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A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction
filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an
orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized
by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the
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constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions.
The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.
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1. INTRODUCTION

Subband decomposition and coding of images have become
quite popular in the last two decades. Subband coding has
first been applied to speech signals by Crochiere et al. [1] and
has later gained attention as a powerful method for compres-
sion of still images and video [2–4]. While most of the re-
search in the area of subband decomposition concentrated
on 1D signals and on separable approaches for multidimen-
sional signals in the eighties, the nonseparable approaches
have prevailed in the area of 2D filter banks from nineties
onward. Daubechies [5] and Mallat [6] have developed the
theory of wavelets and have shown that subband coding and
wavelets are closely related.

In subband signal coding, the basic objective is to con-
centrate the signal energy in as few subspectra or subbands
as possible for efficient transmission of information. The un-
even distribution of signal energy over the frequency band
provides the basis for source compression techniques, thus
data compression is the driving motivation for subband sig-
nal coding. In subband coding, the frequency band of the sig-
nal is first divided into a set of uncorrelated frequency bands
by filtering and then each of these subbands is encoded using
a bit allocation rationale matched to the signal energy in that
subband.

Multirate filter banks find applications in subband de-
composition systems. The complete filter bank is composed

of two sections: the analysis section which decomposes the
signal into a set of subband components and the synthesis
section which reconstructs the signal from its components.
The subband analysis and synthesis filters should be designed
to be alias-free and should satisfy the perfect signal recon-
struction property. The simultaneous cancellation of aliasing
as well as amplitude and phase distortions leads to perfect
reconstruction (PR) filter banks which are suitable for hier-
archical subband coding and multiresolution signal decom-
position.

In a 1D two-channel filter bank decomposition sys-
tem, the input signal can be split into lowpass and high-
pass subbands using quadrature mirror filters (QMF). De-
sign of quadrature mirror filter banks (QMFB) in the fre-
quency domain and in the time domain has been pre-
sented in [7, 8], respectively. The PR property and the
requirements for 1D two-channel finite impulse response
QMFB have been first obtained by Smith and Barnwell [9]
and then have been thoroughly treated by Vaidyanathan
[10]. The results of 1D two-band filter banks are extended
to M-band without using separable filters and more gen-
eral PR conditions are obtained in [11, 12]. Nguyen and
Vaidyanathan [13] have relaxed the power complementary
requirements and the QMF restrictions of the filters and
have obtained two-channel PR structures which yield linear
phase analysis and synthesis filters for an arbitrary number
of channels.
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Vaidyanathan and Hoang [14] have used a 1D lattice fil-
ter structure for the design of two-channel QMFBs, which
satisfied a sufficient condition for PR. The lattice structure
has a hierarchical property so that a higher-order PR QMFB
can be constructed from a lower-order PR QMFB simply
by adding more lattice sections. Vaidyanathan later extended
this structure to M-channel using an optimization technique
with M ×M orthogonal matrix as presented in [15].

Smith and Eddins [4], Tay and Kingsbury [16] have de-
veloped subband filters which have PR properties by us-
ing different structures. Simoncelli [17], on the other hand,
has developed a nonseparable multidimensional filter bank,
which does not satisfy the conditions for PR. Bamberger
and Smith [18] have introduced fan filter banks with wedge-
shaped subbands. Other techniques have been proposed for
the design of diamond filters, fan filters, and directional
filters that originate from a 1D design [19–22]. Many re-
searchers have investigated the theory, the design methods,
and the structures for linear phase PR filter banks [23–39]
and solutions have been found.

For 2D subband decomposition systems, there exist two
different approaches: separable and nonseparable. Most of
the early reported work on subband coding of images and
image sequences are based on separable filtering using 1D
QMFBs. However, it is only proper that 2D signals, such as
images, should be processed with truly 2D systems. An inde-
pendent extension of QMFBs to the multi-dimensional case
has been published by Vetterli [2] who has claimed that sep-
arable filters are necessary and sufficient for the most natu-
ral four-band extension of the standard two-band QMFBs.
Woods and O’neil [3] have derived conditions for nonsepa-
rable filters and proved that separability is not necessary for
the design of 2D filter banks. Their approach, however, has
not supported PR in the filter banks.

Motivated by the success of Vaidyanathan and Hoang
[14] who have used 1D lattice filter structures for the design
of 1D two-channel PR QMFBs, we examine the use of 2D
lattice filter structure for the design of 2D four-channel PR
filter banks. To the best of the authors’ knowledge, 2D lattice
filter structures have not been used in the context of PR filter
banks. As they are 2D structures, it is extremely important
to use 2D lattice filters to fully exploit the properties of 2D
signals.

