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Abstract

Action recognition and human pose estimation are

closely related but both problems are generally handled

as distinct tasks in the literature. In this work, we pro-

pose a multitask framework for jointly 2D and 3D pose

estimation from still images and human action recogni-

tion from video sequences. We show that a single archi-

tecture can be used to solve the two problems in an effi-

cient way and still achieves state-of-the-art results. Ad-

ditionally, we demonstrate that optimization from end-to-

end leads to significantly higher accuracy than separated

learning. The proposed architecture can be trained with

data from different categories simultaneously in a seam-

lessly way. The reported results on four datasets (MPII,

Human3.6M, Penn Action and NTU) demonstrate the effec-

tiveness of our method on the targeted tasks.

1. Introduction

Human action recognition and pose estimation have re-

ceived an important attention in the last years, not only be-

cause of their many applications, such as video surveillance

and human-computer interfaces, but also because they are

still challenging tasks. Pose estimation and action recog-

nition are usually handled as distinct problems [14] or the

last is used as a prior for the first [57, 22]. Despite the fact

that pose is of extreme relevance for action recognition, to

the best of our knowledge, there is no method in the litera-

ture that solves both problems in a joint way to the benefit

of action recognition. In that direction, our work proposes

unique end-to-end trainable multitask framework to handle

2D and 3D human pose estimation and action recognition

jointly, as presented in Figure 1.

One of the major advantages of deep learning is its capa-

bility to perform end-to-end optimization. As suggested by

Kokkinos [24], this is all the more true for multitask prob-

lems, where related tasks can benefit from one another. Re-

cent methods based on deep convolutional neural networks

(CNNs) have achieved impressive results on both 2D and
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Figure 1. The proposed multitask approach for pose estimation

and action recognition. Our method provides 2D/3D pose esti-

mation from single images or frame sequences. Pose and visual

information are used to predict actions in a unified framework.

3D pose estimation tasks thanks to the rise of new architec-

tures and the availability of large amounts of data [33, 35].

Similarly, action recognition has recently been improved by

using deep neural networks relying on human pose [3]. We

believe both tasks have not yet been stitched together to

perform a beneficial joint optimization because most pose

estimation methods perform heat map prediction. These

detection based approaches require the non-differentiable

argmax function to recover the joint coordinates as a post

processing stage, which breaks the backpropagation chain

needed for end-to-end learning.

We propose to solve this problem by extending the dif-

ferentiable Soft-argmax [28, 58] for joint 2D and 3D pose

estimation. This allows us to stack action recognition on top

of pose estimation, resulting in a multitask framework train-

able from end-to-end. We present our contributions as fol-

lows: First, the proposed pose estimation method achieves
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state-of-the-art results on 3D pose estimation and the most

accurate results among regression methods for 2D pose es-

timation. Second, the proposed pose estimation method is

based on still images, so it benefits from images “in the

wild” for both 2D and 3D predictions. This have been

proven a very efficient way to learn visual features, which

is also very important for action recognition. Third, our

action recognition approach is based only on RGB images,

from which we extract pose and visual information. De-

spite that, we reached state-of-the-art results on both 2D

and 3D scenarios, even when compared with methods using

ground-truth poses. Fourth, the pose estimation method

can be trained with multiple types of datasets simultane-

ously, which makes it able to generalize 3D predictions

from 2D annotated data.

The rest of this paper is organized as follows. In sec-

tion 2 we present a review of the related work. The proposed

framework is presented in sections 3 and 4, respectively for

the regression method for pose estimation and human ac-

tion recognition. Our extensive experiments are shown in

section 5, followed by our conclusions in section 6.

2. Related work

In this section, we present some of the most relevant

methods to our work, which are divided into human pose

estimation and action recognition. Since an extensive lit-

erature review is prohibitive here due to the limited size

of the paper, we encourage the readers to refer to the sur-

veys in [43, 19] for respectively pose estimation and action

recognition.

