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Abstract

In many vision problems, rotation-invariant analysis is

necessary or preferred. Popular solutions are mainly based

on pose normalization or brute-force learning, neglecting

the intrinsic properties of rotations. In this paper, we

present a rotation invariant detection approach built on

the equivariant filter framework, with a new model for

learning the filtering behavior. The special properties of

the harmonic basis, which is related to the irreducible

representation of the rotation group, directly guarantees

rotation invariance of the whole approach. The proposed

kernel weighted mapping ensures high learning capability

while respecting the invariance constraint. We demonstrate

its performance on 2D object detection with in-plane rota-

tions, and a 3D application on rotation-invariant landmark

detection in microscopic volumetric data.

1. Introduction

Rotation invariance is useful when objects of the same

class can appear in different poses. Common solutions in

computer vision are based on either pose normalization (e.g.

SIFT[11]) or learning (e.g. Random Ferns [12], Structured

SVM [18]). The reliability of orientation assignment is

always a concern for pose normalization [3], and it becomes

even more critical in 3D [1]. The learning based methods

just absorb the complexity into the classification problem,

which works well in case of a restricted set of possible

rotations but is inefficient otherwise. Especially when

going from 2D to 3D, sampling all possible rotations

becomes unattractive. While sampling one object under 2D

rotations in 10-degree steps leads to 36 samples, it leads to

approximately 15000 samples for full 3D rotations, as three

angles are required to determine a 3D pose.

In this paper, we show that a powerful tool can be created

by combining filters based on the 2D/3D harmonic basis

Figure 1. Overview of the presented approach. The bottom

graph illustrates the work-flow on a single patch, which finally

contributes a steered voting for the object center (assuming jmax =
3). ⊙: projection of the local patch on the basis functions, which

creates the local feature vector f (Sec. 3.2). I makes rotation-

invariant features from f (Sec. 4.1). w̃: the local model given by

the kernel weighted mapping (Sec. 4.2). αj={1,2,3}: the voting

coefficients which weight and steer the voting basis uj={1,2,3}(x)
into the final voting pattern v(x) (Sec. 3.3).

with a kernel weighted model. In the presented approach,

the complexity caused by the rotations is absorbed by taking

advantage of the property of the harmonic basis, which

is related to the irreducible representation of rotations

in the group representation theory [10]. The proposed

kernel weighted model assembles the filters built with the

harmonic basis in a flexible way.

Our basic framework follows the equivariant filter [14],

which uses two layers of filtering: one layer for description
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and one layer for voting. A trainable mapping can be

applied to the output of the description filters to create the

coefficients which then drive the voting filters. Rotation

invariance is ensured by the construction of the coefficients.

Fig. 1 shows an overview of the presented approach. Our

work focuses on the mapping part, which essentially de-

cides on the filtering behavior and the performance of the

whole approach.

The main contribution of this paper is to introduce

a kernel weighted model for the feature mapping in the

equivariant filters. By using the raw features and rotation-

invariant features together, we find a sound solution for con-

structing a nonlinear mapping under the rotation-invariant

constraint. The new model provides a simple and reliable

learning mechanism for the filter framework, thus signifi-

cantly improves its performance on challenging tasks.

The issue of rotation exists both in 2D and 3D and both

settings share many properties. The presented approach can

be applied to both of them. Since the 2D case is more

intuitive and easier to understand we base our explanation

mainly on the 2D case, but the generalization from 2D to

3D is quite straightforward. The 1D angular basis on the

unit circle just needs to be replaced by a spherical basis on

the unit sphere.

2. Related work

In this paper, the key element to achieve rotation in-

variance is the 2D/3D harmonic basis [21] with its self-

steerability [2, 5]. A 2D equivariant filter, the holomorphic

filter, was first proposed for low-level vision tasks in [14],

using group integration [15] as a constructing tool. Then

the harmonic basis in spherical coordinates helps to extend

this tool to 3D problems as an efficient feature detector [13].

While the feature design and rotation properties have been

analyzed in depth, those equivariant filters base their non-

linear behavior on feature coupling, which in fact is just a

linear model on coupled features. More challenging tasks

demand a more flexible model for the mapping part, which

is the main motivation behind this work.