The theory of 2D lattice filters is developed as a natu-
ral extension of the 1D lattice filter theory. 1D and 2D lat-
tice filters have similar properties such as the hierarchical
property, in the sense that higher-order filters can be ob-
tained from lower-order filters simply by concatenating new
lattice stages to the existing ones. The utility of a 2D lat-
tice filter in the context of subband decomposition is that
the resulting filter structure is nonseparable. The 2D three-
parameter lattice filter (3PLF) structure developed by Parker
and Kayran [40] generates four 2D prediction error filters
(quadrant filters) simultaneously and combines them into a
single structure in the form of a lattice filter, therefore, the
realization of four-channel filter bank by use of the 3PLF is
very natural. However, the prediction filters are not orthog-
onal and the PR property is not satisfied. Thus, based on

the concepts of structural stability given in [41], we design
four orthogonal prediction filters and combine them to get a
modified 3PLF structure—an orthogonal 2D lattice filter. We
then use this orthogonal 2D lattice filter structure for the de-
sign of a 2D four-channel nonseparable PR lattice (NSPRL)
filter bank [42]. As a consequence of the PR property, the
proposed NSPRL structure has two independent parameters
rather than three at each stage.

In this paper, we also develop a 2D four-channel separa-
ble perfect reconstruction lattice (SPRL) filter structure using
the 1D lattice filter design given in [14]. We then show that
the SPRL filter is a special case of the proposed NSPRL filter
under certain conditions.

This paper is organized as follows. In Section 2, the back-
ground material on the 3PLF is given. In Section 3, the pro-
posed 2D four-channel NSPRL filter bank is developed; the
constraints required in order to satisfy the PR property and
the computation of the lattice filter coefficients are presented.
The relationship between the SPRL and the NSPRL filter
banks is also given in this section. In Section 4, the results
of the computer simulations are given and the PR property
of the proposed structure is verified. Finally, the conclusions
are drawn in Section 5.

2. BACKGROUND MATERIAL ON THREE-PARAMETER

LATTICE FILTER STRUCTURE

Parker and Kayran [40] have introduced the concept of four
prediction error fields which are combined into a quarter-
plane 2D lattice filter structure. This filter has three reflection
coefficients at each stage and it is developed assuming that
the input data has four-quadrant symmetry. Thus

r
(
l1, l2

)
= r
(
l1,−l2

)
= r
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− l1, l2

)
= r
(
− l1,−l2

)
, (1)

where r(·, ·)’s are the correlations of the 2D data for appro-
priate lags. Due to the four-quadrant symmetry, the 3PLF is
restricted to have one set of reflection coefficients at each lat-
tice stage.

The 3PLF structure [40] which generates four prediction
error fields can be represented by the following recursive in-
put/output equation:
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where k
(m+1)
j ’s are the lattice reflection coefficients of the (m+

1)th stage where (m) = (m1,m2) with (m+1) = (m1 +1,m2 +
1) and n1 = 1, . . . ,N1, n2 = 1, . . . ,N2, m = 1, . . . ,M − 1, and
M is the length of the filter. The initialization is as follows:
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The error fields e
(m)
00 (n1,n2), e

(m)
10 (n1,n2), e

(m)
11 (n1,n2), and

e
(m)
01 (n1,n2) correspond to the first, the second, the third, and

the fourth quarter plane prediction error fields at the output
of the mth lattice stage, respectively, and x(n1,n2) represents
the 2D input data.

At each stage, the mean square value of the prediction
error fields is minimized with respect to the reflection coeffi-
cients and the following normal equations are obtained:

R(m)k(m+1) = ρ(m). (4)

Here, R(m) and ρ(m) are, the symmetric autocorrelation ma-
trix and the cross-correlation vector of prediction error fields
of stage (m), respectively, while k(m+1) is the reflection coeffi-
cient vector of stage (m + 1), given as
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The correlations between the prediction error fields, φ
(m)
ei jepq ’s,

are given as
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(6)

The 2D transfer functions for the quadrant filters can be
determined in terms of the lattice coefficients of the relevant
stage. The (mı + 1)th stage coefficient matrix for the forward
2D transfer function is given by
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where the augmented matrix for the forward prediction error
filter is defined as follows:
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The coefficient matrix of the first stage of the forward predic-
tion error filter is defined as
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The coefficient matrices related to the backward prediction

error filters, namely, B
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10 , B
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umn, and column reversals of the matrix in (9), respectively.
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The transfer functions of the forward and the backward pre-
diction error filters can be defined as follows:
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where b
(m+1)
00 ( j, l)’s are the coefficients of the (m + 1)th order

lattice filter that can be obtained from the matrix defined in
(7).