2.1. Human pose estimation

2D pose estimation. The problem of human pose esti-

mation has been intensively studied in the last years, from

Pictorial Structures [2, 17, 37] to more recent CNN ap-

proaches [34, 25, 38, 20, 41, 54, 5, 51, 52, 36]. From the

literature, we can see that there are two distinct families of

methods for pose estimation: detection based and regres-

sion based methods. Detection based methods handle pose

estimation as a heat map prediction problem, where each

pixel in a heat map represents the detection score of a cor-

responding joint [7, 18]. Exploring the concepts of stacked

architectures, residual connections, and multiscale process-

ing, Newell et al. [33] proposed the Stacked Hourglass Net-

work, which improved scores on 2D pose estimation chal-

lenges significantly. Since then, methods in the state of the

art are proposing complex variations of the Stacked Hour-

glass architecture. For example, Chu et al. [16] proposed an

attention model based on conditional random field (CRF)

and Yang et al. [56] replaced the residual unit by a Pyramid

Residual Module (PRM). Generative Adversarial Networks

(GANs) have been used to improve the capacity of learning

structural information [13] as well as to refine the heat maps

by learning more plausible predictions [15],

However, detection approaches do not provide joint co-

ordinates directly. To recover the pose in (x, y) coordinates,

the argmax function is usually applied as a post-processing

step. On the other hand, regression based approaches use

a nonlinear function that maps the input directly to the de-

sired output, which can be the joint coordinates. Follow-

ing this paradigm, Toshev and Szegedy [52] proposed a

holistic solution based on cascade regression for body part

detection and Carreira et al. [9] proposed the Iterative Er-

ror Feedback. The limitation of regression methods is that

the regression function is frequently sub-optimal. In order

to tackle this weakness, the Soft-argmax function [28] has

been proposed to convert heat maps directly to joint coordi-

nates and consequently allow detection methods to be trans-

formed into regression methods. The main advantage of re-

gression methods over detection ones is that they often are

fully differentiable. This means that the output of the pose

estimation can be used in further processing and the whole

system can be fine-tuned.

3D pose estimation. Recently, deep architectures have

been used to learn precise 3D representations from RGB

images [60, 50, 30, 49, 31, 39], thanks to the availability of

high quality data [21], and are now able to surpass depth-

sensors [32]. Chen and Ramanan [11] divided the problem

of 3D pose estimation into two parts. First, they handle the

2D pose estimation considering the camera coordinates and

second, the estimated poses are matched to 3D representa-

tions by means of a nonparametric shape model. A bone

representation of the human pose was proposed to reduce

the data variance [47], however, such a structural transfor-

mation might effect negatively tasks that depend on the ex-

tremities of the human body, since the error is accumulated

as we go away from the root joint. Pavlakos et al. [35] pro-

posed the volumetric stacked hourglass architecture. How-

ever, the method suffers from the significant increase in the

number of parameters and in the required memory to store

all the gradients. In our approach, we also propose an in-

termediate volumetric representation for 3D poses, but we

use a much lower resolution than in [35] and still are able to

increase significantly the state-of-the-art results, since our

method is based on a continuous regression function.

2.2. Action recognition

2D action recognition. Action recognition from videos

is considered a difficult problem because it involves high

level abstraction, and furthermore the temporal dimension

is not easily handled. Previous approaches have explored

classical methods for features extraction [55, 23], where the

key idea is to use body joint locations to select visual fea-

tures in space and time. 3D convolutions have been stated

recently as the option that gives the highest classification
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scores [8, 10, 53], but they involve high number of parame-

ters, require an elevated amount of memory for training, and

cannot efficiently benefit from the abundant still images for

training. Action recognition is improved by attention mod-

els that focus on body parts [4] and two-stream networks

can be used to merge both RGB images and the costly opti-

cal flow maps [14].

Most 2D action recognition methods use the body joint

information only to extract localized visual features, as an

attention mechanism. The few methods that directly explore

the body joints do not generate it, therefore they are lim-

ited to datasets that provide skeletal data. Our approach re-

moves these limitations by performing pose estimation to-

gether with action recognition. As such, our model only

needs the input RGB frames while still performing discrim-

inative visual recognition guided by estimated body joints.