The detection problem is a topic covered by intensive re-

search in computer vision field. Our basic filter framework

can be related to the generalized Hough transform [9]. It can

also be considered as a two-layer convolutional network [8],

in which the architecture and filters are specially designed

for the rotation invariance.

The 2D categorical object detection with in-plane rota-

tions is a possible application of our approach, but we focus

more on the landmark detection in microscopic volumetric

data. Our high-level application is similar to the work

presented in [7], but in a more challenging 3D setting,

where the recorded objects have undetermined poses and

large deformations. The landmark detection hence becomes

a key element in the whole pipeline, for providing reliable

Figure 2. Complex Gaussian derivatives, which has the Fourier

basis as the angular part (only showing the real part).

point correspondences and a high-quality initialization for

the elastic registration.

3. Equivariant filter revisited

In this section, we will use the property of Fourier basis

and a voting scheme to derive the equivariant filters.

3.1. Invariance and equivariance

In detection tasks, the rotation invariance is defined w.r.t.

to the object coordinate system. In the image coordinate

system, we can abstract the detection process as a transform

H on the input image I . When a rotation g acts on the

image, the detection behavior we actually need is H(gI) =
gH(I)1, i.e., the output of the transform rotates together

with the input image. This relative invariance is called

equivariance [14].

3.2. Fourier basis and self­steerability

To investigate a function under a rotation, without loss

of generality, the origin can always be defined at the

rotation center. For analyzing 2D functions, the ideal

basis should take a separable form Ψ(r, ϕ) = R(r)Φ(ϕ),
where (r, ϕ) are polar coordinates. In practice, while

the radial part R(r) can be defined in many ways, the

optimal choice for the angular part is the Fourier basis

Φm(ϕ) = 1√
2π

eimϕ, where m is an integer [21]. It is

optimal because it can be steered by a factor e−imβg , as

Φm(ϕ − βg) = e−imβgΦm(ϕ), and the functions like

eimβ give the irreducible representations of the 2D rotation

group, in the group representation theory [10]. These

Fourier basis functions form harmonics on the circle.

With an arbitrary radial profile R(r), a basis function

like u = R(r)eimϕ has the property as u(r, ϕ − β) =
e−imβu(r, ϕ). This property is called self-steerability [5],

as the function itself can be steered to any orientation by

a simple multiplication. Considering the filtering (convo-

lution) with such a function, H(I) = u ∗ I , on a rotated

image, we have

H(I(r, ϕ− β)) = eimβ [H(I)](r, ϕ− β) . (1)

We call the output function H(I) covariant w.r.t. the image

rotations, and refer to m as the rotation order for both

1The rotation action g means “rotating the field while keeping its

physical meaning”. This is trivial for scalar fields like images, but not

for high-order fields, e.g. the gradient field d(x) transforms as [gd](x) =
Ug d(Ug

Tx), where Ug is the rotation matrix in Cartesian coordinates.



H(I) and u. The rotation order of the filter output can be

manipulated by either multiplications or convolutions, e.g.

if Hj and Hk come from the filters in the form of R(r)eimϕ,

the rotation orders of Hk(Hj(I)) and Hk(I)Hj(I) are both

mj + mk. Then it is easy to find out that the condition to

fulfill equivariance in such a compound filter is mj +mk =
0.

As an example, the basis functions used in the holo-

morphic filter [14] are the complex Gaussian derivatives

(shown in Fig.2). They can be efficiently computed with

finite differences.

3.3. Dense equivariant voting

For the detection task, we consider a voting process from

a dense feature map F : R2→ C
dmax ;x 7→ f (where dmax

indicates the feature dimension), as

S(x) =

∫
R2

v(x− y|F(y))dy , (2)

where S is the detection score, and the voting pattern v(x|f)
represents the vote to the relative position x given the local

feature f . To make the voting pattern easy to learn, it is

parameterized as a linear combination of basis functions,

with feature dependency, as v(x|f) =
∑jmax

j=1 Aj(f)uj(x).