The filters, whose coefficient matrices are defined by (9)
or by row, row and column, and column reversals of it are not
orthogonal as defined by Lev-Ari and Parker [41]. In [43], it
is shown that many different 3PLFs can be generated which
satisfy the constraint of orthogonality and three such struc-
tures are given. Motivated by this, in the subsequent sections,
first an orthogonal 2D lattice filter structure is developed and
then it used in the 2D four-channel NSPRL filter bank.

3. DESIGN OF THE PROPOSED 2D FOUR-CHANNEL

NSPRL FILTER BANK

3.1. Orthogonal 2D lattice filter structure

In this section, we derive the 2D orthogonal lattice filter
structure by modifying the 3PLF using the polyphase decom-
position technique.

The conventional four-channel filter bank is designed
as shown in Figure 1 where H0(z1, z2), H1(z1, z2), H2(z1, z2),
and H3(z1, z2) are the four analysis filters that split the spec-
trum into four subbands. The input signal is filtered with the
subband filters and then downsampled 2-by-2 in the hori-
zontal and vertical directions, respectively, and the output
signals of the analysis stage, namely, p0(n1,n2), p1(n1,n2),
p2(n1,n2), and p3(n1,n2) are generated. In the synthesis sec-
tion, these signals are first upsampled, then processed by the
interpolation filters and finally summed to yield the recon-
structed signal x̂(n1,n2).

Our aim in introducing the 2D lattice filter approach into
the 2D four-channel PR filter bank is to combine the four
analysis subband filters into a single structure in the lattice
form and to obtain high-order filter banks from the low-
order filter banks using the hierarchical property of the lattice
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Figure 1: Two-dimensional four-channel filter bank.

structures. The four synthesis filters are also combined into a
single lattice filter. The analysis section of the PR filter bank
is realized with an orthogonal 2D lattice filter; and the syn-
thesis section, which is also an orthogonal 2D lattice filter, is
derived according to the PR conditions.

The 3PLF structure is used for the lattice realization,
where each stage consists of three lattice parameters and four
prediction error fields. We modified these error fields in such
a way that each corresponds to a subband of the four-channel
filter bank. The four-band frequency split of the 2D spec-
trum is shown in Figure 2, where the regions 0, 1, 2, and 3
correspond to LL, HL, HH, and LH subbands, respectively.
The 3PLF can be decomposed into four filters whose trans-
fer functions can be arranged to generate these four subband
filters. Basically, when one of these filters is defined in terms
of lattice parameters, the others can be derived from that fil-
ter by simply imposing appropriate delays on it as explained
in Section 2. Referring to Figure 2, the ideal four-channel fil-
ters, H0(z), H1(z), H2(z), H3(z), have mirror image symme-
try about their mutual boundaries, which is equivalent to
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If one compares (11) with (10a)–(10d), the analogy be-
tween the four-quadrant filters of 3PLF and the four subband
filters is very obvious.

Starting with a zero-order filter, four fields are generated
from the input signal X(z1, z2) as
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Here, the superscripts denote the stage number. The transfer

function of the first-order filter, H
(0)
1 (z1, z2), can be expressed

in terms of the lattice parameters, k
(1)
1 , k

(1)
2 , and k

(1)
3 , which

are known from the transfer function of the forward predic-
tion error filter defined for the 3PLF structure (cf. (10a)) as
follows:
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Defining the remaining filters in a similar way, the input-
output relationship of the analysis lattice filter is given as
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where m = 0, 1, . . . ,M− 1. Compactly, (14) can be expressed
as

X(m+1)
(
z1, z2

)
= H(m+1)ZX(m)(z1, z2), (15)

where Z = diag{1, z−1
1 , z−1

1 z−1
2 , z−1

2 } and it stands for the
delay matrix. Here, it is useful to note that H(m+1)Z =

H(m+1)(z1, z2) and this will be referred to as the trans-
fer matrix of the analysis filter. Defining Ĥ(z1, z2) as
the product of the (m + 1) transfer functions, namely,
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Figure 2: Four-band split of 2D spectrum.

Ĥ(z1, z2) = [H(m+1)(z1, z2)][H(m)(z1, z2)] · · · [H(1)(z1, z2)],
the input-output relation of the complete structure can be
given as

X(m+1)
(
z1, z2

)
= Ĥ

(
z1, z2

)
X(0)

(
z1, z2

)
. (16)

The structure of the complete analysis filter characterized

by Ĥ(z1, z2) is shown in Figure 3.

3.2. PR requirements for the analysis and the
synthesis lattice filters using polyphase
representation

The 2D lattice filter structure summarized by (14) is non-
separable and the synthesis filter bank has to be determined
according to the PR conditions. For the solution of the PR
problem, several techniques have been presented however;
the most suitable one is the 2D polyphase representation [15]
(see Figure 4) which reduces the computational complexity.

