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ABSTRACT Image quality is important not only for the viewing experience, but also for the performance

of image processing algorithms. Image quality assessment (IQA) has been a topic of intense research in the

fields of image processing and computer vision. In this paper, we first analyze the factors that affect two-

dimensional (2D) and three-dimensional (3D) image quality, and then provide an up-to-date overview on

IQA for each main factor. The main factors that affect 2D image quality are fidelity and aesthetics. Another

main factor that affects stereoscopic 3D image quality is visual comfort. We also describe the IQA databases

and give the experimental results on representative IQA metrics. Finally, we discuss the challenges for IQA,

including the influence of different factors on each other, the performance of IQAmetrics in real applications,

and the combination of quality assessment, restoration, and enhancement.

INDEX TERMS Image quality assessment, image aesthetics assessment, visual comfort, and image quality

enhancement.

I. INTRODUCTION

The growing demand for better visual experience is driving

the development and supply of multimedia shooting and dis-

play devices such as smart phones, digital cameras, and cam-

corders. The demand is also driving the continuous advance

of technologies like multimedia and cloud storage, as well as

the emergence and popularity of social media platforms like

Facebook and WeChat. Images and videos have progressed

from black and white to color; from analog signal to digital

signal; from standard definition to high definition, super def-

inition, blue-ray, 4K and 8K; and from two-dimensional (2D)

to three-dimensional (3D), free viewpoint, virtual reality, and

augmented reality.

The number of images and videos on the Internet is grow-

ing rapidly. However, not all images and videos on the Inter-

net are guaranteed to be of high quality. At various stages

of shooting, processing, storage, encoding, transmission, dis-

play, etc., the image and video quality is affected owing

to distortion, destruction of composition, and uncomfortable

depth, resulting in low quality images and videos. In addi-

tion, the differences between professional photographers and

amateurs lead to large differences in the quality of captured

images and videos.

Image quality is important not only for the viewing expe-

rience, but also for the performance of image processing

algorithms. Various studies have found that distortion can

affect the performance of algorithms such as face detection

and recognition [1], image saliency detection [2], [3], event

detection [4], and video target tracking [5]. Therefore, image

quality assessment (IQA) has been a topic of intense research

in the fields of image processing and computer vision.

Researchers have proposed various IQA metrics, many of

which have found important applications in image processing

systems. For example, IQA metrics can help image retrieval

systems filter low-quality images by monitoring image qual-

ity, resulting in better subjective experience. Second, IQA

metrics can determine whether the quality of an image will

affect its subsequent usage, such as image quality in a data

transmission network. Finally, IQA metrics can be used to

measure the performance of quality restoration and enhance-

ment algorithms. For example, IQA metrics can be intro-

duced into image processing algorithms such as image super
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FIGURE 1. Images with different visual qualities. (a) A medium quality
image. (b) A high quality image.

resolution [6], image deblurring [7], image denoising [8], and

image deblocking [9]. The quality assessment result for each

result image of the image processing algorithms can serve as

a performance indicator.

The factors that affect the visual quality of 2D images

are primarily low fidelity owning to distortion and poor aes-

thetics. Many types of distortion, such as noise, blur, com-

pression, and packet loss, may be introduced in 2D images

during various stages from shooting to display. However,

not all undistorted 2D images have high visual quality (see

Fig. 1(a)). The aesthetics of images also have a significant

impact on whether or not 2D images are attractive. As shown

in Fig. 1 (b), professional photographers usually follow the

rules of composition, such as the rule of thirds and the rule of

simplicity, to capture high-fidelity and attractive 2D images.

Stereoscopic 3D media provides users with 3D description

of the real scenes using depth information from disparity

between the left and right retinas, resulting in an immersive

visual experience. 3D media has begun to expand from the

film industry to a wider range of fields, including television

entertainment, advertising, virtual reality, video surveillance,

health care, military defense, games, design, manufacturing,

and education. However, there are more factors that affect

the visual quality of 3D media [10], [11] than those of 2D

media, such as fidelity and aesthetics of left and right views,

consistency between left and right views [12], visual com-

fort, screen quality and size, quality of 3D glasses, viewing

distance and angle, physiological and psychological status of

viewers, and so on.

The main factor that affects stereoscopic 3D image quality

is visual comfort, besides fidelity and aesthetics. Distortion-

free and highly appealing 3D images may still be considered

to be of low-quality if they have low visual comforts. Fig. 2

shows an image whose pixels have non-positive disparity

values, implying that all image contents are perceived to be

in front of the display screen. The main objects in Fig. 2 are

shown in front of the display screen with large absolute dis-

parity values which are out of the comfort zone. Furthermore,

the shoulder in Fig. 2 touches the left boundary in the right

view, which leads to the window violation problem. Both,

non-positive disparity values and window violation problem,

usually make a 3D image uncomfortable for viewing and

cause visual fatigue.

In this paper, we first provide an up-to-date overview on

IQA for each main factor in Section II, including fidelity,

aesthetics, and visual comfort. We then describe the IQA

databases and the experimental results of representative IQA

metrics in Section III. Finally, we discuss the challenges for

IQA in Section IV, including the influence of different factors

on each other, the performance of IQAmetrics in real applica-

tions, and the combination of quality assessment, restoration,

and enhancement. We conclude the paper in Section V.

II. 2D AND 3D IMAGE QUALITY ASSESSMENT METRICS

Existing IQA metrics assess the quality of 2D and 3D

images from the perspectives of fidelity, aesthetics, and visual

comfort. We give the up-to-date overviews on 2D and 3D

fidelity assessment, aesthetics assessment, and visual comfort

assessment (VCA) in Subsections II-A, II-B, II-C, and II-D,

respectively.

A. 2D IMAGE FIDELITY ASSESSMENT

Distortions of a 2D image, such as noise, blur, and com-

pression, usually lead to the reduction of image fidelity.

Therefore, there are numerous works on 2D image fidelity

assessment. Existing 2D image fidelity assessment metrics

can be classified into three categories according to whether

the reference image is required: full-reference (FR), reduced-

reference (RR), and no-reference (NR). FR metrics require

both distorted and reference images. RR metrics use only

partial information of the reference image. For NR metrics,

only the distorted image is necessary. FR metrics are mainly

used to evaluate the performance of image processing algo-

rithms. RR metrics are mainly used to access the distortion

of image in the transmission process. NR metrics are mainly

used to filter low-fidelity images in applications. We give the

FIGURE 2. A distortion-free 3D image that has a low subjective quality owing to its non-positive disparity map and window violation
problem at the left image boundary. (a) Left view. (b) Right view. (c) Horizontal disparity map.
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overviews on FR, RR, and NR 2D image fidelity assessment

metrics in Subsections II-A1, II-A2 and II-A3, respectively.

