 29.57 43.47 43.82

Dice Loss 0.95 0.90 0.91 0.83 0.85 0.86 14.95 14.35 23.15 22.14 37.75 38.50

Dice-CE Loss 0.94 0.89 0.91 0.81 0.83 0.85 10.71 11.52 38.01 32.26 43.28 44.98

Table 3. 2D Segmentation: Clinical Metric Results

Ejection Fraction Myocardial Mass
LV RV MYO

CC Bias LOA CC Bias LOA CC Bias LOA

CE Loss 0.95 -0.74 -12.48,11.00 0.822 9.79 -10.89,30.47 0.93 -43.85 -92.12,4.42

Dice Loss 0.88 1.06 -18.10,20.22 0.822 9.35 -11.67,30.37 0.95 -6.32 -39.46,26.82

Dice-CE Loss 0.93 -0.46 -15.67,14.75 0.813 5.66 -16.59,27.91 0.94 -29.31 -68.20,9.58

Table 4. 3D Segmentation: Clinical Metric Results

Ejection Fraction Myocardial Mass
LV RV MYO

CC Bias LOA CC Bias LOA CC Bias LOA

CE Loss 0.975 1.04 -7.67,9.75 0.756 9.62 -15.11,34.35 0.922 -48.17 -97.51,1.17

Dice Loss 0.956 1.51 -10.09, 13.11 0.825 4.99 -17.17,27.15 0.958 3.77 -24.91,32.45

Dice-CE Loss 0.956 1.25 -10.37,12.87 0.867 6.19 -12.09,24.47 0.950 -10.08 -42.85,22.69

Fig. 3. Segmentation Results for 2D and 3D model. From Left to Right: Raw MR input
image slice, Corresponding ground truth annotation, output predictions from 2D segmentation
model and output predictions from 3D segmentation model.



Fig. 4. Segmentation Results for a full MR image (Complete Phase) from slices 0-8 . First
Row: Raw MR input images Second Row: Corresponding ground truth annotations. Third

Row: Output predictions from 2D segmentation model. Fourth Row: Output predictions
from 3D segmentation model.

4 Discussion

Model Structures Since 2D segmentation model is trained by splitting MR volumes
into slices, it lacks the spatial context across the 3D volume. This reduces the model’s
performance for slices at end of the phase, where the ratio of heart structure to back-
ground pixels is less. To solve this, we design our 2D model to accept a stack of image
slices as input channels where the output is predicted for the middle slice. Given this
design, we have 3 input options to pass as inputs: 1, 3 and 5. Among the three, we ob-
tain the best performance with 3-input slices and report the scores for it in our results
section.

Analyzing the 3D CNN segmentation model, we observe that the 3D model doesn’t
meet the expectations in performance improvement over 2D, given its ability to exploit
3D structure from input volumes. We see that Dice Score for RV in 3D is better 2D model
given the fact that it has complex shape and intensity inhomogeneities. Thus, predicting
RV using single slice is much more difficult compared to looking at complete 3D context.
Further improvements in performance can be brought about using post-processing tech-
niques. Due to the modularity of 3D model architecture, we were able to quickly explore
several designs and concepts. For example, we tried the recently introduced subpixel
CNN’s [15] that proposes using subpixel layers as opposed to transposed convolutions.
We executed this by replacing the deconv blocks in the expanding paths with a subpixel

block that comprises of a subpixel layer between two conv bn relu blocks. However, no
performance improvements were to be observed.

Data Augmentation At the initial stages of model design and training, we applied va-
riety of data augmentation techniques demonstrated in [8,7], to incorporate randomness
and robustness in the training the network. These include elastic deformations, random
intensity jitter and affine transformations that include rotation, shearing, translation
and flipping. Acquiring sub-par performances at testing, we found that applying heavy
augmentations might misrepresent the anatomical structure of the heart. Instead, we
opt to apply light data augmentations consisting of random rotations and scaling that
can naturally match the variability of taking MR scans in real-world settings. With this



modification, we observed a jump in performance scores for both 2D and 3D segmenta-
tion model.

Optimization Functions Using our Dice loss as objective function improves the per-
formance significantly for 2D and 3D models. As compared to pixel-level error optimiza-
tion, dice loss is more robust and better at capturing the spatial context over the entire
image. As shown in Table 1 and 2, the best dice scores are achieved by using dice loss
function.

5 Conclusion

This paper introduces a 2D and 3D convolutional neural network for fully-automated
cardiac MR segmentation. Our models have light-weight modular architecture, easy
implementation and run-time efficiency. Using multiple loss criterion, we compare and
analyze the performance of 2D and 3D model pipelines and show that both our models
achieve near state-of-the-art accuracy scores in terms of distance metrics. With con-
vincing performance in clinical accuracy metrics, we also prove our model’s viability
in real-world practical applications. Through our discussions, we derive several insights
that can be used for optimizing overall performance of these segmentation models. For
future work, we plan to utilize our segmentation models to learn and classify different
cardiac diseases.
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