3D action recognition. Differently from video based ac-

tion recognition, 3D action recognition is mostly based on

skeleton data as the primary information [29, 40]. With re-

cently available depth sensors such as the Microsoft Kinect,

it is possible to capture 3D skeletal data without a complex

installation procedure frequently required for motion cap-

ture systems (MoCap). However, due to the use of infrared

projectors, these depth sensors are limited to indoor envi-

ronments. Moreover, they have a low range precision and

are not robust to occlusions, frequently resulting in noisy

skeletons.

To cope with noisy skeletons, Spatio-Temporal LSTM

networks have been widely used by applying a gating mech-

anism [26] to learn the reliability of skeleton sequences or

by using attention mechanisms [27, 46]. In addition to the

skeleton data, multimodal approaches can also benefit from

the visual cues [45]. In that direction, Baradel et al. [3]

proposed the Pose-conditioned Spatio-Temporal attention

mechanism by using the skeleton sequences for both spatial

and temporal attention mechanisms, while action classifi-

cation is based on pose and appearance features extracted

from patches on the hands.

Since our architecture predicts high precision 3D skele-

ton from the input RGB frames, we do not have to cope with

the noisy skeletons from Kinect. Moreover, we show in the

experiments that, despite being based on temporal convolu-

tion instead of the more common LSTM, our system is able

to reach state of the art performance on 3D action recogni-

tion.

3. Human pose estimation

Our approach for human pose estimation is a regression

method, similarly to [28, 47, 9]. We extended the Soft-

argmax function to handle 2D and 3D pose regression in

a unified way. The details of our approach are explained as

follows.

3.1. Regression­based approach

The human pose regression problem is defined by the

input RGB image I ∈ R
W×H×3, the output estimated pose

p̂ ∈ R
NJ×D with NJ body joints of dimension D, and a

regression function fr, as given by the following equation:

p̂ = fr(I, θr), (1)

where θr is a set of trainable parameters of function fr. The

objective is to optimize the parameters θr in order to mini-

mize the error between the estimated pose p̂ and the ground

truth pose p. In order to implement this function, we use

a deep CNN. As the pose estimation is the first part of our

multitask approach, the function fr has to be differentiable

in order to allow end-to-end optimization. This is made pos-

sible by the Soft-argmax, which is a differentiable alterna-

tive to the argmax function and can be used to convert heat

maps to (x, y) joint coordinates proposed in [28].

3.1.1 Network architecture

The network architecture has its entry flow based on

Inception-V4 [48] that is used to provide basic features ex-

traction. Then, similarly to what is found in [28], K predic-

tion blocks are used to refine estimations, from which we

use the last prediction p′

K as our estimated pose p̂. Each

prediction block is composed of eight residual depth-wise

convolutions separated into three different resolutions. As

a byproduct, we also have access to low-level visual fea-

tures and to the intermediate joint probability maps that are

indirectly learned thanks to the Soft-argmax layer. In our

method for action recognition, both visual features and joint

probability maps are used to produce appearance features,

as detailed in section 4.2. A graphical representation of the

pose regression network is shown in Figure 2.

Input image
Prediction

block K

Incep. V4

entry flow
Prediction

block 1

Soft-argmax

Visual features

Probability

maps

p'1
(pose loss)

p'K
(pose loss)

Figure 2. Human pose regression approach from a single RGB

frame. The input image is fed through a CNN composed by one

entry flow and K prediction blocks. Predictions are refined at each

prediction block.
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3.1.2 The Soft-argmax layer

An intuitive graphical explanation of the Soft-argmax layer

is shown in Figure 3. Given an input signal, the main idea is

to consider that the argument of the maximum µ can be ap-

proximated by the expectation of the input signal after being

normalized to have the properties of a distribution. Indeed,

for a sufficiently pointy (leptokurtic) distribution, the expec-

tation should be close to the maximum a posteriori (MAP)

estimation. The normalized exponential function (Softmax)

is used, since it alleviates the undesirable influences of val-

ues bellow the maximum and increases the “pointiness” of

the resulting distribution. For a 2D heat map as input, the

normalized signal can be interpreted as the probability map

of a joint being at position (x, y), and the expected value for

the joint position is given by the expectation on the normal-

ized signal:

Ψ(x) =

(

Wx
∑

c=0

Hx
∑

l=0

c

Wx

Φ(x)l,c,

Wx
∑

c=0

Hx
∑

l=0

l

Hx

Φ(x)l,c

)T

,

(2)

where x is the input heat map with dimension Wx×Hx and

Φ is the Softmax normalization function.

 

Input 2D signal

(heat map)

Probability

map

X-Y expectation

Softmax

×

× y

x∑

∑

Figure 3. Graphical representation of the Soft-argmax operation

for 2D input signals (heat maps). The outputs are the coordinates

x and y that approximates the maximum in the input signal.

3.1.3 Joint visibility

The probability of a certain joint being visible in the im-

age is computed by the Sigmoid function on the maximum

value in the corresponding input heat map. Considering a

pose layout with NJ joints, the joint visibility vector is rep-

resented by v ∈ R
NJ×1. Remark that the visibility infor-

mation is unrelated to the joint probability map, since the

latter always sums to one.

3.2. Unified 2D/3D pose estimation

We extended the 2D pose regression to 3D scenarios

by expanding 2D heat maps to volumetric representations.

We define Nd stacked 2D heat maps, corresponding to the

depth resolution. The prediction in (x, y) coordinates is per-

formed by applying the Soft-argmax operation on the aver-

aged heat maps, and the z component is regressed by apply-

ing a one-dimensional Soft-argmax on the volumetric repre-

sentation averaged in both x and y dimensions, as depicted

in Figure 4. The advantage of splitting the pose prediction

into two parts, (x, y) and z, is that we maintain the 2D heat

maps as a byproduct, which is useful for extracting appear-

ance features, as explained in section 4.2.

Average on Z

Average on X-Y

Volumetric

heat maps

Z
X

Y

2D Soft-argmax

1D Soft-argmax

(x,y)

(z)

Figure 4. Unified 2D/3D pose estimation by using volumetric heat

maps.

With the proposed unified approach, we can train the net-

work with mixed 2D and 3D data. For the first case, only the

gradients corresponding to (x, y) are backpropagated. As a

result, the network can be jointly trained with high precise

3D data from motion capture systems and very challenging

still images collected in outdoor environments, which are

usually manually annotated.

4. Human action recognition

One of the most important advantages in our proposed

method is the ability to integrate high level pose informa-

tion with low level visual features in a multitask framework.

This characteristic allows to share the network entry flow

for both pose estimation and visual features extraction. Ad-

ditionally, the visual features are trained using both action

sequences and still images captured “in the wild”, which

have been proven as a very efficient way to learn robust vi-

sual representations.

As shown on Figure 1, the proposed action recognition

approach is divided into two parts, one based on a sequence

of body joints coordinates, which we call pose-based recog-

nition, and the other based on a sequence of visual features,

which we call appearance-based recognition. The result

of each part is combined to estimate the final action label.

In this section, we give a detailed explanation about each

recognition branch, as well as how we extend single frame

pose estimation to extract temporal information from a se-

quence of frames.

4.1. Pose­based recognition

In order to explore the high level information encoded

with body joint positions, we convert a sequence of T poses

with NJ joints each into an image-like representation. We

choose to encode the temporal dimension as the vertical

axis, the joints as the horizontal axis, and the coordinates of

each point ((x, y) for 2D, (x, y, z) for 3D) as the channels.

With this approach, we can use classical 2D convolutions to
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extract patterns directly from a temporal sequence of body

joints. Since the pose estimation method is based on still

images, we use a time distributed abstraction to process a

video clip, which is a straightforward technique to handle

both single images and video sequences.