1) FULL-REFERENCE 2D IMAGE FIDELITY ASSESSMENT

Conventional error quantification-based FR metrics, such

as mean squared error (MSE), signal-to-noise ratio (SNR),

and peak SNR (PSNR), do not consider the content of an

image and the characteristics of human visual system (HVS).

So these metrics usually result in a weak consistency with

human perception.

Therefore, HVS-inspired and image content-aware fidelity

assessment metrics have been presented. Researchers com-

bined the characteristics of HVS with pure mathematical

algorithms. Visual SNR (VSNR) [13] quantifies the visual

fidelity of distorted images. HVS-based peak SNR (PSNR-

HVS) [14] combines PSNR with HVS characteristics by

considering the contrast sensitivity function (CSF). PSNRHA

[15] introduces CSF, between-coefficient contrast masking of

discrete cosine transform (DCT) basis functions, and mean

shift into PSNR. PSNR-HMA [15] introduces contrast chang-

ing into PSNR-HA.

Wang and Bovik claimed that human eyes obtain image

information through three channels, brightness, contrast, and

structure [16], and developed a universal image quality index

(UQI) [17] and a structural similarity (SSIM) [16] index.

Thereafter, variants of SSIM-based metrics have been pro-

posed, such as multi-scale SSIM (MS-SSIM) [18], modi-

fied SSIM with automatic down-sampling (MSSIM) [19],

complex wavelets-SSIM (CW-SSIM) [20], information con-

tent weighted SSIM measure (IW-SSIM) [21], edge strength

similarity-based index (ESSIM) [22], and the combina-

tion of optimal scale selection (OSS) model [23] and

SSIM (OSS-SSIM).

Unlike most IQA metrics that adopt a single most relevant

strategy used by HVS to assess image fidelity, the index

presented by Larson and Chandler, named most apparent

distortion (MAD) [24], is modeled using two separate strate-

gies: a detection-based strategy and an appearance-based

strategy. Zhang et al. [25] proposed the feature similarity

index (FSIM), which uses phase congruency and gradient

magnitude as the primary and secondary features. Gradient

magnitude similarity deviation (GMSD) [26] was proposed

based on the observation that image gradients are sensitive

to image distortions. GMSD predicts image quality based

on the gradient magnitude similarity between the reference

and the distorted images. A visual saliency-induced index

(VSI) [27] introduces visual saliency into assessment based

on the observation that image saliency [28]–[31] plays an

important role in image quality assessment. Visual saliency is

first used to calculate the difference between the distorted and

the reference images as a reference factor. During the final

pooling, the saliency value at each pixel is used as a weighting

value, which affects the importance of different pixels. DCT

subbands similarity (DSS) [32] index uses changes in the

structural information of the subbands in the DCT domain

and the weighted quality estimates for these subbands to

predict image quality. Nafchi et al. [33] proposed a mean

deviation similarity index (MDSI) to assess image quality

by considering gradient similarity and chromaticity similarity

to measure structural and color distortions, respectively. The

superpixel-based similarity index (SPSIM) [34] evaluates

the overall visual impression on local images by calculating

superpixel luminance similarity and superpixel chrominance

similarity, then quantifies the structural variations by gradient

similarity, and finally evaluates the image quality by combin-

ing the three types of features.

During the last few years, machine-learning methods have

been applied to image fidelity assessment. These methods

tackle image fidelity assessment in two steps: first design

appropriate features and then perform regression or clas-

sification using the features. Narwaria and Lin proposed

a singular value decomposition (SVD)-based metric using

support vector regression (SVDR) [35]. SVDR uses SVD to

extract singular vectors as features of reference and distorted

images, and then uses support vector regression (SVR) for

image fidelity prediction. Charrier et al. [36] proposed a

metric namedmachine learning-based image quality measure

(MLIQM). MLIQM first classifies a distorted image into five

scales using multi-support vector machine (SVM) classifi-

cation according to the quality scale recommended by the

ITU [37], and then uses an SVR to predict the final score of

the distorted image. Liu et al. [38] presented a multi-method

fusion (MMF)metric whichwasmotivated by the observation

that no single methods can give the best performance in all

distortion types. This metric first classifies the distortion type

of distorted images into five categories and then combines

multi image fidelity assessment metrics using SVR to predict

the image quality scores. A machine learning-based metric

with distortion measured by non-negative matrix factoriza-

tion (NMF) was proposed in [39]. Metric NMF uses extreme

learning machine (ELM) method to address the limitations of

existing pooling techniques.

Because convolutional neural network (CNN) is capable

of learning features and regression based on the raw image

data, it has been introduced to solve image fidelity assessment

problem. Bosse et al. [40] presented a weighted average

deep image quality measure for FR-IQA (WaDIQaM-FR).

It is purely data-driven and does not rely on hand-crafted

features or other types of prior domain knowledge about

HVS or image statistics. Kim and Lee [41] presented a deep

image quality assessment (DeepQA) model which learns the

visual sensitivity characteristics of the HVS by using a deep

CNN.

2) REDUCED-REFERENCE 2D IMAGE FIDELITY ASSESSMENT

Ma et al. [42] presented an RR image fidelity assessment

metric using reorganized DCT-based image representation.

It extracts the statistical information of the DCT coefficients

of natural images, and uses statistical methods to design

image features for image fidelity prediction. Rehman and

Zhou [43] proposed an RR metric using structural similarity

estimation. They extracted statistical features from a multi-
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scale multi-orientation divisive normalization transform, and

developed a distortion measurement based on SSIM [16].

Wu et al. [44] presented an RRmetric which first maps visual

content into a histogram based on orientation-selectivity-

based visual pattern, and then evaluates image fidelity by

calculating the changes between the two histograms of refer-

ence and distorted images. The structure degradation based

RR metric [45] relies on the reduction degree of spatial

frequency response of different distortion types and quality

levels. Gu et al. [46] proposed an RR metric for contrast

change using phase congruency and statistics information of

the image histogram.

3) NO-REFERENCE 2D IMAGE FIDELITY ASSESSMENT

In recent years, NR image fidelity assessment has become a

research hotspot in image fidelity assessment, as it does not

require pristine knowledge of reference images.

Some distortion-specific NR metrics have been presented

to assess the fidelity of blurred images [47], JPEG com-

pressed images [48], deblocked images [49], and contrast-

changed images [50].

Many natural scene statistics (NSS)-based NR metrics

[51]–[56] have been presented to assess the fidelity of

images distorted by various distortion types. The distortion

identification-based image verity and integrity evaluation

(DIIVINE) [51] uses the Gaussian scale mixture (GSM)

model to model a set of neighboring wavelet coefficients and

performs a wavelet decomposition using a steerable pyramid

over two scales and six orientations to extract NSS features.

