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Abstract. In order to improve the direction-finding effi-

ciency of the correlative interferometer and reduce the size 

of the lookup table, this paper proposes the one dimen-

sional sorting lookup table-two dimensional linear inter-

polation (1DSLUT-2DLI) algorithm. Firstly, the uniform 

circular array (UCA) model is established and the direc-

tion finding (DF) theory of the correlative interferometer is 

analyzed. A new lookup table is obtained by carrying out 

the ascending order for the first dimensional phase differ-

ences and a one dimensional iterative filtering method is 

used to look up the new table to get the direction of arrival 

(DOA) estimation. Compared to the exist methods, the 

1DSLUT algorithm can reduce the computational complex-

ity greatly. Considering the burden of a big lookup table, 

this paper proposes the 2DLI algorithm. Through the Tay-

lor expansion, the conclusion that the phase difference is 

approximately linear in a small angle range is obtained. 

So, the linear interpolation can be applied to calculate the 

phase differences in the azimuth direction and elevation 

direction. On this basis, we conclude the equations to get 

the DOA estimation using the 2DLI algorithm. In this way, 

the size of the lookup table is reduced greatly, which de-

creases the computational complexity greatly also. The 

numerical simulations verify the effectiveness of the 

1DSLUT-2DLI algorithm and it can obtain a pretty high 

DOA estimation precision with a low computational com-

plexity and a small lookup table. 
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1. Introduction 

Interferometer has the congenital advantage in the 

field of direction of arrival (DOA) estimation, such as high 

precision, simple structure and high sensitivity and so on. 

So, it has been widely used in radar, sonar and other detec-

tion equipment [1–4]. In order to acquire the high precision 

of direction finding, the traditional phase interferometers 

usually use the antenna array with long baseline. But when 

the baseline length exceeds the half wavelength of the 

incident signal, there will be the phase difference ambigu-

ity problems for each array element [5], [6]. Although 

different authors proposed many methods to solve ambigu-

ity [5–11], the success rate of solving ambiguity for 

a direction-finding system cannot be guaranteed because of 

the influence of array element structure, radome, element 

mutual coupling, etc. Especially in the case of high noise 

power, the ambiguity even cannot be solved. The correla-

tive interferometer is a kind of interferometer direction 

finding system which uses the correlation techniques. The 

correlative interferometer breaks through the limitation that 

the antenna aperture must be less than half wavelength. 

And this interferometer avoids the problem of solving the 

phase ambiguity which exists in the phase interferometer. 

The direction-finding algorithm of the correlative interfer-

ometer is simple and it has been regarded as a high preci-

sion direction finding system by the International Telecom-

munication Union (ITU) [12]. So, it has been widely used 

in recent years [13–19]. As can be seen from the direction 

finding principal that the DOA estimation precision of the 

correlative interferometer must be ensured by the sample 

data precision, which inevitably brings about the high 

computational complexity and big data storage burden  

[12–16], [19]. Especially in the case of broadband signal 

and large view field, there will be impossible burdens for 

the processor. In order to solve this problem, a series of 

algorithms are proposed recently. In [17], the authors study 

a dimension separation-based two-dimensional correlation 

interferometer algorithm. The original two-dimensional 

angle searching is divided into 2 one-dimensional search-

ing processes in the proposed algorithm to reduce the com-

putational complexity. In [18], the authors propose a sec-

ondary correlation method of direction finding by using 

phase differences interpolation algorithm and the simula-

tion results show that the algorithm has a much higher 

calculating speed while assuring good precision.  

Because of the advantages of uniform circular array 
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(UCA) such as fewer array elements, the ability of 2-D 

DOA estimation, non-oriented fuzzy [20] etc., it has been 

widely used [21–24]. So, the direction-finding algorithm of 

UCA interferometer becomes an important issue nowa-

days. For the correlative interferometer direction finding 

system, the DOA estimation theory of UCA is the same 

with the theory of uniform linear array (ULA). But in the 

case of two-dimensional DOA estimation, the computa-

tional complexity of correlative interferometer will be very 

huge. In order to improve the direction-finding efficiency 

of correlative interferometer and reduce the size of the 

lookup table, this paper proposes the one dimensional 

sorting lookup table-two dimensional linear interpolation 

(1DSLUT-2DLI) algorithm. Firstly, the phase differences 

model of UCA is established in the paper and the correla-

tion functions of correlative interferometer are analyzed. 

The various factors which affect the DOA estimation preci-

sion of correlative interferometer are also researched. On 

this basis, the paper proposes the one-dimensional sorting 

lookup table (1DSLUT) algorithm. A new lookup table can 

be obtained by carrying out the ascending order for the first 

dimensional phase differences. Then a one dimensional 

iterative filtering method can be used to look up the table 

and get the DOA estimation. Compared to the traditional 

methods, the 1DSLUT algorithm can reduce the computa-

tional complexity greatly. Considering the fact that the 

DOA estimation precision of the correlative interferometer 

must be ensured by the sample data precision, which will 

cause big sample data storage burden, this paper proposes 

a two-dimensional linear interpolation (2DLI) algorithm. 