We propose a fully convolutional neural network to ex-

tract features from input poses and to produce action heat

maps as shown on Figure 5. The idea is that for ac-

tions depending only on few body joints, such as shak-

ing hands, fully-connected layers will require zeroing non-

related joints, which is a very difficult learning problem.

On the contrary, 2D convolutions enforce this sparse struc-

ture without manually choosing joints and are thus easier

to learn. Furthermore, different joints have very different

coordinates variations and a filter matching, e.g., hand pat-

terns will not respond to feet patterns equally. Such patterns

are then combined in subsequent layers in order to produce

more discriminative activations until we obtain action maps

with a depth equals to the number of actions.

To produce the output probability of each action for a

video clip, a pooling operation on the action maps has to

be performed. In order to be more sensitive to the strongest

responses for each action, we use the max plus min pooling

followed by a Softmax activation. Additionally, inspired by

the human pose regression method, we refine predictions

by using a stacked architecture with intermediate supervi-

sion in K prediction blocks. The action heat maps from

each prediction block are then re-injected into the next ac-

tion recognition block.
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Figure 5. Representation of the architecture for action recognition

from a sequence of T frames of NJ body joints. The z coordinates

are used for 3D action recognition only. The same architecture is

used for appearance-based recognition, except that the input are

the appearance features instead of body joints.

4.2. Appearance­based recognition

The appearance based part is similar to the pose based

part, with the difference that it relies on local appearance

features instead of joint coordinates. In order to extract

localized appearance features, we multiply the tensor of

visual features F t ∈ R
Wf×Hf×Nf obtained at the end

of the global entry flow by the probability maps M t ∈
R

Wf×Hf×NJ obtained at the end of the pose estimation

part, where Wf × Hf is the size of the feature maps,

Nf is the number of features, and NJ is the number of

joints. Instead of multiplying each value individually as in

the Kronecker product, we multiply each channel, result-

ing in a tensor of size R
Wf×Hf×NJ×Nf . Then, the spa-

cial dimensions are collapsed by a sum, resulting in the

appearance features for time t of size R
NJ×Nf . For a se-

quence of frames, we concatenate each appearance features

for t = {0, 1, . . . , T} resulting in the video clip appearance

features V ∈ R
T×NJ×Nf . To clarify the above appear-

ance features extraction process, a graphical representation

is shown on Figure 6.

Visual features

(Ft)

..
.

Probability

maps (Mt)

1

 
2

NJ

×

×

×

∑

∑

∑
joints

ti
m

e

Nf

Appearance

features (V)

Figure 6. Appearance features extraction from low level visual

features and body parts probability maps for a single frame. For

a sequence of T frames, the appearance features are stacked verti-

cally producing a tensor where each line corresponds to one input

frame.

The appearance features are fed into an action recogni-

tion network similar to the pose-based action recognition

block presented on Figure 5 with visual features replacing

the coordinates of the body joints.

We argue that our multitask framework has two benefits

for the appearance based part: First, it is very computation-

ally efficient since most part of the computations are shared.

Second, the extracted visual features are more robust since

they are trained simultaneously for different tasks and on

different datasets.

4.3. Action aggregation

Some actions are hard to be distinguished from others

only by the high level pose representation. For example, the

actions drink water and make a phone call are very similar

if we take into account only the body joints, but are easily

separated if we have the visual information corresponding

to the objects cup and phone. On the other hand, other ac-

tions are not directly related to visual information but with

body movements, like salute and touch chest, and in that

case the pose information can provide complementary in-

formation.

In order to explore the contribution from both pose

and appearance models, we combine the respective predic-

tions using a fully-connected layer with Softmax activation,

which gives the final prediction of our model.
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Figure 7. Predicted 3D poses from Human3.6M (top row) and MPII (bottom row) datasets.

5. Experiments

In this section we present the experimental evaluation of

our method in four different categories using four challeng-

ing datasets. We show the robustness and the flexibility of

our proposed multitask approach. The four categories are

divided into two problems: human pose estimation and ac-

tion recognition. For both cases, we evaluate our approach

on 2D and 3D scenarios.