Aj : C
dmax→C; f 7→ αj is the feature mapping to learn. See

the illustration in Fig.1. Inserting Aj into Eq.(2), we get

S(x) =

∫
R2

∑
j

Aj(F(y))uj(x− y)dy =
∑
j

Ãj ∗ uj ,

(3)

where Ãj : R2→ C is introduced by Ãj(x) = Aj(F(x)).
Thus, after the basis is selected, the voting behavior is

completely decided by the mappings Aj={1,...,jmax}.

To achieve the equivariance, we make use of the covari-

ant features from Sec.3.2, which are computed by the self-

steerable basis with small support range, and use similar

basis functions with larger support as uj . Then with a

proper model for Aj , we can manipulate the rotation order

of each term in Eq.(3), by the method explained in Sec.3.2.

When the local features are also created by linear filters,

we must create some nonlinearity by the feature mapping,

otherwise the whole approach will collapse into a single

linear filter. In [14], Aj is a weighted sum of coupled

features, namely Aj(f) =
∑

mj+mk+ml=0 γjkl(flfk),

where {mj ;mk,ml} indicate the rotation orders for the

voting basis function uj and the features. The coefficients γ

are the parameters to learn. The summing-to-zero constraint

guarantees the equivariance, but this model has limited

capacity to approximate the optimal nonlinear mapping.

3.4. From 2D to 3D

The analogous tools for the 3D analysis in the spherical

coordinates (r, θ, ϕ) are not as well-known as their 2D

counterparts. First of all, we need the harmonic basis de-

fined on the spheres, which is called Spherical Harmonics.

It is intuitive to consider them as vector-valued functions

Yℓ : S2 →C
2ℓ+1. Accordingly, the steering factors (the

counterpart of eimϕ) become matrices, called Wigner-D

matrices [16], which give the irreducible representation of

3D rotations. They are (2ℓ+1)× (2ℓ+1) unitary matrices,

for the ℓth order. For the convenience of analysis under 3D

rotations, the spherical tensor algebra was developed [16,

13]. Note this tensor concept is not special for the 3D case,

as the Fourier analysis in the polar coordinate is also related

to the 2D tensors [17]. To be specific, instead of scalar

values, in 3D we have fd ∈ C
2ℓd+1, αj ∈ C

2ℓj+1 and

uj : R3→C
2ℓj+1. They are all spherical tensors of certain

rotation orders (ℓd, ℓj). Analogously, the equivariance is

achieved by making the filter output to be a zero-order

tensor (scalar) field.

Similar to the complex Gaussian derivatives in the 2D

case, there exists a convenient basis from the spherical

derivatives of a 3D Gaussian, with Spherical Harmonics as

its angular part. This is the only tool we actually need in

the computation. For more details, we refer the readers to

[13, 16].

4. Modeling the feature mapping

The variation among objects demands nonlinearity in

the detection process. In those popular nonlinear models,

like the kernel SVM or the codebook in Hough voting,

a similarity measure (kernel) is required in the modeling

process. However, in the equivariant filter framework,

we need to make sure that the similarity measure respects

the equivariance. For example, applying the common

Euclidean distance ||f − f ′||2 on two covariant feature

vectors will cause trouble, because we have no simple way

to describe the change of the distance when one patch

rotates with respect to another.

4.1. Rotation­invariant kernel

A simple solution to this problem is to compute rotation-

invariant features from the features we have, and then to

perform the comparison between them. Consider a kernel

function

KI(f , f
′) = K(I(f), I(f ′)) , (4)

where I is an operator to create a rotation-invariant feature

vector from given covariant features, K can be any standard

kernel (e.g. a RBF kernel). As explained in Sec.3.2, from a

group of covariant features, we can get rotation invariant

features by coupling two features like fifj , when fi and fj
have the same rotation orders. Note, coupling a feature with

itself is equivalent to taking the magnitude of this feature.

Similar techniques exist for 3D [21]. The kernel defined in



Figure 3. Detecting motorbike. Top row: the raw image and the

computed local covariant features (real part of 4 features). Bottom

row: The voting pattern contributed from the red/green patch and

final detection output (created by Filter I in Sec.5.1).