It then uses a 2-stage framework that first identifies the image

distortion type and thereafter estimates the distortion-specific

quality. The blind image integrity notator usingDCT statistics

(BLIINDS-II) [52] is a fast single-stage framework that relies

on a statistical model of local DCT coefficients. DCT features

are extracted from the NSS model and thereafter fed to the

Bayesian probabilistic inference model to evaluate image

fidelity. The blind/referenceless image spatial quality evalu-

ator (BRISQUE) [53] extracts NSS features from a statistical

model of locally normalized luminance coefficients in the

spatial domain and demonstrates that these features correlate

well with human judgments on quality.

Some machine-learning-based NR metrics have also been

presented [57], [58]. The shearlet and stacked autoencoders-

based NR image quality assessment (SESANIA) index [57]

extracts features using a multi-scale directional transform

(shearlet transform) and utilizes the sum of subband coef-

ficient amplitudes as the primary features. The stacked

autoencoders are then employed to obtain the evolved fea-

tures. Finally, SESANIA formulates the NR image fidelity

assessment problem as a classification problem and uses

softmax classifier to determine image fidelity. The local gra-

dient patterns-based index [58] first extracts local statisti-

cal features from the gradient magnitude and phase of the

image, and then uses a SVR to map the subjective MOS

to local statistical features that convey important structural

information.

Recently, CNN has been successfully introduced to the

field of image fidelity assessment. A pioneering work, IQA-

CNN, was proposed by Kang et al. [59]. Subsequently,

many efforts have been made to improve its performance

by designing deeper convolutional structures. In particular,

Bosse et al. [40] proposed a deep NR image quality measure

(DIQaM-NR). It effectively improves the performance of

NR image fidelity assessment compared with related shallow

models. Kim et al. proposed a blind image evaluator based

on a convolutional neural network (BIECON). BIECON has

two steps: first, the image is divided into patches to train

the CNN, and the features extracted from all patches of the

same image are combined to generate the feature vector

of the image. Then a regression is used to calculate the

quality score of the image [60]. Pan et al. [61] proposed

a blind predicting similar quality map (BPSQ) for image

fidelity assessment, which uses an FR metric to calculate

similar images of image patches (such as FSIM, SSIM, and

MDSI), and then use an U-shaped full CNN to train a sim-

ilar graph generation model. Then the model generates the

similarity graph which is used to train a CNN regression

network for predicting the quality score of the image patch.

Lin and Wang [62] proposed a Hallucinated-IQA framework

for NR image fidelity assessment via adversarial learning.

Hallucinated-IQA jointly optimizes quality-aware generative

network, hallucination-guided quality regression network,

and IQA-discriminator in an end-to-end manner.

B. 3D IMAGE FIDELITY ASSESSMENT

Vision is one of the most important ways for people to get

information from the outside world. Because humans see

3D scenes of nature, it has always being humans’ pursuit to

reproduce the real and natural 3D scenes on the screen. With

the rapid development of 3D display technology, 3D media

has been more and more widely used in peoples’ daily life

and work, such as 3D video, games, and virtual reality. Com-

pared to a 2D image, a stereoscopic 3D image involves depth

information and consists of two views. Therefore, 3D IQA

is more complicated than 2D IQA. Because the researches

on 3D image fidelity assessment mainly focus on FR and

NN metrics, we give the overviews on FR and NR 3D image

fidelity assessment metrics in Subsections II-B1 and II-B2,

respectively.

1) FULL-REFERENCE 3D IMAGE FIDELITY ASSESSMENT

FR 3D image fidelity assessment compares the distorted 3D

image with the reference 3D image. According to the type of

information they utilizes, FR 3D image fidelity assessment

metrics can be divided into three categories. The first category

of FR 3D metrics only considers the two views of a 3D

image. In [63] and [64], existing 2D image fidelity assessment

metrics are applied to the left and right views of a 3D image

and the computed fidelity scores are combined to obtain a

final fidelity score. Because a 3D image is not only two 2D

images, these straightforward 2D-based 3D metrics cannot

achieve good performance.

VOLUME 7, 2019 785
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The second category of FR 3D metrics regards

depth/disparity information as an important factor related to

stereoscopic visual perception and assesses both the qual-

ity of the 2D views and that of the depth information.

Benoit et al. [65] proposed first using FR 2D metrics C4

[66] and SSIM [16] to assess the image fidelity and then

combining the two 2D fidelity scores and depth information

to produce a 3D fidelity score. You et al. [67] investigated

several FR 2D metrics on 3D images and proposed a model

that combines the SSIM scores of the left and right views and

a quality score computed based on the original and the dis-

torted disparitymaps. The cyclopeanmultiscale SSIM (CMS-

SSIM) index [68] applies a 2D MS-SSIM [18] index to the

Gabor cyclopean images of the original and distorted images.

The Gabor cyclopean image is computed as a weighted sum-

mation of the left view and corresponding right view which

is shifted according to the disparity map. Zhanet al. [69]

presented a method based on machine learning regression,

which learns from the view quality features, the disparity

quality features, and a 3D quality feature.

The third category of FR 3D metrics considers binocular

perceptual properties. Bensalma and Larabi [70] proposed an

index that estimates the image fidelity based on the binoc-

ular fusion. Shao et al. [71] presented an index from the

perspective of learning binocular receptive field properties

using sparse representation, which has demonstrated good

performance in simulating cells in the primary visual cor-

tex and characterizing their impacts on fidelity estimation.

Wang et al. [72] first presented an information and distortion

weighted SSIM (IDW-SSIM) index to estimate the fidelity

of each single view. Then, a multi scale model inspired by

binocular rivalry was proposed to predict the fidelity of a

stereoscopic image based on the fidelity scores of the left and

right views.

2) NO-REFERENCE 3D IMAGE FIDELITY ASSESSMENT

Because NR 3D image fidelity assessment metrics do not

use any information from the original reference image, NR

metrics have more practical application prospects than FR

and RRmetrics. Based on the information that NR 3Dmetrics

used, NR 3D metrics can be further classified into three

categories as follows: binocular perception-based metrics,

depth perception-based metrics, and difference perception-

based metrics.

Many binocular perception-based metrics have been pro-

posed by incorporating binocular perception, such as binocu-

lar combination, binocular rivalry, and binocular suppression.

Ryu and Sohn [73] proposed an index that measures the

extents of blurriness and blockiness for the left and right

views and then combines these extents using a binocular

perception model. Shao et al. [74] developed a phase-tuned

fidelity lookup and a visual codebook from the binocu-

lar energy responses to achieve blind fidelity prediction

by pooling. Zhou et al. [75] first presented two binocu-

lar combinations of stimuli, generated by an eye-weighting

model and a contrast-gain control model, and then used

the ELM to perform a fidelity prediction. Shao et al. [76]

presented a framework for NR 3D image fidelity assess-

ment by combining feature-prior and feature-distribution,

which characterizes feature-prior by SVR and implements

feature-distribution by sparsity regularization as the basis of

weights for binocular combination. Shao et al. [77] proposed

a domain transfer framework for NR fidelity prediction of

asymmetrically distorted 3D images. It transfers the infor-

mation from the source feature domain to its target fidelity

domain by dictionary learning.