Through the Taylor expansion of the phase difference, the 

conclusion that the phase difference is approximately linear 

within one step angle of the lookup table is obtained. So, 

we can carry out the linear interpolation for the phase 

difference of azimuth direction and elevation direction. In 

this way, the DOA estimation precision can be improved 

and the size of the lookup table can be controlled, which 

means the computational complexity is reduced on the 

same DOA estimation precision situation. The 1DSLUT-

2DLI algorithm can be applied to the UCA correlative 

interferometer and can complete the non-ambiguity 2D 

DOA estimation. The algorithm owns a high estimation 

precision and the computational complexity is reduced 

greatly compared to the traditional methods. On the basis 

of high direction finding precision, the algorithm can also 

keep the size of the lookup table within a reasonable range, 

which is prone to be realized in engineering. The simula-

tion results showed the good performance of the algorithm 

proposed by this paper. 

2. The UCA Correlative Interferome-

ter Model  

The UCA correlative interferometer model with N 

sensors is shown in Fig. 1. A1, A2,…, An are elements of the 

UCA separately, which are placed in the XOY  plane. The 

angle  between  the array elements is w, so w = 2 / N. The 

 

Fig. 1. The UCA correlative interferometer model. 

angle between A1 and X axis is w0. The far-field incident 

wave is PO. The vertical line from P  to the XOY  plane is 

PQ. The angle between OQ and X axis is . The angle 

between the far-field incident wave and Z  axis is . The 

vertical line from P  to the YOZ  plane is PE. The angle 

between OE  and Z  axis is . The vertical line from P  to 

the XOZ  plane is PF. The angle between OF and Z  axis 

is φ . 

For the UCA model shown in Fig. 1,  is the azimuth 

angle in the polar coordinate system and  is the elevation 

angle in the polar coordinate system.  is the azimuth angle 

in the rectangular coordinate system and  is the azimuth 

angle in the rectangular coordinate system. In this paper, 

we use the rectangular coordinate system, which means the 

azimuth angle is  and the elevation angle is . The direc-

tion-finding scope of the correlative interferometer is deter-

mined by the extreme value of the azimuth angle and ele-

vation angle, which is called the view field. The phase 

difference value of two elements of the UCA array is called 

phase difference. The phase difference of two elements 

which are (k – 1) elements apart is called the kth order 

phase difference. The sequence number of the first element 

is the dimension of the phase difference. Such as the phase 

difference between A1 and A3 is called the 2nd order and 

the 1st dimension phase difference. Considering that there 

is no direction for the phase difference between two ele-

ments, so the maximum of the phase difference order for 

the array with N elements is: 

 
2

N
K

    
.  (1) 

In (1), K is the maximum order of the phase difference for 

a UCA with N elements, which means the phase difference 

order is: k = 1,2,…,K and  is the rounded down symbol. 

We can regard O as a reference and get the kth order 

phase difference of UCA shown in Fig. 1. 
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In (2), r is the UCA radius, c is the speed of light, f is the 

frequency of the far-field signal. \  stands for taking re-

mainders. k
ij is called the kth order and ith dimension 

phase difference of the UCA. 

The following expressions can be obtained based on 

the geometric relationship in Fig. 1. 
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Based on (2) and (3), the kth order and ith dimension 

phase difference of the UCA can be expressed as a func-

tion of azimuth angle and elevation angle, namely: 
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3. The 1DSLUT-2DLI Algorithm 

3.1 The Analysis of UCA Correlative 

Interferometer 

As can be seen from (4) that we can get the kth order 

and ith dimension phase difference of the UCA based on 

the azimuth angle and elevation angle of incident wave. In 

turn, the procedure of estimating DOAs of the incident 

signals through the phase differences is called the interfer-

ometer direction finding. The correlative interferometer is 

a kind of direction finding system which obtains the DOA 

of signals through the correlation between the phase differ-

ence of incident wave and the phase difference sample 

data. The overall thought of direction finding methods for 

the correlative interferometer can be expressed as the fol-

lows. Firstly, the phase differences of the array elements 

can be obtained by looping through the whole field of the 

correlative interferometer and these phase differences can 

be regarded as the sample data to form the lookup table, 

which regards the azimuth angle and the elevation angle as 

the index. Then, the phase differences of the real incident 

signal can be compared with the phase differences stored in 

the lookup table and the highest correlation point can be 

selected. Finally, the DOA estimation can be obtained from 

the index of the highest correlation point. Assuming the 

phase difference stored in the lookup table is k(, ) and 

the phase difference of the incident wave is ̃ k. The direc-

tion-finding process is to find the highest correlation point 

between ̃ k and k(, ) to get (, ) of the point, which 

can be expressed as the following expression. 