Eq.(4) is rotation-invariant, so it is totally safe to use it as a

similarity measure in the equivariant filters.

4.2. Kernel weighted mapping

We can easily have a nonlinear model for Aj(f) with a

suitable KI . However, to get the rotation-invariant feature

and similarity measure, we have lost a lot of information,

including the orientation of the patches. If we model Aj(f)
without the orientation information, the voting will not be

able to have any orientation selectivity.

An effective model for Aj(f) can be created by using

the rotation-invariant feature and covariant feature together.

Aj should change smoothly w.r.t. the feature, thus a linear

model can approximate the optimal mapping well in a local

region in the feature space. Thus, we model Aj(f) as an

interpolation among liner models

Aj(f) = [

∑
k KI(fk, f)wjk∑

k KI(fk, f)
]Tf , (5)

where T indicates a transpose, fk={1,...,kmax} is a set of points

distributed in the feature space, wjk ∈ R
dmax is the local

linear model at fk, which are the parameters to estimate.2

The kernel is now defined as KI(fk, f) = K(I(fk), I(f)),

where K(p,q) = e−||p−q||2/2h2

. Eq.(5) creates a inter-

polated linear model for each f . By defining K̃k(x) =
KI(fk,F(x))∑
k′ KI(fk′ ,F(x)) , the interpolated model for the feature

vector at x can be written as W̃j(x) =
∑

k K̃k(x)wjk.

Inserting this into Eq.(3), we have the complete model for

the proposed approach

S(x) =
∑
j

(W̃j
TF) ∗ uj =

∑
j

(
∑
k

K̃kwjk
TF) ∗ uj .

(6)

2We can use wjk ∈ Cdmax in 2D problems. This benefits the feature

mapping with an extra steering effect, encoded in the complex phase of

wjk . However, in 3D we can not get the same benefit in such an easy way.

As shown in Fig.1, for each position, kernel weighted mod-

els are constructed based on the generated rotation-invariant

features, and then applied on the raw covariant features to

get the voting coefficients αj . While the localization (in the

feature space) is actually done by considering the rotation-

invariant features, the covariant features still directly drive

the voting basis through the constructed models. Thus the

local orientation information is used to steer the voting

pattern. Note, wjk is sparse, because we need to force its

dth element wjkd ≡ 0 when the rotation orders mj +md 6=
0, for the equivariance.

Equation (6) can be reformulated as

S =
∑
j,k,d

mj+md=0

wjkd((K̃kFd) ∗ uj) . (7)

With preselected fk, the terms (K̃kFd)∗uj can be computed.

So the final optimization problem can be easily solved by

minW

∫
L(y(x), S(x|W))dx , (8)

where W denotes all parameters wjkd, y(x) is the ground-

truth output (which is usually a binary image for detection

problem), and L is a suitable loss function. The nonlinearity

in this model is based on the localization in the feature

space, all the other parts are pure linear. Thus the model

enjoys the high reliability from the linear optimization. The

implementation of the approach is simple. We show the

training procedure in Algorithm 1. For detection we just

reorder the computations into a much faster way (Fig.1),

like reformulating Eq.(7) to Eq.(6) .

The remaining problem is how to select fk and the kernel

bandwidth. Because we actually apply the localization in

the space of I(f), we only need to select f̂k = I(fk).

Although it is possible to optimize the position of f̂k with

adaptive bandwidths, we use a simple k-means clustering

on training data to find kmax cluster centers as f̂k, and

empirically set the kernel bandwidth h to be the half of the

median value of all the nearest neighbor distances among

f̂k. In the experiments, we set kmax ≤ 50 for a fast and

reliable training.

Although the model is developed to meet some special

requirements, it has support from standard learning ap-

proaches. The idea using a kernel to localize the model

estimation is similar to the local linear regression method

in statistical learning [4]. Learning a nonlinear mapping by

relating features to cluster centers is similar to the codebook

methods, especially the super vector coding [23].