5.1. Datasets

We evaluate our method on four different datasets: on

MPII [1] and on Human3.6M [21] for respectively 2D and

3D pose estimation, and on Penn Action [59] and NTU

RGB+D [44] for 2D and 3D action recognition, respec-

tively. The characteristics of each dataset are given as fol-

lows.

MPII Human Pose Dataset. The MPII dataset for single

person pose estimation is composed of about 25K images of

which 15K are training samples, 3K are validation samples

and 7K are testing samples (which labels are withheld by

the authors). The images are taken from YouTube videos

covering 410 different human activities and the poses are

manually annotated with up to 16 body joints.

Human3.6M. The Human3.6M [21] dataset is composed

by videos with 11 subjects performing 17 different activities

and 4 cameras with different points of view, resulting in

more than 3M frames. For each person, the dataset provides

32 body joints, from which only 17 are used to compute

scores.

Penn Action . The Penn Action dataset [59] is composed

by 2,326 videos in the wild with 15 different actions, among

those “baseball pitch”, “bench press”, “strum guitar”, etc.

The challenge on this dataset is that several body parts are

missing in many actions and the image scales are very dis-

parate from one sample to another.

NTU RGB+D. The NTU dataset is so far the biggest and

a very challenging datasets for 3D action recognition. It

is composed of more than 56K videos in Full HD of 60

actions performed by 40 different actors and recorded by 3

cameras in 17 different positioning setups, which results in

more than 4M video frames.

5.2. Implementation details

For the pose estimation task, we train the network using

the elastic net loss function on predicted poses as defined in

the equation bellow:

Lp =
1

NJ

NJ
∑

n=1

(

‖p̂n − pn‖1 + ‖p̂n − pn‖
2

2

)

, (3)

where p̂n and pn are respectively the estimated and the

ground truth positions of the nth joint. For training, we

crop bounding boxes centered on the target person by using

the ground truth annotations or the persons location, when

applicable. For the pose estimation task, on both MPII sin-

gle person and Human3.6M datasets it is allowed to use the

given persons location on evaluation. If a given body joint

falls outside the cropped bounding box on training, we set

the ground truth visibility flag to zero, otherwise we set it

to one. The ground truth visibility information is used to

supervise the predicted joint visibility vector v with the bi-

nary cross entropy loss. When evaluating the pose estima-

tion task we show the results for single-crop and multi-crop.

In the first case, one centered image is used for prediction,

and on the second case, multiple images are cropped with

small displacements and horizontal flips and the final pose

is the average prediction.

For the action recognition task, we train the network us-

ing the categorical cross entropy loss. On training, we ran-

domly select fixed-size clips with T frames from a video

sample. On test, we report results on single-clip or multi-

clip. In the first case, we crop a single clip in the middle

of the video. For the second case, we crop multiple clips

temporally spaced of T/2 frames from each other. The fi-

nal scores on multi-clip is computed by the average result

on all clips from one video. To estimate the bounding box

on test, we do an initial pose prediction using the full im-

ages from the first, middle, and last frames of a clip. Fi-

nally, we select the maximum bounding box that encloses
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Table 1. Comparison with previous work on Human3.6M evaluated on the averaged joint error (in millimeters) on reconstructed poses.
Methods Direction Discuss Eat Greet Phone Posing Purchase Sitting

Pavlakos et al. [35] 67.4 71.9 66.7 69.1 71.9 65.0 68.3 83.7

Mehta et al. [31]⋆ 52.5 63.8 55.4 62.3 71.8 52.6 72.2 86.2

Martinez et al. [30] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0

Sun et al. [47] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7

Ours (single-crop) 51.5 53.4 49.0 52.5 53.9 50.3 54.4 63.6

Ours (multi-crop + h.flip) 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5

Methods Sit Down Smoke Photo Wait Walk Walk Dog Walk Pair Average

Pavlakos et al. [35] 96.5 71.4 76.9 65.8 59.1 74.9 63.2 71.9

Mehta et al. [31]⋆ 120.0 66.0 79.8 63.9 48.9 76.8 53.7 68.6

Martinez et al. [30] 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9

Sun et al. [47] 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1

Ours (single-crop) 73.5 55.3 61.9 50.1 46.0 60.2 51.0 55.1

Ours (multi-crop + h.flip) 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2
⋆ Method not using ground-truth bounding boxes.

all the initially predicted poses. Detailed information about

the network layers and implementation are given in the sup-

plemental material.