 ( , ) ( , ( , ))k kf       .  (5) 

In (5), f( ) is the phase difference comparison function. As 

the phase difference value is from – to , so there is a flip 

phenomenon for the phase difference at ±, which will 

cause a bigger direction finding error. In order to solve this 

problem, in this paper, we use the maximum cosine sum 

criterion [13], [14] as the comparison function, which can 

be expressed as follows. 
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For a UCA interferometer，the main factors which 

influence its direction-finding precision are the element 

number, the array radius, the phase difference order and the 

incident wave frequency. As the correlative interferometer 

uses the looking up table algorithm, so it avoids the prob-

lem of solving the phase ambiguity. In [20], the authors 

propose that UCA is non-oriented fuzzy when the number 

of the elements is an odd number greater than 5 or an even 

number greater than 8. So we just analyze the direction 

finding precision of the UCA correlative interferometer. 

According to (4), the derivatives of k
ij with azimuth angle 

and elevation angle can be obtained, namely: 
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Based on the definition of derivative, when k
ij  0, 

the following expressions can be obtained.  
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As can be seen from (9) and (10) that when the inci-

dent wave direction is determined, the values of  and  

can be calculated by Aki and Bki. Based on (4), we can get 
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the following conclusions. The larger the radius of UCA, 

the smaller  and , which means the higher the DOA 

estimation precision. The larger the element number, the 

higher the DOA estimation precision. The higher the fre-

quency of the incident wave, the higher the DOA estima-

tion precision. The higher the phase difference order, the 

higher the DOA estimation precision. 

Through the theory analysis of the correlative inter-

ferometer, we can see that when the UCA parameters and 

the incident wave parameters are determined, the direction-

finding precision is determined by the step angle of the 

lookup table. The smaller the step angle is, the higher the 

direction-finding precision. When we estimate the DOA 

based on (6), we need to calculate every point of the 

lookup table. So, the smaller the step angle is, the higher 

the computational complexity of the algorithm. Especially 

in the case of two-dimensional direction finding, the com-

putational complexity will increase in square times with the 

decrease of the step angle. In addition, the smaller the step 

angle is, the bigger the size of the lookup table, which will 

bring about the impossible storing burdens for the 

processor. 

3.2 The 1DSLUT Algorithm 

According to (1), we can see that for the phase differ-

ences of UCA, when the UCA parameters and the incident 

wave parameters are determined, it is determined by the 

incident wave direction. So, each dimension of the kth 

order phase difference sample data in the lookup table is 

corresponding to each dimension of the kth order phase 

difference of the incident wave. So, we can contrast each 

dimension of the kth order phase difference one by one and 

pick out the highest correlation point. Considering the 

phase differences between the lookup table and the inci-

dent wave are different because of the noises, so the maxi-

mum cosine sum criterion can be expressed as the follow-

ing expression, which is the one-dimensional lookup table 

algorithm. 
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As can be seen from (11), the one-dimensional lookup 

table algorithm is a kind of iteration comparison method. In 

(11), m expresses the mth comparison of the algorithm and 

Tm is the comparison threshold of the mth comparison 

which is determined by the noise level. (m,m) is a collec-

tion of the points within the comparison threshold after the 

mth comparison. We can see from (11) that the number of 

points within the threshold after each comparison is less 

and less. So the algorithm can improve the calculation 

efficiency. It is important to note that if there is only one 

point in (m ,m) after the mth comparison, this point is the 

DOA estimation of the incident wave. If there is no point 

in (m ,m) after the mth comparison, we can obtain the 

DOA estimation of the incident wave by solving the 

expression: (m ,m) = 
1 1

1 1
( , )

max cos( ( , ))
m m

k k
mj mj m m 

   
 

  . 

Otherwise, we can obtain the DOA estimation (N,N) 

based on (11), which will carry out N iteration 

comparisons. 