Depth perception-based metrics assess image fidelity

based on the disparity map or synthesized cyclopean (human

brain) image. Akhter and Horita [78] proposed an NR index

that first extracts image features from a 3D image and its

disparity map, and then uses a logistic regression model

to predict image fidelity. Chen et al. [79] proposed com-

bining 2D cues [68] in the cyclopean view and 3D cues

[67] in the disparity map to estimate the perceptual fidelity

of 3D images. Jiang et al. [80] proposed an index based on

deep non-negativity constrained sparse autoencoder using the

cyclopean image, left view, and right view as the input.

Difference perception-based metrics assess image fidelity

based on the difference between the left and right views.

Zhang et al. [81] proposed a CNN-based NR index, which

considers the difference image as the representation of the

depth and distortion in a 3D image. The end-to-end CNN

model performs both image feature extraction and image

fidelity prediction. Shen et al. [82] proposed combining the

spatial frequency information and statistic feature extracted

from the cyclopean and difference map to represent the

binocular characteristic and asymmetric information of a 3D

image.

C. IMAGE AESTHETICS ASSESSMENT

A distortion-free image can only guarantee to have a high

fidelity, but cannot guarantee to have a high aesthetic qual-

ity. When shooting an image, a professional photographer

designs the composition, color, illumination, contrast, and

other aesthetic aspects of the image according to the shooting

content. In this way, the image captured by a professional

photographer usually presents a strong sense of beauty and is

attractive to the viewer. At present, many aesthetics assess-

ment metrics for 2D images have been presented, which

enable the computer to determine whether an image is beau-

tiful or ugly.

Early presented image aesthetics assessment metrics first

design features related to aesthetic quality, and then map

features to aesthetic score using effective machine learning

methods. Datta et al. [83] presented a 56-dimensional fea-

ture, which includes some low-level features such as color,

texture, shape, and size of the image and some high-level

features such as depth of field, the rule of thirds, and region

contrast. Ke et al. [84], inspired by photographic knowl-

edge, designed a 7-dimensional feature which is composed

of high-level semantics features, including picture simplicity,

clarity, color, contrast, average brightness (exposure), etc.
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Luo and Tang [85] proposed first separating the fore-

ground and background of the image, and then extracting a

5-dimensional feature based on the foreground-background

contrast, including the sharpness contrast, brightness con-

trast, color simplicity, harmony, and conformity of the rule

of thirds. Bhattacharya et al. [86] used the rule of thirds and

the principle of visual balance to assess the aesthetic quality

of the image and enhanced the aesthetic quality of the image

according to these rules. Nishiyama et al. [87] proposed

detecting a series of subject regions in the image and training

an SVM classifier using the subject regions. Finally, the SVM

scores of the subject regions are combined to calculate the

aesthetic quality of the image. Nishiyama et al. [88] pro-

posed extracting local color descriptors and constructing his-

tograms as features for aesthetic image classification. Works

in [89]–[91] directly use Fisher vector as feature to predict the

aesthetic quality of an image. Su et al. [92] proposed directly

using the bag of visual words as feature. Luoet al. [93]

proposed a content-based image aesthetics assessment index,

which divided the image into 7 categories and designed dif-

ferent features for different categories. Marchesotti et al. [94]

proposed using visual attributes as feature to solve the prob-

lem of visual attractiveness analysis.

As designing hand-crafted feature is challenging,

researchers also proposed some end-to-end aesthetics assess-

ment metrics based on deep learning [95]–[97]. Because the

CNN with full connection layers requires the input image

of the network to have a fixed size, works [96], [97] first

transform the input image using cropping, scaling, padding,

etc. In order to avoid the influence of image transformation

on aesthetics assessment. Mai et al. [98] proposed a multi-net

adaptive spatial pooling (ASP) ConvNet architecture, which

can directly process images of different sizes and aspect

ratios. Kong et al. [99] proposed using AlexNet-inspired

architecture [100] to predict different image attributes. They

used a regression network to predict aesthetics rating. Then,

they used the Siamese Network architecture [101] to jointly

optimize the network to predict the aesthetic score and rela-

tive ranking of two images. Kucer et al. [102] selected the

specific combinations of 25 and 40 hand-crafted features

from more than 300 hand-crafted features and obtained

good classification/regression performance. The method also

integrates the selected hand-crafted features with the pre-

trained deep learning features, which significantly improves

the accuracy of classification and prediction of aesthetic

score. Liu et al. [103] proposed a semi-supervised deep

active learning (SDAL)-based aesthetics assessment metric.

Different from [97] which randomly selects object blocks,

this method successively connects the semantically important

object blocks from each scene to learn the human gaze

transfer path (GSP), thus better simulates human visual

perception. Then a probabilistic model is developed for the

image aesthetics assessment using the GSP features that are

learned using deep learning.

The research on 3D image aesthetics assessment is

very limited so far, which needs further investigation.

FIGURE 3. Geometry of stereoscopic display system. (This figure comes
from [107]).

Niu et al. [104] proposed a 3D image resizing method which

adapt a 3D image to different sizes and aspect ratios while

retaining its aesthetics. This method measures the quality of

resized images from an aesthetics point of view so as to best

retain the aesthetic quality of the original 3D images in the

resized results. Islam et al. [105] proposed a 3D deformation

method based on aesthetics. This method reconstructs 3D

images based on two common photographic composition

rules, the rule of thirds and the rule of visual balance, but

this method may destroy the shape of foreground objects

in the resulting 3D images. In a follow-up work [106],

Islam et al. proposed an aesthetics-driven 3D image recom-

position method, which can adapt to the depth changes of

foreground objects in a given 3D image to enhance human

visual aesthetic experience.

D. 3D IMAGE VISUAL COMFORT ASSESSMENT

The most distinctive difference between 2D and 3D images is

depth perception. The differences of the corresponding pixels

in the left and right retinas in the horizontal and vertical

directions are called the horizontal and vertical disparities.

These two kinds of disparities are the main factors for visual

comfort. Especially, the vertical disparity should be close

to zero for a high quality stereoscopic 3D image. The hor-

izontal disparity determines the depth perception of the 3D

content. Excessive horizontal disparity will cause vergence-

accommodation conflict [10], [11], therefore leads to visual

fatigue for human eyes. Hereafter we use disparity instead

of horizontal disparity when without introducing ambiguity.

Fig. 3 shows the situations when objects are perceived in the

negative disparity zone, positive disparity zone, and the com-

fort viewing zone (CVZ) which is close to the zero disparity

through human’s viewing system.