5.3. Evaluation on pose estimation

2D pose estimation. We perform quantitative evalua-

tions of the 2D pose estimation using the probability of

correct keypoints measure with respect to the head size

(PCKh), as shown in Table 2. We are able to recover the

results of [28] which is consistent with the similarity be-

tween this method and the 2D pose estimation part of our

method. From the results we can see that the regression

method based on Soft-argmax achieves results very close to

the state of the art, specially when considered the accumu-

lated precision given by the area under the curve (AUC),

and by far the most accurate approach among fully differ-

entiable methods.

3D pose estimation. On Human3.6M, we evaluate the

proposed 3D pose regression method by measuring the

Table 2. Comparison results on MPII for single person 2D pose

estimation using the PCKh measure with respect to 0.2 and 0.5 of

the head size. For older results, please refer to the MPII Leader

Board at http://human-pose.mpi-inf.mpg.de.

Methods Year
PCKh

@0.2

AUC

@0.2

PCKh

@0.5

AUC

@0.5

Detection methods

Recurrent VGG [6] 2016 61.6 28.2 88.1 58.8

DeeperCut [20] 2016 64.0 31.7 88.5 60.8

Pose Machines [54] 2016 64.8 33.0 88.5 61.4

Heatmap regression [7] 2016 61.8 28.5 89.7 59.6

Stacked Hourglass [33] 2016 66.5 33.4 90.9 62.9

Fractal NN [34] 2017 – – 91.2 63.6

Multi-Context Att. [16] 2017 67.8 34.1 91.5 63.8

Self Adversarial [15] 2017 68.0 34.0 91.8 63.9

Adversarial PoseNet[12] 2017 – – 91.9 61.6

Pyramid Res. Module[56] 2017 – – 92.0 64.2

Regression methods

LCR-Net [42] 2017 – – 74.2 –

Iter. Error Feedback [9] 2016 46.8 20.6 81.3 49.1

Compositional Reg.[47] 2017 – – 86.4 –

2D Soft-argmax 67.7 34.9 91.2 63.9

mean per joint position error (MPJPE), which is the most

challenging and the most common metric for this dataset.

We followed the common evaluation protocol [47, 35, 31,

11] by taking five subjects for training (S1, S5, S6, S7,

S8) and evaluating on two subjects (S9, S11) on one ev-

ery 64 frames. For training, we use the data equally bal-

anced as 50%/50% from MPII and Human3.6M. For the

multi-crop predictions we use five cropped regions and their

corresponding flipped images. Our results compared to the

previous approaches are presented in Table 1 and show that

our approach is able to outperform the state of the art by a

fair margin. Qualitative results from our method are shown

in Figure 7, for both Human3.6M and MPII datasets, which

also demonstrate the capability of our method to general-

ize 3D pose predictions from data with only 2D annotated

poses.

5.4. Evaluation on action recognition

2D action recognition. We evaluate our action recogni-

tion approach on 2D scenario on the Penn Action dataset.

For training the pose estimation part, we use mixed data

from MPII (75%) and Penn Action (25%), using 16 body

joints. The action recognition part was trained using video

clips composed of T = 16 frames. We reached state of the

art classification score among methods using RGB and esti-

mated poses. We also evaluated our method without consid-

ering the influence of estimated poses by using the manually

annotated body joints and are also able to improve over the

state of the art. Results are shown in Table 3.

3D action recognition. Since skeletal data from NTU

is frequently noisy, we train the pose estimation part with

only 10% of data from NTU, 45% from MPII, and 45%

from Human3.6M, using 20 body joints and video clips of

T = 20 frames. Our method improves the state of the art on

NTU significantly using only RGB frames and 3D predicted

poses, as reported in Table 4. If we consider only RGB

frames as input, our method improves over [3] by 9.9%.