As can be seen from the theory of the 1DLUT algo-

rithm, Tm is the main factor of this algorithm. Tm is a posi-

tive number less than 1, which represents the proximity 

between the phase differences of the incident wave and the 

phase differences stored in the lookup table. If Tm is set too 

big, the correct DOA information will probably be got rid 

of after some iteration. If Tm is set too little, the number of 

the points within the comparison threshold after some 

iteration will be relatively big, which will bring about the 

increase of the computational complexity. In addition, if Tm 

is set too little, the effect of the random noises will be in-

creased, which will cause a wrong estimation. Generally 

speaking, the deviation caused by the random noises for 

each dimension of the kth order phase difference belongs to 

a same range, so we select a same comparison threshold for 

each iteration, namely:  

 1 , 2, , 1mT T T m N    .  (12) 

As can be seen from (11) that when we carry out the 

first iteration, we need to carry out the threshold compari-

son for the first dimensional phase differences of all the 

points in the view filed. In order to further decrease the 

computational complexity of the algorithm, we can sort the 

phase difference sample values in an ascending order first-

ly and the angle information will be stored in the lookup 

table in the meantime. Then, we can take the points whose 

phase difference of the first dimension owns a difference 

with the first dimensional phase differences in the lookup 

table less than ± as the results of the first iteration. We 

sort the phase difference sample values when we establish 

the lookup table, which will not increase the computational 

complexity of the algorithm. In this way, we can avoid 

carrying out the threshold comparison for the first dimen-

sional phase differences of all the points in the view filed, 

which can decrease the computational complexity of the 

algorithm greatly.  can be obtained from T, namely: 

 arccos( )T  .  (13) 

Compared to the conventional algorithm in [13], the 

1DSLUT algorithm decreases the number of points which 

need to be calculated and the size of the lookup table 

remains the same. The number of points which need to be 

calculated is shown in Fig. 2. 

In Fig. 2, the solid line stands for the conventional 

algorithm and the dotted line represents the 1DSLUT algo-

rithm. In addition, the solid line also represents the size of 

the lookup table. As can be seen from the figure, for the 

conventional  algorithm in  [13],  the number of points need 
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Fig. 2. The points’ number to be calculated. 

to be calculated is the number of points stored in the 

lookup table. However, for the 1DSLUT algorithm, the 

number of points need to be calculated decreases along 

with the increase of the phase difference dimension and the 

number of points is also far less than the number of points 

of the traditional algorithm. So, the 1DSLUT algorithm can 

greatly decrease the computational complexity compared to 

the traditional algorithm. 

3.3 The 2DLI Algorithm 

As can be seen from the analysis in Sec. 3.2, no mat-

ter we choose the conventional algorithm or the 1DSLUT 

algorithm, the size of the lookup table is not changed, so 

the direction-finding precision is also determined by the 

step angle of the lookup table. However, there is an irrec-

oncilable conflict between the step angle and the computa-

tional complexity. If we want to get a DOA estimation 

result with high precision, the step angle of the lookup 

table must be little, which will cause that the size of the 

lookup table is very big. So, it is difficult to store the table 

and the real-time performance of the algorithm also cannot 

be guaranteed. In order to control the size of the lookup 

table, this paper proposes the 2DLI algorithm. 

Firstly, we can get the Taylor expansions of k
ij in (4) 

at  = 0 and  = 0  separately. 
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In (14) and (15), o() and o() are the high-order terms of 

k
ij(,). As can be seen from (14) and (15), the coefficient 

of the high-order terms of k
ij(,) are smaller and smaller. 

So, when  is a certain value, k
ij(,) can be regarded as 

a linear function in a small range of . In the same way, 

when  is a certain value, k
ij(,) can be regarded as 

a linear  function  in a small  range  of .  Based on this, we 

 

Fig. 3. The sketch map of the two-dimensional interpolation. 

can carry out the linear interpolation for phase differences 

in the azimuth direction and elevation direction. The inter-

polation can be explained by Fig. 3. 

In Fig. 3, the lookup table is expressed as a two-di-

mensional plane in the rectangular coordinate system. 

A(A,A), B(B,B) and C(C,C) are the adjacent points in 

the lookup table. Assuming the DOA of the incident wave 

is located at P(P,P). The phase difference of the kth order 

and the ith dimension is k
ij(P,P). We can see from Fig. 3 

that the point which is most close to P is A, which means 

the direction-finding result is (A,A) when using the con-

ventional algorithm. The phase difference of the kth order 

and the ith dimension of A is k
ij(A,A). The next adjacent 

point of A in the azimuth direction is B , whose phase dif-

ference of the kth order and the ith dimension is k
ij(B,B). 

The next adjacent point of A in the elevation direction is C, 

whose phase difference of the kth order and the ith dimen-

sion is k
ij(C,C). If the step angle of the lookup table in 

the azimuth direction is   and the step angle in the eleva-

tion direction is , we can get the following expressions. 

 
( , ) ( , ),

( , ) ( , ).

B B A A

C C A A





    

    

 


 
  (16) 

The result of looking up the table with no interpola-

tion is (A,A). The two-dimensional linear interpolation is 

to carry out the linear interpolation in the azimuth direction 

and the elevation direction for the phase differences in the 

original lookup table, which is expressed as the dotted lines 

in Fig. 3. To put it simply, the interpolation is to make the 

rectangle composed by A, B and C more dense, so that we 

can get the point which is more close to P. If the interpola-

tion multiple in the azimuth direction and elevation direc-

tion are separately L and L, we can get the position of P 

in the two dimensional interpolation plane. 