Comparing with the quality assessment metrics for image

fidelity, there have less works focus on visual comfort assess-

ment. Researchers first analyze the influences of depth on

visual comfort using a series of subjective user studies. The

experiments in [108] were conducted to analyze the effects of

camera parameters of a 3D image and the duration of display

on image perception, including the naturalness of image and

VOLUME 7, 2019 787



Y. Niu et al.: 2D and 3D IQA: Survey of Metrics and Challenges

the image quality. The results show that during the shooting

and processing of a 3D image, the toe-in of the two lenses

should be avoided as much as possible. Work [109] evaluates

the 3D image from six aspects subjectively, including the

distortions, depth information, stereo visual comfort, whether

the stereo feeling exits, naturalness of the stereo feeling,

and whether suitable for viewing. Work [110] investigates

the influence of dynamic fast disparity adjustment on visual

comfort through the user subjective questionnaires. Visual

comfort is reflected by the stereo fusion time of the image

after disparity adjusted. This work found out that, when the

disparity adjust range is large, controlling the users’ focus

fields to be close to the zero disparity can effectively reduce

the stereo fusion time.

Based on the subjective experiments, researchers began

to study objective depth VCA metrics [107], [111], [112].

Work [107] first calculates the disparity values of thematched

feature points in the left and right views. It then computes

the range of disparity, the average negative and positive dis-

parity values, the average absolute disparity value, and then

combines these features to train a visual comfort predictor

using SVR.Work [111] takes the neural activity into account.

It first extracts the disparity as the rough features to estimate

the corresponding neural cell’s activities which are called fine

features. The final visual comfort predictor is trained using

SVR based on both rough and fine features. These works

[107], [111] need the image’s mean opinion score (MOS)

as the ground truth image visual comfort score. Because it

takes a lot of time to obtain MOS, Jiang et al. [113] pro-

posed an MOS-aware model for visual comfort predictor.

It is based on the fact that the observers are much easier to

make a preference judgment between two images. To facil-

itate further researches on VCA, Jiang et al. created a 3D

image database NUB 3D-VCA. Inspired by the traditional

absolute categorical rating (ACR) methodology in subjective

study, work [114] proposed assessing visual comfort from

the perspective of learning to rank. It first extracts some

visual comfort-aware features and disparity features to train a

comfort-aware function. The main goal is to find the optimal

weighting vector that satisfies with the constraint between the

ranks of 3D images and the comfort-aware function.

Inspired by the mechanism of HVS, specifically view-

ers usually pay more amount of attention to salient regions

in an image, works [115]–[119] proposed some VCA met-

rics based on image saliency map. Work [115] proposed a

visual comfort predictor using the 3D visual saliency. Firstly,

it obtains the foreground region of the image and gets 3D

visual saliency map based on both the disparity map and the

saliency map for one view. Secondly, it calculates the weight

values from the 3D visual saliency map and uses the weight

values in the final predictor. According to the depth distri-

bution of 3D images, work [116] designed an eye-tracking

experiment to rank the disparity into different levels. Because

humans pay different amounts of attention to different dispar-

ity levels, this work uses the Kullback-Leibler divergence to

different disparity levels to obtain the corresponding saliency

entropy and then adds it into the final visual comfort predic-

tor. Work [117] also exploits human visual attention model

for VCA. The overall framework consists of four steps. First,

it computes the image-based and the depth-based saliency

maps. Second, it uses the linear combination function on

two saliency maps to obtain the final visual importance map.

Then, it uses the visual importance map and the disparity

map to extract a disparity feature vector. Finally, an over-

all comfort score prediction is trained using SVR based on

the disparity feature vector. Because an image may contain

multiple salient objects, work [118] created a multiple salient

objects 3D image database (MSID) which contains more

than two salient objects in each image. Then it extracts four

kinds of features from the multiple salient objects, including

disparity distribution feature, disparity jump feature, object

distribution feature, as well as object width feature. Finally,

it uses these features to train a visual comfort assessment

model on MSID. Jiang et al. [119] utilized the fact that

different neural activities effected by different depth levels.

Owing to the fact that the neural activities of the middle tem-

poral area of human brain are most sensitive to the stimulate

response to human eyes, this work focuses on this situation

and calculates the visual weights based on the disparity map.

Based on the extracted features and their different weights,

random forest regression algorithm is used to train a visual

comfort predictor.

With the development of deep learning, some researchers

used neural networks to assess visual comfort for 3D images.

Work [112] presented a VCA index based on deep learning.

The method firstly uses a twin neural network to extract the

visual difference between the left and right views, and then

use deep CNN to extract the disparity features based on HVS.

Finally it utilizes the linear combination on these features

and the human subjective scores to obtain a visual comfort

predictor. Work [120] presented a novel binocular fusion

deep network (BFN) for the prediction of visual discomfort,

which takes account of the binocular fusion of the left and

right views. And then the BFN is devised to learn the latent

binocular features by fusing the spatial features of two views.

They also devised a disparity regularization network (DRN)

to consider the disparity characteristics. The proposed BFN

and DRN are trained in a unified framework for both visual

comfort prediction and disparity estimation. The final visual

comfort score is predicted by the trained BFN without DRN.

III. EXPERIMENTS

In this section, we give the databases and experimental results

on 2D and 3D image fidelity assessment, aesthetics assess-

ment, and visual comfort assessment in Subsections III-A,

III-B, III-C, and III-D, respectively.

A. EXPERIMENTAL RESULTS ON 2D IMAGE FIDELITY

ASSESSMENT

We first describe the commonly used 2D image fidelity

assessment databases. The information on these databases is

summarized in Table 1.
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FIGURE 4. Sample images in the LIVE database. (a) Reference. (b) WN. (c) JPEG. (d) JP2K. (e) GBLUR. (f) FF.

FIGURE 5. Sample images in the CSIQ database. (a) Reference. (b) AWGN. (c) GBLUR. (d) Contrast. (e) Fnoise. (f) JPEG. (g) JP2K.

TABLE 1. Summarized information on 2D image fidelity assessment
databases.

1) LIVE DATABASE [121]

This database contains 779 distorted images distorted by

5 distortion types: White Noise (WN), Gaussian blur

(GBLUR), JPEG compression (JPEG), JPEG2000 compres-

sion (JP2K), and Fast-Fading (FF), at different distortion

levels derived from 29 reference images. A differential

mean opinion score (DMOS) is assigned to each distorted

image, approximately in the range from 0 to 100. A higher

DMOS indicates a lower fidelity of the image. Fig. 4 gives

three examples for each distortion type. The distortion level

increases for images from top to bottom for columns (b)-(f).

2) CSIQ DATABASE [24]

This database contains 866 distorted images distorted by

6 distortion types at 4 or 5 distortion levels derived from

30 reference images. The distortion types include additive

white Gaussian noise (AWGN), GBLUR, global contrast

decrements, additive pink Gaussian noise (fnoise), JPEG, and

JP2K. The database contains 5000 subjective ratings reported

in the form of DMOS in the range [0, 1] from 16 non-expert

observers. Fig. 5 shows three examples for each distortion

type. The distortion level increases for images from top to

bottom for columns (b)-(g).
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FIGURE 6. Sample images in the TID2013 database.