5. Experiments

We demonstrate our approach in both 2D and 3D, to

show that the proposed kernel weighted mapping brings a



Algorithm 1 Training Algorithm

Input: image I , target output y (∗)

Output: selected f̂k, parameter wjkd

1: compute covariant features F(x) and I(F(x))

2: use clustering to select f̂k

3: compute weight K̃k(x) =
KI(fk,F(x))∑
k′ KI(fk′ ,F(x))

4: for each covariant feature fd do

5: for each k do

6: for each voting basis uj with mj = −md do

7: voting term vjkd = (K̃kFd) ∗ uj

8: end for

9: end for

10: end for

11: solve minwjkd

∫
‖wjkdvjkd(x)− y(x)‖2dx

(∗) Assume only one training image for simplicity.

large improvement over the equivariant filters in the litera-

ture, and get competitive or better performance comparing

to some other state-of-the-art rotation-invariant methods.

The 2D experiment is also designed to show the flexible

usage of our approach and the combination with HOG

feature. The 3D experiment shows the real application for

which our approach is developed.

5.1. 2D rotation­invariant detection

A Freestyle Motocross dataset has been collected by

Villamizar et al. [19]. They use Random Ferns classifiers

in a two-step approach, with an estimation stage and a

classification stage. There are two image sets, one without

rotations (69 images) and one with rotations (100 images).

Implementation Instead of simple steerable filters,

we use a HOG based covariant description for the natural

images. Its design is also based on the polar Fourier analy-

sis. A histogram of gradient orientations can be considered

as a function of the angle, so we can use Fourier series

to represent it. From the HOG represented on the Fourier

basis, we construct a HOG based descriptor, which compute

local covariant features containing the information similar

to a 4×4 HOG window. See the supplementary material for

the implementation detail. From this descriptor, we get 28-

dimensional covariant features (with rotation order lower

than 5). By taking the magnitude and simple couplings, we

create 56-dimensional rotation-invariant features from the

covariant ones. Except for this, we implement the approach

as explained above. The complex-valued parameters wjk

are optimized by a simple least-square-error method. Only

7 complex Gaussian derivatives are used as the voting basis

(shown in Fig.2). Fig.3 shows an example for the detection

process. With this simple basis we can not synthesize

a sharp voting pattern, but it already produces satisfying

result.
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Figure 4. The performance of Filter II trained on Set A/B with

30-degree error margin for pose estimation, compared to the

performance (after steered classification) reported in [19]

We create a training set A by taking the first 40 images

from the first dataset (without rotations), and a training

set B containing the first 40 images from the second

dataset (with rotations). The test is done on the remaining

60 images from the second dataset. By using the two

training sets separately (and no artificial rotations), we can

show that, our approach is totally pose-independent in the

training/detection procedure. Two filters are constructed:

Filter I is trained by setting the target output y(x) to a binary

image with y(c) = 1, where c is the object center. Filter II

is trained to predict object position and pose simultaneously,

by setting y(c) = eiφ, where (c, φi) is the center and pose

angle of the object (all φi = 0 in Set A). Accordingly, we

need to make the filter output to rotate like a vector field,

i.e. gS = eiβgS(r, ϕ − βg), by using a different constraint

for wjk in Eq.(6): wjkd ≡ 0 when mj +md 6= 1. For the

number of f̂k, we report all the results with k = 50. Larger

numbers do not further increase the performance, perhaps

because the bottleneck shifts to other parts of the approach.

Experimental result To separate the position and

pose, the objects are considered as circles. The diameter

is set to the mean value of the object width and height.

We use the overlap > 0.5 union criteria for position.

Filter I produces the response in the real part of its

output. It gets 91/90% EER (with no pose estimation)

when trained on Set A/B separately. Filter II produces

the detection response in the magnitude, while the phase

angle indicates the estimated pose of the motorbike. It

gets 89/92% EER (with a 30-degree error margin on

pose estimation) when trained on Set A/B separately. In

our straight implementation in Matlab, it takes about 2

seconds for the multi-scale detection at 10 scales on a

desktop computer, while 85% of the time is used for feature

computation. The precision-recall curves of Filter II are

shown in Fig.4. Comparing to [19], their best result is

91/93% EER with 15/30-degree margin. However, these

are the results after evaluating steered classifiers on a large

group of candidates. In contrast, we get all the estimation

in one step, and the performance is already comparable. To



Figure 5. Detection result of Filter II-B. Detections/ground-truth

are drawn in green/red. Orientations are indicated by the bars from

circle center.

compare our approach to the holomorphic filter [14], we

use 350 dimensional coupled covariant features from the

same HOG based description, to train a rotation-invariant

filter like Filter I. Its performance is 70% EER, much lower

than the presented approach.