 
P P A A

P A

1 C C A A

( , ) ( , )1
,

( , ) ( , )

k kN
ij ij

k k
i ij ij

L
N L






       
     


  

   (17) 

 
P P A A

P A

1 B B A A

( , ) ( , )1

( , ) ( , )

k kN
ij ij

k k
i ij ij

L
N L






      
 

     


  

 .  (18) 

In (17) and (18), in order to decrease the influence of  

the random noises, we carry out the linear interpolation for 

the kth order phase differences of N dimensions and regard 
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the mean value as the final result. In this way, we can im-

prove the direction-finding precision of the correlative 

interferometer on the basis that the size of the lookup table 

remains unchanged.  

4. Numerical Simulation 

In order to test the performance of the proposed algo-

rithm, we carry out the numerical simulation. The UCA 

correlative interferometer parameters are shown in Tab. 1. 

Firstly, we can get the sample data of phase differ-

ences by looping through the whole view field and estab-

lish the lookup table. The phase differences of the incident 

wave can be obtained by overlaying phase differences of 

the lookup table and the random noises, namely: 

 2k k    .  (19) 

In (19), 2 represents the power of the random noises. 

4.1 The 1DSLUT Algorithm 

We can obtain the new lookup table based on the 

method described in Sec. 3.2. Firstly, we simulate the rela-

tionship between T and the algorithm performance. The 

parameters of the UCA correlative interferometer are 

shown in Tab. 1. The frequency of the incident wave is 

5 GHz. We carry out a total of 1000 times Monte Carlo 

simulations for the whole view field and count the direc-

tion-finding error probability. The results are shown in 

Fig. 4.  

In Fig. 4, the error probability is the percentage of the 

error direction finding points in the whole view field. 

When the measuring errors of angles are bigger than the 

step angle of the lookup table, we consider it to be an error 

direction finding point. As can be seen from the figure, 

under the various noise power, the error probability in-

creases sharply with the increase of T after T > 0.95. This 

is because the correct DOA information is got rid of. When 

T < 0.95, under the low noise power situation (5 dBm, 

10 dBm), the error probability increases a little (less than 

0.03) with the increase of T, which can be ignored. Under 

the high noise power (15 dBm, 20 dBm), the error prob-

ability presents a parabola form, which means the error 

probability decreases with the increase of T firstly and then 

increases  with the increase of T.  The change range is huge 
 

Sensor number 7 
The array 

radius [m] 
0.18 

0w  3 /14π  w  2 / 7π  

Azimuth field 

[  ] 
(–45,45) Pitch field [  ] (–45,45) 

The azimuth 

stepping angle 

[  ]  

1 

The pitch 

stepping angle 

[  ] 

1 

k  1   

Tab. 1. The parameters of the UCA correlative interferometer. 

 
Fig. 4. The relationship between T and the error probability. 

in the case of high noise power (even more than 0.2 when 

2 is 20 dBm). When T = 0.90~0.95, the error probability 

is lower. According to the theory of the 1DSLUT algo-

rithm, the higher the threshold is, the higher the computa-

tional complexity. In order to concern both the efficiency 

and the accuracy, we pick up T = 0.94 in this paper. Based 

on (13), we can obtain   20°. 

In order to further examine the performance of the 

1DSLUT algorithm, we carry out the comparison simula-

tion between the conventional algorithm in [13] and the 

1DSLUT algorithm. The simulation parameters remain 

unchanged. We carry out a total of 1000 times Monte Carlo 

simulations and the results are shown in Fig. 5. 

In Fig. 5, we show the relationship between the noise 

power and the direction-finding error probability of the two 

algorithms. As can be seen from the figure, the error 

probability of the algorithm in [13] is somewhat less than 

the error probability of the 1DSLUT algorithm. However, 

the difference of the error probability between the two 

algorithms is very small (less than 0.03), so the 1DSLUT 

algorithm can meet the practical requirements. 

For the 1DSLUT algorithm, it has the advantage of 

lower computational complexity. So, we count the number 

of points which need to be calculated in these two algo-

rithms. For the lookup table in Tab. 1, the data points’ 

number is 8281. So, the number of points which need to be 

 

Fig. 5. The relationship between 2σ  and the error probability 

of the two algorithms. 
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 The data points 

The first iteration 990 

The second iteration 877 

The third iteration 197 

The fourth iteration 116 

The fifth iteration 23 

The sixth iteration 14 

Tab. 2. The points’ number within the threshold after each 

iteration for the 1DSLUT algorithm. 
 