3) TID2008 DATABASE [122]

This database contains 1700 distorted images distorted by

17 distortion types at 4 distortion levels derived from 25 ref-

erence images. Each image is associated with an MOS in the

range from 0 to 9. A higher MOS value indicates a higher

fidelity of the image.

4) TID2013 DATABASE [123]

This database contains 3000 distorted images distorted by

24 distortion types at 5 distortion levels derived from 25 ref-

erence images. Each image is associated with an MOS in

the range from 0 to 9. The first 17 distortion types in

TID2013 database are shared with TID2008 database. Fig. 6

gives a reference image and its 24 distorted images, and one

for each distortion type.

The performance indicators that are commonly adopted by

image fidelity assessment metrics are Spearmans rank order

correlation coefficient (SRCC), Pearsons linear correlation

coefficient (PLCC), and root-mean-square error (RMSE).

SRCC is used to measure the prediction monotonicity of an

objective assessment index. PLCC is used to measure the

relevance between the subjective evaluation and objective

evaluation after nonlinear regression [124]. Larger PLCC

and SRCC values indicate a closer relation with the human

subjective evaluation. RMSE is used to assess the accuracy of

the predictions after the nonlinear regression [124]. A smaller

RMSE values indicate a superior correlation with human

perception.

In Table 2, we show the experimental results of 21 FR,

5 RR, and 10 NR 2D image fidelity assessment metrics

on the LIVE, CSIQ, TID2008, and TID2013 databases.

As shown in Table 2, these metrics usually perform better

on the LIVE and CSIQ databases than on the TID2008 and

TID2013 databases because there are more distortion types

in the TID2008 and TID2013 databases.

Early content-aware and HVS-based FRmetrics [24], [26],

[27], [32]–[34] have achieved good results on the LIVE

and CSIQ databases. After that, the multi-strategy-based FR

metrics [38], [39] have further improved the performance,

especially on the TID2008 database. In recent years, the deep

learning-based metrics [40], [41] have boosted the perfor-

mance of the FR metrics on the TID2013 database. For RR
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TABLE 2. Experimental results of existing 2D image fidelity assessment metrics on LIVE, CSIQ, TID2008, and TID2013 databases. The top three
performance values for FR, RR, and NR metrics are formatted in bold and highlighted in red, green, and blue colors, respectively. And the symbol ‘‘-’’
indicates that the value is not provided in the corresponding paper and we could not find the corresponding source code.

metrics, the performance on the LIVE and CSIQ databases

is good. However the performance on the TID2008 and

TID2013 databases needs further improvements. Before deep

learning was introduced to NR metrics, previous NR metrics

are much inferior to FR metrics. In recent years, the per-

formance of NR metrics [40], [59]–[62] achieved large

improvements.

B. EXPERIMENTAL RESULTS ON 3D IMAGE FIDELITY

ASSESSMENT

We first describe the commonly used 3D image fidelity

assessment databases. The information on these databases is

summarized in Table 3.

1) LIVE 3D IQA DATABASE PHASE-I [125]

It contains 20 reference 3D images and 365 distorted 3D

images, including 80 images for JPEG, JP2K, FF, and WN,

and 45 images for GBLUR. Each image in the database

is symmetrically distorted on its left and right views. Each

distorted 3D image is given a DMOS from subjective eval-

uation. The values of DMOS are distributed in the interval

TABLE 3. Summarized information on 3D image fidelity assessment
databases.

of [-10, 100]. Fig. 7 shows a reference 3D image and its

distorted images distorted by 5 distortion types.

2) LIVE 3D IQA DATABASE PHASE-II [68]

It contains 8 reference 3D images and 360 symmetri-

cally or asymmetrically distorted 3D images. An asymmetri-

cally distorted image has different distortion levels in its left

and right views. The distortion types include GBLUR, FF,

JP2K, JPEG, and WN. For each distortion type, a reference

3D image generates 3 symmetrically and 6 asymmetrically

distorted images. The subjective evaluation values in the

database are given in the form of DMOS, and the values of
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FIGURE 7. Sample images in the LIVE 3D IQA database Phase-I. (a) Reference. (b) GBLUR. (c) FF. (d) JP2K. (e) JEPG. (f) WN.

FIGURE 8. Sample images in the LIVE 3D IQA database Phase-II. (a) Reference. (b) Blur. (c) FF. (d) JP2K. (e) JEPG. (f) WN.

FIGURE 9. Sample images of the NBU 3D IQA database. (a) Reference.
(b) H.264.

DMOS are distributed in the interval of [0, 100]. Fig. 8 shows

a reference 3D image and its asymmetrically distorted images

distorted by 5 distortion types.

3) NBU 3D IQA DATABASE [126]

It contains 12 reference 3D images and 312 symmetrically

distorted images. The distortion types include JPEG, JP2K,

GBULR, WN, and H.264. The subjective values for the dis-

torted images are given by DMOS, and the values of DMOS

are distributed in the interval of [0, 100]. Fig. 9 shows a

reference 3D image and its an asymmetrically distorted image

distorted by H.264.

In Table 4, we show the experimental results of 6 FR

and 9 NR 3D image fidelity assessment metrics. Because

the distortions introduced in the left and right views are

the same for symmetrically distorted images and different

for asymmetrically distorted images, the fidelity assessment

for symmetrically distorted images is easier than that for

asymmetrically distorted images. So the experimented met-

rics usually perform better on the LIVE 3D IQA database

Phase-I and NBU 3D IQA database than on the LIVE 3D

IQA database Phase-II. In recent years, machine learning and

deep learning based metrics [71], [75], [76], [80], [81] have

achieved significant performance improvements, especially

for asymmetrically distorted images. The performance of

state-or-the-art NR metrics [76], [80]–[82] is similar to that

of state-or-the-art FR metrics [71], [72].

C. EXPERIMENTAL RESULTS ON IMAGE

AESTHETICS ASSESSMENT

We first give the summarized information on commonly

used image aesthetics assessment databases in Table 5. The

detailed descriptions are given as follows.

1) AESTHETIC VISUAL ANALYSIS (AVA) DATABASE [127]

AVA database contains more than 250,000 images, each

image contains a large number of aesthetic scores. In addition

to the aesthetic evaluation, there are 66 semantic and 14 pho-

tographic style annotations. According to work [103], half of

the images are labeled as high aesthetics, while the rest are
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TABLE 4. Experimental results of existing 3D image fidelity assessment metrics on three databases. The top three performance values for FR and NR
metrics are formatted in bold and highlighted in red, green, and blue colors, respectively. And the symbol ‘‘-’’ indicates that the value is not provided in
the corresponding paper and we could not find the corresponding source code.

FIGURE 10. Sample images in the AVA database. (a) Images in the green- and red-framed boxes are labeled with a
mean score greater and smaller than 5, respectively. Images on the right in both green- and red-framed boxes are
labeled with a mean score around five. (b) The number of images in the AVA database. (This figure comes from [130]).