Discussion The terms used in the Filter I and II are to-

tally different, and both groups carry sufficient information.

This suggest that we should try combining the terms with

different orders, but that may require explicit steering. The

limited angle resolution of Filter II can be explained by the

fact that all the information are collected in one additive

voting step, so the pose encoded in the phase angle is hard

to be very accurate.

5.2. Landmark detection in 3D microscopic images

A common challenge in the biomedical research is the

alignment of a new volumetric image to a standard image

(atlas) by an elastic registration [20, 7]. Here the volumetric

images are confocal microscopic recordings of zebrafish

embryos. In the planned fully-automated high-content

work-flow, the recorded sample will have a random orienta-

tion. Furthermore we have to deal with the morphological

variations in the organism. Thus, to get a high-quality

initialization and some reliable point correspondences for

the elastic registration, we need the presented rotation-

invariant detection method to locate a group of landmarks

robustly.

In this experiment, 63 volumetric images are obtained

by recordings from two sides of zebrafish embryos and an

image fusion step. In the embryo, 14 anatomical landmarks

are defined based on their unique and repeatable appearance

(see Fig. 6). For efficiency, we take a coarse-to-fine strategy,

first train and apply the detection filters on downsampled

images, then the most probable global constellation of all

landmarks are selected based on the individual probabilities

and their pairwise distances, solved as a max-sum prob-

lem [22]. Finally, we refine the detected landmarks using

the filter trained on high-resolution images, to get highly

accurate localizations.

Implementation Similar to the 3D harmonic

Figure 6. Top: an zebrafish embryo and the landmarks (the voxel-

size is 1µm3). Middle and bottom: two embryos with their

final detected landmarks shown in cropped slices, after rigid

alignment based on the landmarks. The data from different

experiment groups have different imaging qualities. For the large

morphological variations, a rigid alignment can not unify the poses

of all landmarks.

filter [13], we use the spherical Gaussian derivatives

(SGD) as the local descriptor and the voting basis. The

SGD is denoted as ∇
u
dGσ , where u and d indicate its

derivative order. On a volumetric data V , the features

compute as Fud = ∇
u
d(Gσd

∗ V ), where σd is the selected

scale for local description and the feature Fud is a spherical

tensor field of order (u−d). The rotation-invariant features

are computed by taking the L2 norm of each derivative

feature. Then f̂k are found by a k-means clustering with

kmax=30. From the mapping as Eq.(5), the Aj(F(x))
will also be spherical tensor fields, so they can convolve

with SGDs (with scale σv) of the same order to fulfill the

equivariant voting. More implementation details are given

in the supplementary material. Our implementation is

publicly available on our website3.

For the first step, the symmetric landmarks (e.g. left/right

eye) are considered as the same class. We work at the

downsampled images with a voxel-size of (6µm)3. The

parameter settings u+ d ≤ 6, σd = 20µm, σv = 40µm are

used for all landmarks. As a result, we obtain 15 covariant

features and 15 invariant features. We manually labeled all

landmarks in 7 embryos for training, and further manually

labeled 6 classes of landmarks in other 56 images, for a

quantitative evaluation.

Reference methods Here we compare our approach to

the 3D SIFT [1] and the harmonic filter. Our SIFT based ex-

3http://lmb.informatik.uni-freiburg.de/people/

liu/landmark3d

http://lmb.informatik.uni-freiburg.de/people/liu/landmark3d
http://lmb.informatik.uni-freiburg.de/people/liu/landmark3d
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Figure 7. The precision-recall curves for detections of 6 classes of landmarks. All the 6 filters are trained with the same parameters. For

each landmark, we show the precision-recall curve, two examples from the X-Y/X-Z plane views in the aligned embryos, and a small black

bar indicating the scale of the error margin for recall (top row: 30,30,45, bottom row: 30,30,45(µm)). The landmarks are: mid-hindbrain

boundary, 2nd ventricle, notochord tip, eye, ear, and optical nerve exit point. The presented approach always produces the best result for

all landmarks.