 
The algorithm 

in [13] 

The 1DSLUT 

algorithm 

Addition 49686 0 

Subtraction 57967 2217 

Cosine 57967 2217 

Comparison 8281 2217 

Tab. 3. The times of all kinds of operation for the two 

algorithms. 

calculated in the conventional algorithm is 8281. For the 

1DSLUT algorithm, we count the points’ number within 

the threshold after each iteration which are shown in 

Tab. 2. 

In Tab. 2, the points’ number after each iteration is 

the points’ number needed to be calculated for the next 

iteration. As the first iteration is carried out through getting 

a series of points in the lookup table directly, so we omit it. 

The results in Tab. 2 are the mean values of all the incident 

waves in the view field. As can be seen from the table, the 

points’ number after each iteration decreases rapidly, 

which is matched with the theory analysis in Sec. 3.2. 

In the simulation, if we use the algorithm in [13], 

based on (6), we need to carry out 7 times subtraction op-

eration, 7 times cosine operation, 6 times addition opera-

tion and 1 time comparison operation at each point. If we 

use the 1DSLUT algorithm, based on (11), we need to 

carry out 1 times subtraction operation, 1 time cosine 

operation and 1 time comparison operation at each point. 

Based on the above analysis, we can obtain the times of all 

kinds of operation for the two algorithms when they carry 

out one time direction finding. The results are shown in 

Tab. 3. 

As can be seen from the results in Tab. 3, the times of 

all the operations for the 1DSLUT algorithm decrease more 

than 30 times compared to the algorithm in [13]. So, the 

1DSLUT algorithm has a huge advantage in terms of the 

computational complexity. 

4.2 The 2DLI Algorithm 

In order to examine the performance of the 2DLI 

algorithm proposed in Sec. 3.3, we carry out the numerical 

simulations. The parameters of the correlative interferome-

ter are shown in Tab. 1. The interpolation multiple in the 

azimuth direction and elevation direction are all 100. In 

order to fully inspect the performance of the two-dimen-

sional interpolation, we set 5 incident wave signals. The 

signals are assigned the number 1~5 and their frequencies 

are all 5 GHz. The two dimensional DOA respectively are 

(–40°,–15°), (–20°, 40°), (10°,–35°), (30°,5°), and (0°, 0°), 

which means they distribute in four quadrants and the 

origin. 

Figure 6 shows the interpolation errors of the five sig-

nals, which can be obtained by the subtraction between the 

phase differences after interpolation and the phase differ-

ences in the lookup table whose step angle is 0.01°. In 

addition, the interpolation errors in Fig. 6 are the sum of 

the azimuth interpolation errors and the elevation interpola-

tion errors. As can be seen from the figure, for the signals 

from different directions, the interpolation errors are differ-

ent. The interpolation errors are related to the distance 

between the signal directions and the origin. The farther 

the distance, the smaller the interpolation error. But the 

interpolation errors of different signals are all pretty small 

(less than 0.05°), which won’t have effects on the direction 

finding basically.  

In order to further examine the performance of the 

2DLI algorithm, we also analyze the relationship between 

the DOA estimation precision of the above five signals and 

the power of noises. The DOA estimation precision can be 

measured by the root mean square error (RMSE). As this 

paper carries out a 2-D DOA estimation, the RMSE is 

a combination between the azimuth angle estimation error 

and the elevation angle estimation error, namely: 

 2 2

1

1
( ) ( )

num

j j

j

RMSE
num

   


      .  (20) 

In (20), num stands for the number of the Monte Carlo 

simulation. ̃j is the azimuth angle estimation of the jth si-

mulation and  ̃j is the elevation angle estimation of the jth 

simulation. 

In addition to a decreasing noise power, the other 

parameters remain unchanged. We carry out a total of 1000 

times Monte Carlo simulations and the results are shown in 

Fig. 7. 

As can be seen from Fig. 7, when 2 is 20 dBm, the 

RMSE of DOA estimations of different signals is less than 

1.4°, so the 2DLI algorithm owns a pretty high precision 

for the DOA  estimation.  The RMSE  of DOA  estimations 

 
Fig. 6. The interpolation errors of the five signals. 
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Fig. 7. RMSE of DOA estimation along with the noises’ 

power. 

decreases rapidly with the decrease of the noises’ power 

and achieves the convergence condition (The RMSE is 

infinitely close to zero) ultimately. For a UCA interferome-

ter, it has isotropy for the waves of different directions in 

theory, but the DOA estimation precision for the waves 

from different directions are not the same in Fig. 7. This is 

because of the random errors when establishing the lookup 

table and the random noises when imitating the incident 

wave signals. We also can see from Fig. 7 that there is no 

clear correlation between the RMSE of DOA estimations 

and the interpolation errors shown in Fig. 6. This is be-

cause the interpolation errors are pretty small and the 

noises are the main factor which influences the DOA esti-

mation precision. 