TABLE 5. Summarized information of image aesthetics assessment
databases.

labeled as low aesthetics. Fig. 10 shows some sample images

in the AVA database.

2) CUHK-PQ DATABASE [93]

It contains more than 17,690 images, half of which are

labeled as high aesthetics and the rest are labeled as low

aesthetics. To assign labels to the images, each image was

viewed by 10 people, who labeled the image as high or low

aesthetics. If at least 8 out of 10 people agreed with their

assessment of the image, the image was kept and assigned

a final label. Fig. 11 shows some sample images in the

CUHK-PQ database.

3) HIDDEN BEAUTY OF FLICKR PICTURES (HB)

DATABASE [128]

It contains more than 15,000 images which were chosen from

a large YFCC100M database [131]. Each image falls into one

of four categories: people, urban, nature, and animals. Each

image was rated five times. The aesthetic score of an image

is the average of all of its scores. Fig. 12 shows some sample

images in the HB database.

4) KODAK AESTHETICS DATABASE (KODAK) [129]

It contains more than 1,500 images, and is an extended

version of database described in Jiang et al. [129]. Each

image was evaluated by four people on a scale of 1-100.

The ground truth score of an image is mean of its four

scores. Fig. 13 shows some sample images in the Kodak

database.
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FIGURE 11. Some sample images in the CUHK-PQ database. (a) Images in
the green- and red-framed boxes are labeled as high and low aesthetics,
respectively. (b) The number of images in the CUHK-PQ database. (This
figure comes from [130]).

FIGURE 12. Sample images in the HB database. (This figure comes
from [128]).

FIGURE 13. Sample images in the Kodak database. (This figure comes
from [129]).

5) LIVE IMAGE QUALITY (LIVE-IQ) DATABASE [124]

It contains 779 distorted images evaluated by nearly

25,000 individual human quality judgments. According to

work [103], half of the images are labeled as high aesthetics,

while the rest are labeled as low aesthetics. Fig. 14 shows

some sample images in the LIVE-IQ database.

In Table 6, we show the experimental results of 8 image

aesthetics assessment metrics: Nishiyama et al. [87], March-

esotti et al. [89], Karayev et al. [95], Lu et al. [96],

Lu et al. [97], Mai et al. [98], Kong et al. [99], and

Liu et al. [103], on CUHK-PQ, AVA, and LIVE-IQ

databases. The performance indicator that is commonly

adopted by image aesthetics assessment metrics on these

three databases is accuracy. The experimental results for

Nishiyama et al. [87], Marchesotti et al. [89], Lu et al. [96],

Lu et al. [97], Mai et al. [98], and Liu et al. [103] are from

Liu et al. [103]. As show in Table 6, among all experimented

metrics, the metric presented by Liu et al. [103] performs

best and achieves significant performance improvements on

CUHK-PQ, AVA, and LIVE-IQ databases.

FIGURE 14. Sample images in the LIVE-IQ database. Images in the top
and bottom rows are labeled as high and low aesthetics, respectively.

TABLE 6. Experimental results (accuracies) of existing image aesthetics
assessment metrics on CUHK-PQ, AVA, and LIVE-IQ databases. The top
three performance values for each databases are formatted in bold and
highlighted in red, green, and blue colors, respectively. The symbol ‘‘-’’
indicates that the value is not provided in the corresponding paper and
we could not find the corresponding source code.

TABLE 7. Experimental results (correlation coefficients) of existing image
aesthetics assessment metrics on HB and Kodak databases. The top three
performance values for each databases are formatted in bold and
highlighted in red, green, and blue colors, respectively.

TABLE 8. Summarized information of three 3D image depth VCA
databases.

In Table 7, we show the experimental results of 5 image

aesthetics assessment metrics: Datta et al. [83], Ke et al. [84],

Luo and Tang [85],Marchesotti et al. [89], and Luo et al. [93],

on HB and Kodak databases. The performance indicator that

is commonly adopted by image aesthetics assessment met-

rics on HB and Kodak databases is the correlation coeffi-

cient [102]. As show in Table 7, among all experimented

metrics, the metric presented by Luo et al. [93] performs best

on HB database, and the metric presented by Datta et al. [83]

performs best on Kodak Database.
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FIGURE 15. Sample images in the NBU 3D-VCA Image Database.

FIGURE 16. Sample images in the IVY Lab Stereoscopic 3D Image Database.

FIGURE 17. Example of a reference 3D image (a and b), its symmetrically distorted 3D image (c and d), and the
corresponding disparity maps (c and f). (a) Left reference view. (b) Right reference view. (c) Disparity map of (a) and (b).
(d) Left distored view. (e) Right distored view. (f) Disparity map of (d) and (e).

D. EXPERIMENTAL RESULTS ON 3D IMAGE VISUAL

COMFORT ASSESSMENT

There are three commonly used 3D image depth VCA

databases: NBU 3D-VCA Image Database, IVY Lab Stereo-

scopic 3-D Image Database, and IEEE Standards Association

Stereoscopic Database (IEEE SA). Because calculating the

values of MOS is expensive, Jiang et al. [113] proposed

using the preference label to replace the MOS, and then

created the NBU 3D-VCA database for further 3D image

VCA researches. Table 8 shows the summarized information

of these three 3D image depth VCA databases.

1) NBU 3D-VCA IMAGE DATABASE [113]

This database contains a total of 200 3D images with the

resolution of 1920×1080 pixels. The images in this database

are all captured by a Sony HDRTD30E dual-lens 3D camera.

These images include 82 indoor and 118 outdoor scenes with

a variety of textures, colors, and depth ranges. To reflect a

large variety of visual comfort, the maximum ranges of neg-

ative disparity in these images range from 0.02 to 4.79 deg.

Some sample images in the database are shown in Fig. 15.

2) IVY LAB STEREOSCOPIC 3D IMAGE DATABASE [132]

This database contains 120 3D images consisting of 62 indoor

and 58 outdoor scenes (see Fig. 16). These 3D images include

diverse scenes, such as humans, trees, structures, and man-

made objects. The images were captured using a hand-held

3D digital camera with a resolution of 1920 × 1080 pixels.

The maximum disparities of the 3D images are distributed in

the range from 0 to 5 deg.

3) IEEE SA DATABASE [117]

It contains 800 3D images with a resolution of 1920 × 1080

pixels. For each scene, there are multiple 3D images corre-

sponding to multiple evenly separated convergence points.

There are 160 such convergence-sampled sets in the IEEE SA

database.

In Table 9, we show the experimental results of 10 3D

image depth VCA metrics on these databases. The perfor-

mance indicators that are commonly adopted by image depth

VCA metrics are PLCC, SRCC, and RMSE.