periment goes as following: the salient points are extracted

in a high density based on the determinant of Hessian ma-

trix. It extracts 5000∼8000 points in each image, covering

the landmarks well. Then 3D SIFT features are computed

following [1]4. The positive samples are extracted from the

7 training images (on all salient points within 24µm range

to the manually labeled point). With such few samples, the

nearest-neighbor classifier outperforms the SVM classifier

in a classification test. So for each salient point, we compute

the detection probability based on the smallest Chi-Square

distance between the feature vector(s) on the point and the

feature vectors from the training samples. The harmonic

filter is implemented following the reference, in which we

get 64 coupled features (in the orders lower than 6) to drive

the 3D voting.

Experimental result The evaluations and examples

of the detections are shown in Fig.7 and Fig.8. The

detection candidates from the filter approaches are the

local maximums. As the SIFT is computed with a high

density and multiple pose selections, the harmonic Filter is

not always performing better than SIFT, but our approach

always give the best result on all evaluated landmarks.

The running time for the filters (implemented in C) on

a 3.2GHz×4 CPU, is: 6s for local feature computation

including kernel evaluations, and additionally 4s for each

landmark class, while the harmonic filter needs about 25s

for each class. The reason is that the coupling of spherical

tensors is not cheap, and we avoid this by using kernel

based nonlinearity. The 3D SIFT is also expensive, the

feature computation alone needs about 20s for every 1000

points. Further qualitative results are: after the fast max-

4The Hessian is computed over 5 scales in 6µm ∼ 24µm, only to

capture the landmarks in different scales. The 3D SIFT is computed at a

single scale on the downsampled image with bin size = 36µm and 4×4×4
spatial bins. Each point can have multiple descriptions according to several

competing poses.

Figure 8. Maximum intensity projection of the filter output (red)

overlaid on embryos (cyan), for the 6 evaluated landmarks. The

bottom two rows show the results on anti-AcTub (acetylated

tubulin) immunostaining data, by using the same parameters in

filter training.

sum verification, all landmarks are found in about 50µm
range. By running the high-resolution ((1.5µm)3) filters in

the neighborhood of each landmark, all the landmarks are

refined to a high accuracy (see Fig.9). The final refined

landmarks provide a group of reliable point correspon-

dences distributed in the embryo, which are interpolated

into a high-quality initialization for the elastic registration,

making the registration faster and more accurate. The wide-

applicability of our method has also be checked. It has been

tested on zebrafish with different staining techniques. Some

qualitative result is shown in Fig.8.

Discussion We can see that the harmonic filter is

perfect for simple features like the eyes, but is not sufficient

for complex structures. For the 3D SIFT, by a pose normal-

ization, its output is not continuous on the underlying data,

and hence it might need more training data to well describe

a class. Our approach is continuous on the underlying data,

making the classification simpler, and has good description



Figure 9. The effect of refinement on landmarks. Top: before

refinement. Bottom: after refinement.

ability from the voting mechanism.

In [13] an ISM based 3D voting method has been

designed, and showed to be less effective than the harmonic

filter. The ISM based method reported in [6] is developed

for the 3D shapes represented by surfaces. They use

interest point detection and assign an unique orientation

to each point. These could be error-prone in volumetric

data. The low reliability of the interest point detection

is the main reason that we prefer an approach based on

dense features. After all, our filter framework is simple

in the implementation, which just need two rounds of fast

convolutions with a voxel-wise feature mapping between

them.

6. Conclusion

Based on the fundamental theory about harmonic ba-

sis and rotations, we present a practical way to build a

flexible nonlinear model under the equivariance constraint,

developing the classical equivariant filters to more pow-

erful tools. The presented approach guarantees rotation

invariance, a well performing nonlinear model and a high

computational efficiency. It produces competitive rotation-

invariant detection performance in 2D images, and works

very well on the rotation-invariant landmark detection task

in 3D microscopic volumetric images.
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