4.3 The 1DSLUT-2DLI Algorithm 

As can be seen from the derivation in Sec. 3.1, for 

a UCA correlative interferometer, the main factors which 

influence its direction-finding precision are the element 

number, the array radius, the phase difference order and the 

incident wave frequency. In order to examine the perform-

ance of the 1DSLUT-2DLI algorithm, we also simulate the 

relationship between these factors and the DOA estimation 

precision. The parameters of the UCA correlative interfer-

ometer are shown in Tab. 1. The incident wave signal is 

from (–4°, 9°) whose frequency is 5 GHz. We carry out 

a total of 1000 times Monte Carlo simulations and the 

results are shown in Fig. 8. 

Figure 8(a) shows the DOA estimation RMSE along 

with the noises’ power using three different phase differ-

ence orders. As can be seen from the figure, in all situa-

tions, the estimation RMSE decreases with the decrease of 

the noises’ power and achieves the convergence condition 

ultimately. In addition, the higher the phase difference 

order, the lower the DOA estimation RMSE. Figure 8(b) 

shows the DOA estimation RMSE along with the array 

radius in four different noises’ power. As can be seen from 

the figure, the estimation RMSE decreases with the in-

crease of the array  radius and the higher the noises’ power, 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8.  The relationship between the DOA estimation 

precision and the various factors when using the 

1DSLUT-2DLI algorithm. (a) is the relationship 

between RMSE and the phase difference order. (b) is 

the relationship between RMSE and the radius of the 

array. (c) is the relationship between RMSE and the 

sensor number. (d) is the relationship between RMSE 

and the sensor number. 
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the bigger the decrement of the estimation RMSE with the 

increase of the array radius. Figure 8(c) shows the DOA 

estimation RMSE along with the sensor number in four 

different noises’ power. In order to carry out the direction 

finding with no ambiguity, we get rid of the UCA with 6 

elements [20]. As can be seen from the figure, the estima-

tion RMSE decreases with the increase of the sensor num-

ber and the higher the noises’ power, the bigger the decre-

ment of the estimation RMSE with the increase of the sen-

sor number. Figure 8(d) shows the DOA estimation RMSE 

along with the frequency of the signal in four different 

noises’ power. As can be seen from the figure, the estima-

tion RMSE decreases with the increase of the signal fre-

quency and the higher the noises’ power, the bigger the 

decrement of the estimation RMSE with the increase of the 

signal frequency. The simulation results shown in Fig. 8 

are matched with the theory analysis in Sec. 3.1. In addi-

tion, we can see from the simulation results that the 

1DSLUT-2DLI algorithm shows a pretty good estimation 

precision in various cases. 

4.4 Algorithm Comparison 

In order to further examine the performance of the 

proposed algorithm, we carry out a comparison simulation 

using a series of algorithms, which are: 

 Algorithm 1: the 1DSLUT-2DLI algorithm. The step 

angle of the lookup table is 1° and the interpolation 

multiple is 100.  

 Algorithm 2: the algorithm in [13]. The step angle of 

the lookup table is 1°. Algorithm 2 uses the maximum 

cosine sum criterion [13]. 

 Algorithm 3: the algorithm in [13]. The step angle of 

the lookup table is 0.01°. Algorithm 3 uses the maxi-

mum cosine sum criterion [13]. 

 Algorithm 4: the algorithm in [17]. The step angle of 

the lookup table is 1° and the interpolation multiple is 

100. Algorithm 4 uses the maximum correlation coef-

ficient criterion [13], [14] in the azimuth direction and 

the maximum cosine sum criterion in the elevation di-

rection [17]. 

 Algorithm 5: the algorithm in [18]. The step angle of 

the original lookup table is 1° and the interpolation 

multiple is 100. Algorithm 5 uses the maximum cor-

relation coefficient criterion [18]. 

The frequency of the incident signal is 5 GHz and its 

DOA is (8.37°, –9.73°). The other parameters except for 

the lookup table are shown in Tab. 1. We carry out a total 

of 1000 times Monte Carlo simulations and the results are 

shown in Fig. 9. 

Figure 9 shows the estimation RMSE along with the 

noises’ power using five different algorithms. As can be 

seen from the results, when using these five algorithms, the 

RMSE of DOA estimation all decreases rapidly with the 

decrease of the noises’ power and achieves the conver-

gence condition ultimately. However, when using Algo-

rithm 2, the estimation RMSE can’t converge to zero or 

a number infinitely close to zero. This is because the step 

angle of the lookup table in Algorithm 2 is too big, which 

causes the estimation precision is low. For the rest of algo-

rithms, the RMSE all can converge to zero or a number 

infinitely close to zero. Among them, Algorithm 3 is using 

a pretty small step angle of the lookup table, which can 

improve the DOA estimation greatly. Algorithm 1, Algo-

rithm 4 and Algorithm 5 all make use of the same lookup 

table compared to Algorithm 2. However, these three algo-

rithms all take advantage of the interpolation, which can 

improve the estimation precision on the basis of remaining 

the lookup table unchanged.  