As shown in Table 9, most depth VCA metrics vali-

date their performance on a single database. For the NBU
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TABLE 9. Experimental results of different depth VCA metrics on three databases. The best three performance values on each database are formatted in
bold and highlighted in red, green, blue colors, respectively. And the symbol ‘‘-’’ indicates that the value is not provided in the corresponding paper and
we could not find the corresponding source code.

FIGURE 18. Sample images in the NVIDIA 3D VISION LIVE Highest Rated database.

3D-VCA database, the best performance is achieved by the

metric presented by Jiang et al. [119]. For the IVY Lab and

IEEE SA databases, the best performance is achieved by the

metrics presented by Zhou et al. [115] and Kim et al. [120],

respectively.

IV. CHALLENGES

In this section, we present three challenges for the state-of-

the-art IQA metrics.

A. INFLUENCE OF DIFFERENT FACTORS ON EACH OTHER

Existing research on image quality assessment evaluates

image quality in isolation, such as from a single perspective

of distortion, aesthetics, or visual comfort. However, distor-

tion, aesthetics, and visual comfort influence each other in

IQA. As shown in Fig. 17, the distortions in the left and

right views of a 3D image also changes the disparity map

(Fig. 17 (f)) which determines the visual comfort of the 3D

image.

Distortion also affects aesthetics assessment. Some pho-

tographic rules detection algorithms have been presented

to identify whether or not a photo respects some photo-

graphic rules, such as the rule-of-thirds [133] and the rule

of simplicity [134]. Because these algorithms extract visual

features from saliency maps which are usually affected

by distortions in images [2], [3], the distortion usually

reduces the performance of these aesthetics assessment

metrics.

To summarize, the influence of distortion, aesthetics, and

visual comfort on each other are not well addressed in existing

IQA metrics.

B. PERFORMANCE IN REAL APPLICATIONS

Existing works assess the quality of an image just from

one or two perspectives and use databases with subjective

opinion scores obtained in lab experiments. However, when

people evaluate the image quality, they integrate various

influencing factors and use them as cues to comprehen-

sively evaluate the image quality. Therefore, the consistency

between existing image quality assessment metrics and the

subjective quality assessment scores in real applications of

quality assessment is questionable.

We experimented with a variety of quality assessment met-

rics on a database from a real application called NVIDIA 3D

VISION LIVE Highest Rated1 images. Unlike the databases

described in Section 3, this database was collected from

a website and is a database from a real application. The

visitors of the website who voted were not constrained to

any perspectives, and hence the votes reflect their compre-

hensive subjective opinions. In the database, the 3D images

cover a variety of classes, including people, animals, plants,

landscapes, and cityscapes. The average subjective scores

range from 1 to 5. A large score indicates a good quality

image. Because the numbers of votes for different images

were different, we only selected the images that had at least

three votes, which were 730 3D images. Fig. 18 shows some

images from this database.

We experimented with 8 state-of-the-art metrics, including

Jiang et al. [113], Kong et al. [99], Mai et al. [98], One-

column CNN [81], NSS [51], GWH-GLBP [135], dipIQ

[136], and DIQaM-NR [40], on this database. Among all

1http://photos.3dvisionlive.com/dn/highest-rated/
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TABLE 10. Experimental results of different IQA metrics and their
combinations on the NVIDIA database. The best three performance values
are formatted in bold and highlighted in red, green and blue colors,
respectively.

these metrics, Jiang et al. [113] focuses on visual com-

fort, Kong et al. [99] and Mai et al. [98] focus on aesthet-

ics, and the other metrics focus on distortion. Because the

authors’ implementation for Jiang et al. [113] is not available,

we implemented and used the disparity features that the

authors extracted in the comparison experiments. To adapt

NSS [51], GWH-GLBP [135], dipIQ [136], and DIQaM-

NR [40] to 3D images, we used their methods to extract

the features from both the left and right views, respectively.

We used the pre-trained models for dipIQ [136] and DIQaM-

NR [40] without fine-tuning. Because the pre-trained model

for one-columnCNN [81] was not available, we implemented

the CNN and trained a model using the NVIDIA 3D VISION

LIVE Highest Rated database. We randomly chosen 70%

images in the database as the training images and the left 30%

images were used as the testing images. The random forest

regression method was used as the machine learning method.

The experiments were repeated 100 times, and we report the

average values of PLCC, SRCC, and RMSE in the paper. The

experimental results of these metrics are shown in Table 10.

As shown in Table 10, the Jiang et al. [113] index achieved

the best performance among the experimented 8 metrics.

Kong et al. [99] and Mai et al. [98] achieved lower perfor-

mance than othermetrics.We also combined Jiang et al. [113]

with each of the distortion and aesthetics related quality

assessment metrics. Besides, we combined Jiang et al. [113]

with all distortion related quality assessment metrics and

showed the experimental results in the second row from the

bottom. Finally, we combined Jiang et al. [113] with all

distortion and aesthetics related quality assessment metrics,

and the experimental results were shown in the last row. The

superior performance of the combinations indicates that all

the different factors matter for quality assessment, and that

these factors should be considered together to improve the

performance of quality assessment in real applications.

C. COMBINATION OF QUALITY ASSESSMENT,

RESTORATION, AND ENHANCEMENT

Some quality assessment metrics [38], [51], [137]–[139] also

predict the distortion types of the distorted images. This

information can be used to guide quality restoration and

enhancement. For example, images with blur, noise, and com-

pression can use the corresponding deblurring [7], denosing

[8], [140], and deblocking [9] algorithms. However these

quality enhancement algorithms are presented for specific

distortions and need the guidance from quality assessment

metrics.

Yu et al. [141] presented a toolchain for image restoration

by deep reinforcement learning (RL-Restore). In comparison

to the above mentioned image quality enhancement algo-

rithms, RL-Restore learns to select an appropriate tool from

the toolbox to iteratively enhance the quality of a distorted

image. RL-Restore can enhance the quality of an image

distorted with multiple and unknown distortions. However

RL-Restore can only handle limited types of distortions,

including blur, noise, and JPEG compression.

Enhancing the quality of an image distorted by other types

of distortions, poor aesthetics, and low visual comfort is still

challenging for the combination of image quality assessment,

restoration, and enhancement.

V. CONCLUSIONS

In this paper, we first gave an up-to-date overview on IQA

from the perspectives of fidelity, aesthetics, and visual com-

fort. We then described the IQA databases and the experi-

mental results of representative IQA metrics. Image fidelity

assessment has received more attention from the researchers

as compared to image aesthetics assessment and visual com-

fort assessment.

We also presented three challenges for IQA. First, the influ-

ence of distortion, aesthetics, and visual comfort on image

quality are not well addressed by existing IQA metrics. Sec-

ond, we showed that the performance of existing IQAmetrics

in real applications needs to be improved. Finally, we showed

that the combination of quality assessment, restoration, and

enhancement needs to handle more quality problems, includ-

ing all types of distortions, poor aesthetics, and low visual

comfort.
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