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Abstract—The method of moments (MoM) and the electric field
integral equations (EFIEs), for both parallel and perpendicular
polarization were applied to simulate scattering from 2D cavity
structures. This code employed several matrix equation solvers, such as
the LU decomposition, conjugate gradient (CG) method, bi-conjugate
gradient (BCG) method, generalized conjugate residual (GCR)
method, and generalized minimal residual (GMRES) method. The
simulated results can be used for future reference and benchmarking.
A comparison on the convergence behavior of the CG, BCG, GCR,
and GMRES methods was made for the benchmark geometry, such
as offset bend cavity, rectangular waveguide with hub, double-bend S-
shaped cavity, etc. Some comments on the performance of the various
iterative solvers will be highlighted.
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1. INTRODUCTION

Air intake system is a significant contributor to the overall
electromagnetic (EM) signature of real target. It is therefore necessary
to provide an accurate characterization of its effect and scattering
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contribution. This is a rather challenging task, due to the intricate
details associated with the engine blade configuration, the engine’s
large electrical size, and the complex, non-canonical shape of practical
inlet. Several approaches have been studied for this important
and challenging task. These include the shooting-and-bouncing-ray
(SBR) method [1–3], the Gaussian beam shooting method [4–6], the
generalized ray expansion (GRE) method [7], the iterative physical
optics (IPO) method [8], and the field iterative method (FIM) [9].
When a cavity is small, numerical techniques such as the variational
equation based method [10]-[11] and the finite element method (FEM)
[12, 13] can be applied for the calculation of scattering pattern.
Recently, a very efficient FEM based numerical technique has been
proposed for the analysis of electromagnetic scattering from large,
deep, and arbitrarily-shaped open cavity in [14]. In addition to
aforementioned techniques, a variety of hybrid techniques combining
a high-frequency and a numerical method have also been proposed to
solve the cavity scattering problems [15–18]. These hybrid techniques
are intended to reduce the size of the computational domain for the
numerical method and thus increase the efficiency and capability of
their solutions.

In order to obtain a deeper understanding on the scattering from
cavity, a 2D cavity modeling code was implemented using the method
of moments (MoM) and the electric field integral equations (EFIEs)
for both parallel and perpendicular polarization. In fact, the 2D cavity
modeling is important for some typical structures, as we can obtain the
3D scattering pattern from 2D results to assist in understanding the
effect of structure profile. In this paper, we will put our emphasis on in-
depth understanding of the mathematical behaviour of resultant linear
system for cavity problem. This code employed several matrix equation
solvers, such as the LU decomposition (LUD), conjugate gradient
(CG) method [13, 19], bi-conjugate gradient (BCG) method [19–21],
generalized conjugate residual (GCR) method [19, 22], and generalized
minimal residual (GMRES) method [23]. The code has been verified
and is able to provide reasonable results for several 2D reference
geometry, such as the offset bend cavity, rectangular waveguide with
hub, double-bend S-shaped cavity, etc. These results can be used for
future reference and benchmarking. A comparison on the convergence
behavior of the CG, BCG, GCR, and GMRES methods was made for
the benchmark geometry that we have computed.
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Figure 1. The geometry of a general cavity structure.

2. FORMULATION

Consider an arbitrarily-shaped 2D cavity structure (as shown in Fig. 1)
illuminated by an incident field Einc(ρ), the electric field integral
equation (EFIE) for parallel polarization (TMz) is given by [24]

−Einc(ρ) = −
ωµ

4

∫
S

Jz(ρ
′)H

(2)
0 (k|ρ − ρ

′|)ds′ on S (1)

where µ is the permeability and k is the wavenumber of free space, S

denotes the conducting surface of the cavity, and H
(2)
0 is the Hankel

function of second kind and zero order. The EFIE for perpendicular
polarization (TEz) is given by [24]

−Einc(ρ)·̂s = [−jωA(ρ)−∇Φ(ρ)]·̂s on S (2)

The vector and scalar potentials in (2) are given by

A(ρ) =
µ

4j

∫
S

J(ρ′)H
(2)
0 (k|ρ − ρ

′|)ds′ (3)

and

Φ(ρ) =
1

4jε

∫
S

ρ(ρ′)H
(2)
0 (k|ρ − ρ

′|)ds′ (4)

respectively, where J(ρ) = ŝ(ρ)J(ρ) is the s-directed current density
and ρ is the surface charge density which is related to the current
through the equation of continuity,

ρ(ρ) =
j

ω
∇s · J(ρ) (5)