In terms of the DOA estimation precision, except for 

different lookup tables, Algorithm 2 and Algorithm 3 use 

the same algorithm proposed in [13], so we just analyze the 

estimation precision of Algorithm 1, Algorithm 3, Algo-

rithm 4 and Algorithm 5. In general, Algorithm 3 owns the 

highest estimation precision, followed by Algorithm 1, 

Algorithm 4 and Algorithm 5. As can be seen from Fig. 9, 

the estimation precision of the 1DSLUT-2DLI algorithm is 

improved a lot compared to the Algorithm 4 and Algo-

rithm 5. Especially in the case of high noise’s power, the 

precision improvement is very obvious. When 2 is 

20 dBm, the RMSE is reduced more than 0.11° compared 

to Algorithm 4 and more than 0.23° compared to Algo-

rithm 5. Although the estimation accuracy of Algorithm 3 

is better than the proposed algorithm, the superiority is not 

big. When 2 is 20 dBm, the RMSE of Algorithm 3 is re-

duced only about 0.03° compared to the proposed algo-

rithm. With the decrease of the noises’ power, the estima-

tion RMSE of these four algorithms tend to be the same 

(When 2 is 0 dBm, the four RMSE curves are basically 

coincident), which means the DOA estimation precision of 

four algorithms tends to be the same. 

Although Algorithm 3 owns the highest estimation 

precision in these five algorithms, its lookup table’s size is 

10000 times compared to the lookup table’s size of other 

algorithms.  Considering  the simulation  results in Sec. 4.1, 

 

Fig. 9. RMSE of DOA estimation along with the noises’ 

power using five different algorithms. 
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Fig. 10. The estimation time of these five algorithms when 

running on Matlab. 

we can conclude that in order to obtain a similar estimation 

precision, the computational complexity decreases more 

than 300 000 (30 10 000) times when using the proposed 

algorithm instead of Algorithm 3. For Algorithm 2 and 

Algorithm 5, the lookup table’s size is equal, however, the 

computational complexity of the maximum cosine sum 

criterion is somewhat smaller than that of  the maximum 

correlation coefficient criterion, so the computational com-

plexity of Algorithm 2 is smaller than that of Algorithm 5. 

According to the simulation results in Sec. 4.1, we can 

conclude that the computational complexity decreases 

more than 30 times when using the proposed algorithm 

instead of Algorithm 2 and Algorithm 5. For Algorithm 4, 

its data points’ number needed to be calculated is smaller 

than that of Algorithm 1, however, its various operation 

times is bigger than that of Algorithm 1, so the computa-

tional complexity of Algorithm 4 is comparative to the 

computational complexity of the proposed algorithm. How-

ever, Algorithm 4 and Algorithm 5 all need to solve the 

phase ambiguity, which increases the computational com-

plexity. In addition, the success rate of solving ambiguity 

cannot be guaranteed because of the influence of array 

element structure, radome, element mutual coupling, etc. 

Especially in the case of high noises’ power, the ambiguity 

even cannot be solved, which limits the application of these 

two algorithms.  

In order to further compare the computation complex-

ity, the direction finding efficiencies of these five algo-

rithms are compared. In the computer platform with an 

Intel Core i7-2600K CPU @3.40GHz, we choose Matlab 

as a programming language to investigate the average time 

of carrying out 1000 runs. The results are shown in Fig. 10. 

As can be seen from the figure, Algorithm 1 needs the 

lowest direction finding time, followed by Algorithm 4, 

Algorithm 5, Algorithm 2 and Algorithm 3. So, Algo-

rithm 1 offers the highest direction finding efficiency, 

which means it owns the lowest computational complexity. 

The results shown in Fig. 10 are in accordance with the 

previous analysis and simulations for these five algorithms. 

5. Conclusion 

In order to improve the direction-finding efficiency of 

correlative interferometer and reduce the size of the lookup 

table, this paper proposes the 1DSLUT-2DLI algorithm. 

The algorithm can be applied to a UCA correlative interfer-

ometer and can complete the non-ambiguity 2D DOA 

estimation of the far-field incident wave with a high preci-

sion. The proposed algorithm also does not need to solve 

the phase ambiguity, which makes it can be used in various 

complex environments. The numerical simulation results 

verify the effectiveness of the 1DSLUT-2DLI algorithm, 

which can obtain a pretty high DOA estimation precision 

with a low computational complexity and a small lookup 

table. So, it is prone to be realized in engineering.  
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