To the best of our knowledge, all the previous methods use
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Table 3. Comparison results on Penn Action for 2D action recogni-

tion. Results given as the percentage of correctly classified actions.

Methods
Annot.

poses
RGB

Optical

Flow

Estimated

poses
Acc.

Nie et al. [55] - X - X 85.5

Iqbal et al. [22]
- - - X 79.0

- X X X 92.9

Cao et al. [8]
X X - - 98.1

- X - X 95.3

Ours
X X - - 98.6

- X - X⋆ 97.4
⋆ Using mixed data from PennAction and MPII.

Table 4. Comparison results on the NTU for 3D action recognition.

Results given as the percentage of correctly classified actions

Methods
Kinect

poses
RGB

Estimated

poses

Acc. cross

subject

Shahroudy et al. [44] X - - 62.9

Liu et al. [26] X - - 69.2

Song et al. [46] X - - 73.4

Liu et al. [27] X - - 74.4

Shahroudy et al. [45] X X - 74.9

Baradel et al. [3]

X - - 77.1
⋆ X - 75.6

X X - 84.8

Ours
- X - 84.6

- X X 85.5
⋆ GT poses were used on test to select visual features.

provided poses given by Kinect-v2, which are known to be

very noisy in some cases. Although we do not use LSTM

like other methods, the temporal information is well taken

into account using convolution. Our results suggest this ap-

proach is sufficient for small video clips as found in NTU.

Ablation study. We performed varied experiments on

NTU to show the contributions of each component of our

methods. As can be seen on Table 5, our estimated poses in-

crease the accuracy by 2.9% over Kinect poses. Moreover,

the full optimization also improves by 3.3%, which justify

the importance of a fully differentiable approach. And fi-

nally, by averaging results from multiple video clips we gain

1.1% more. We also compared the proposed approach of

sequential learning followed by fine tuning (Table 3) with

joint learning pose and action on PennAction, what result

in 97.3%, only 0.1% lower than in the previews case.

The effectiveness of our method relies on three main

characteristics: First, the multiple prediction blocks pro-

vide a continuous improvement on action accuracy, as can

be seen on Figure 8. Second, thanks to our fully differen-

tiable architecture, we can fine tune the model from RGB

frames to predicted actions, which brings a significant gain

in accuracy. And third, as shown on Figure 9, the proposed

approach also benefits from complementary appearance and

pose information which lead to better classification accu-

racy once aggregated.

Table 5. Results of our method on NTU considering different ap-

proaches. FT: Fine tuning, MC: Multi-clip.

Experiments Pose
Appearance

(RGB)
Aggregation

Kinect poses 63.3 76.4 78.2

Estimated poses 64.5 80.1 81.1

Est. poses + FT 71.7 83.2 84.4

Est. poses + FT + MC 74.3 84.6 85.5
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Figure 8. Action recognition accuracy on NTU from pose and

appearance models in four prediction blocks, and with aggregated

features, for both separated training and full network optimization

(fine tuning).
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Figure 9. Action recognition accuracy on NTU for different ac-

tion types from pose, and appearance models and with aggregated

results.

6. Conclusions

In this paper, we presented a multitask deep architecture

to perform 2D and 3D pose estimation jointly with action

recognition. Our model first predicts the 2D and 3D loca-

tion of body joints from the raw RGB frames. These loca-

tions are then used to predict the action performed in the

video in two different ways: using semantic information

by leveraging the temporal evolution of body joint coor-

dinates and using visual information by performing an at-

tention based pooling on human body parts. Heavy shar-

ing of weights and features in our model allows us to solve

four different tasks - 2D pose estimation, 3D pose estima-

tion, 2D action recognition, 3D action recognition - with

a single model very efficiently compared to dedicated ap-

proaches. We performed extensive experiments that show

our approach is able to equal or even outperform dedicated

approaches on all these tasks.
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