Equation (1) can be discretized into a linear system using the
MoM with any basis and testing functions, such as pulse and triangle
functions. Equation (2) is slightly more complicated than equation
(1) because of the differential operators appearing in the equation. In
contrast to equation (1), equation (2) involves both vector and scalar
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Figure 2. The geometry of a 2D bent cavity structure.

potentials, corresponding to current and charge, respectively. It is
advisable to use basis and testing functions having additional degrees of
differentiability to compensate for the additional derivatives present in
equation (2). The triangle basis functions with pulse testing functions
together provide two degrees of differentiability, beyond that of the
pulse/Dirac delta combination. In order to take advantage of this
fact, the triangle basis functions are chosen for expressing the current
distribution on the surface of cavity. More discussion and details on
the discretization of the equation (2) can be found in [24–26]. The
MoM equation for both EFIEs can expressed as

ZI = V (6)

The matrix equation (6) can be solved using matrix equation solvers,
such as the LU decomposition, the CG, BCG, GCR, and GMRES
methods [13, 19–23].

3. NUMERICAL RESULTS

The first problem that we have investigated is the scattering from a 2D
bent cavity structure shown in Fig. 2. Figs. 3–5 show the backscatter
patterns for perpendicular polarization with α = 15◦, 30◦, and 45◦. All
the simulated results agree well with the results obtained using FEM
[14] or BIM/Mode approach [27].

The second problem that we have investigated is an offset bend
cavity structure, as shown in Fig. 6. The backscatter patterns of
the offset bend cavity at 10GHz for both parallel and perpendicular
polarization are given in Figs. 7 and 8. From these two figures, we
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Figure 3. The backscatter patterns of the 2D bent cavity structure
with α = 15◦: parallel polarization.

Figure 4. The backscatter patterns of the 2D bent cavity structure
with α = 30◦: parallel polarization.
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Figure 5. The backscatter patterns of the 2D bent cavity structure
with α = 45◦: parallel polarization.

Figure 6. The geometry of a offset bend cavity structure.

Figure 7. The backscatter patterns of the offset bend cavity structure:
parallel polarization.
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Figure 8. The backscatter patterns of the offset bend cavity structure:
perpendicular polarization.

Figure 9. The geometry of a waveguide cavity with semicircular hub
at the termination.

Figure 10. The backscatter patterns of the waveguide cavity with
semicircular hub at the termination: parallel polarization.
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Figure 11. The backscatter patterns of the waveguide cavity with
semicircular hub at the termination: perpendicular polarization.

Figure 12. The geometry of a 2D double-bend S-shaped cavity.

observed that the results obtained using the present method are in
good agreement with the results obtained using measurement and
BIM/Mode approaches [27].

The third problem was investigated was the scattering from a
waveguide cavity with semicircular hub at the termination. The
geometry is shown in Fig. 9. Figs. 10 and 11 show the backscatter
patterns for both parallel and perpendicular polarization. The results
obtained using the present method and the BIM/Mode approach [27]
are in good agreement. Figs. 10 and 11 also indicated that the
termination has a very significant effect on the backscatter pattern
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Figure 13. The backscatter patterns of the 2D double-bend S-shaped
cavity: perpendicular polarization.

Figure 14. The backscatter patterns of the 2D double-bend S-shaped
cavity: parallel polarization.

near normal incidence and that the effect is highly dependent on the
polarization.

The more complex problem investigated is the scattering from a
2D double-bend S-shaped cavity. The geometry is given in Fig. 12. The
backscatter pattern for perpendicular polarization is shown in Fig. 13.
The two scattering patterns agree well.

All the test cases mentioned above illustrated that the code
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Figure 15. The geometry of an open-ended annular waveguide with
a short circuit termination.

Figure 16. The backscatter patterns of the open-ended annular
waveguide with a short circuit termination: W = 14.9λ, L = 30λ,
R = 60λ.

developed by us is accurate and reliable. More cavity structures were
simulated for benchmarking purpose. Fig. 14 shows the backscatter
pattern of the 2D double-bend S-shaped cavity for parallel polarization.

Fig. 15 shows an open-ended annular waveguide with a short
circuit termination. The backscatter patterns of the open-ended
annular waveguide with different dimensions have been simulated using
the present method for both parallel and perpendicular polarization.
Fig. 16 shows the backscatter patterns of the open-ended annular
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Figure 17. The backscatter patterns of the open-ended annular
waveguide with a short circuit termination: W = 29.8λ, L = 60λ,
R = 120λ.

Figure 18. The geometry of an aerodynamic cavity structure: W1 =
0.5m, W2 = 1.0m, L = 3.0m.

waveguide with dimensions: W = 14.9λ, L = 30λ, and R = 60λ.
Fig. 17 shows the backscatter patterns of the open-ended annular
waveguide with dimensions: W = 29.8λ, L = 60λ, and R = 120λ.
From Figs. 16 and 17, it is observed that the backscatter patterns are
slightly dependent on the polarization. The reason is that the aperture
size of the cavity is electrically large.

The last problem investigated is the scattering from an
aerodynamic cavity as shown in Fig. 18. The dimensions of the
aerodynamic cavity are W1 = 0.5 m, W2 = 1.0m, and L = 3.0m.
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Figure 19. The backscatter patterns of the aerodynamic cavity
structure.

Figure 20. The convergence behaviour of iterative solvers for the 2D
bent cavity structure: parallel polarization.

The backscatter patterns of the aerodynamic cavity at 3.0GHz are
given in Fig. 19.

In order to obtain an in-depth understanding on the mathematical
behaviour of the resultant linear system for cavity problems, the code
was implemented using five matrix solvers: LUD, CG, BCG, GCR,
and GMRES methods. Of the four iterative solvers (CG, BCG, GCR,
GMRES), the BCG method is not stable for cavity modeling.
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Figure 21. The convergence behaviour of iterative solvers for the 2D
bent cavity structure: perpendicular polarization.

Figure 22. The convergence behaviour of iterative solvers for the
offset bend cavity structure: parallel polarization.

Figs. 20 and 21 show the convergence behaviour of CG, GCR and
GMRES methods for simulating the 2D bent cavity for both parallel
and perpendicular polarization. It is observed that the GCR and
GMRES methods converge much faster than the CG method.

Figs. 22 and 23 show the convergence behaviour of CG, GCR and
GMRES iterative solvers for simulating the offset bend cavity for both
parallel and perpendicular polarization. Figs. 22 and 23 show that
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Figure 23. The convergence behaviour of iterative solvers for the
offset bend cavity structure: perpendicular polarization.

the GCR and GMRES methods converge much faster than the CG
method, too.

The convergence behaviour of CG, GCR and GMRES methods
for simulating the 2D double-bend S-shaped for both parallel and
perpendicular polarization is shown in Figs. 24 and 25, which show
that the GCR and GMRES methods converge much faster than the
CG method.

The convergence behaviour of CG, GCR and GMRES methods
have been tested by simulating the other three benchmark cavities for
both parallel and perpendicular polarization. The results shown in
Figs. 26 and 29 show that the GCR and GMRES methods converge
much faster than the CG method, as well.

From the simulation of the scattering from all six typical
cavities considered in this paper, for both parallel and perpendicular
polarization, we observed that:

a. The BCG method is not suitable for use in 2D cavity modeling,
while the CG, GCR, and GMRES methods are acceptable.

b. The convergence behaviour of GCR and GMRES methods is much
better than that of the CG method. The GCR and GMRES
methods incur more memory due to the requirement of the
auxiliary arrays. This is still affordable in MoM solver, since the
sizes of the auxiliary arrays are much smaller compared to the
size of the matrix. The CG method does not incur more memory.
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Figure 24. The convergence behaviour of iterative solvers for the 2D
double-bend S-shaped cavity structure: parallel polarization.

Figure 25. The convergence behaviour of iterative solvers for the 2D
double-bend S-shaped cavity structure: perpendicular polarization.

Hence, it is a good candidate for fast algorithm on 2D cavity
modeling.

c. The iterative solvers need to be preconditioned, to improve their
robustness for complex cavity structures, especially for deep cavity
structures.
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Figure 26. The convergence behaviour of iterative solvers for
the annular waveguide with a short circuit termination: parallel
polarization.

Figure 27. The convergence behaviour of iterative solvers for the
annular waveguide with a short circuit termination: perpendicular
polarization.
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Figure 28. The convergence behaviour of iterative solvers for the
aerodynamic cavity structure: parallel polarization.

Figure 29. The convergence behaviour of iterative solvers for the
aerodynamic cavity structure:perpendicular polarization.
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4. CONCLUSION

The method of moments (MoM) and the electric field integral equations
(EFIEs), for both parallel and perpendicular polarization were applied
to simulate the scattering from 2D cavity structures. This code
employed several matrix equation solvers, such as the LUD, CG, BCG,
GCR, and GMRES methods. The simulated results can be used for
future reference and benchmarking. A comparison on the convergence
behavior of the CG, BCG, GCR, and GMRES methods was made
for the benchmark geometry, such as offset bend cavity, rectangular
waveguide with hub, double-bend S-shaped cavity, etc. The comments
on the iterative solvers obtained in this paper can be used as a guide
to cavity modeling.
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