The complete analysis lattice filter structure obtained by
cascading (m + 1) stages will be considered as a single block

and the resulting transfer matrix Ĥ(z1, z2) will be viewed
as the analysis polyphase matrix, Hp(z). According to the
polyphase representation [15], the PR property, denoted by
P(z), is satisfied if

P(z) = Hp(z)GT
p (z) = z−n0 I, (17)

where Gp(z) is the synthesis polyphase filter. This relation
can be utilized for the 2D lattice filter structure as
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where Ĝ(z1, z2) is the transfer function of the complete syn-
thesis filter.

One way to ensure the stability of the synthesis filters is
to force the analysis transfer matrix to be paraunitary, that is,
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sis transfer matrix is

Ĝ
(
z1, z2

)
= z−n0 ĤT
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The paraunitary condition of transfer matrix at the ith stage
of the analysis bank ensures that the transfer matrix of the
cascaded lattice structure will also be paraunitary. Thus, the
problem reduces to the design of an orthogonal matrix for
each stage i such that

H(i)H(i)T = I. (20)

Equation (20) can be written in terms of the lattice filter
coefficients as
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Figure 3: The analysis lattice filter, Ĥ(z1, z2).
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Figure 4: Polyphase representation of the analysis and the synthesis filters.

where k j = k
(i)
j for j = 1, 2, 3. Equation (21) can be expressed

as a scaled identity matrix if the following constraint is im-
posed:

k
(i)
2 = −k

(i)
1 k

(i)
3 . (22)

In order to obtain an identity matrix solution for (21),
each parameter for the ith stage should be divided by a

normalizing factor δ(i) = (1 + (k
(i)
1 )2 + (k

(i)
2 )2 + (k

(i)
3 )2)1/2. As

a result, the paraunitary condition for the analysis transfer
function is satisfied with the constraint defined by (22) and
the PR is possible using the proposed orthogonal lattice filter
structure. It is obvious here that the synthesis filter is a rear-
rangement of the analysis filter. The PR requirement for the
synthesis filter given by (19) can be expanded as a product of
lower-order filters as

Ĝ
(
z1, z2

)
= z−n0

[(
Z−1H(1)T

)(
Z−1H(2)T

)

×
(

Z−1H(3)T
)
· · ·

(
Z−1H(m+1)T

)]
.

(23)

Hence, the synthesis filter is composed of lattice stages which
are the backward arrangements of the analysis lattice stages.
Defining the overall delay vector in (23) as n0 = (m+1)p0, the
transfer function of each synthesis lattice stage can be given
as

G(i)
(
z1, z2

)
= z−p0 Z−1H(i)T (24)

for i = 1, 2, . . . ,m + 1. Selecting p0 = [ 1 1 ], one has z−p0 =

z−1
1 z−1

2 and the transfer function for order (m+1) can be ex-
plicitly written as

G(m+1)
(
z1, z2

)
=

⎡
⎢⎢⎢⎢⎣

z−1
1 z−1

2 0 0 0

0 z−1
2 0 0

0 0 1 0

0 0 0 z−1
1

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

1 k
(m+1)
1 −k

(m+1)
2 k

(m+1)
3

−k
(m+1)
1 1 k

(m+1)
3 k

(m+1)
2

−k
(m+1)
2 −k

(m+1)
3 1 −k

(m+1)
1

−k
(m+1)
3 k

(m+1)
2 k

(m+1)
1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(25)

The input-output relation for the synthesis lattice filter can
be given as

Y(0)
(
z1, z2

)
= Ĝ

(
z1, z2

)
Y(m+1)

(
z1, z2

)
. (26)

The complete synthesis lattice filter structure is character-

ized by the transfer function Ĝ(z1, z2). Its block diagram can
be obtained from that of the analysis filter by arranging the
stages in a backward fashion and changing the delays appro-
priately.
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3.3. NSPRL filter bank realized with the orthogonal
2D lattice filter structure

An alternative polyphase representation can be obtained

when Ĥ(z) is carried to the left-hand side of the decimators
and Ĝ(z) is carried to the right-hand side of the interpolators
as in the configuration shown in Figure 5 [15]. In this case,
according to the quadratic-sampling scheme, the arguments
of the transfer functions should be replaced by zD = z2

1z
2
2 .

In other words, the transfer matrices of the analysis and
the synthesis lattice models, H(2m)(z1, z2) and G(2m)(z1, z2),
should be replaced with their counterparts, H(2m)(z2

1 , z2
2) and

G(2m)(z2
1 , z2

2), respectively, as follows:

H(2m)
(
z2

1 , z2
2

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −k
(2m)
1 −k

(2m)
2 −k

(2m)
3

k
(2m)
1 1 −k

(2m)
3 k

(2m)
2

−k
(2m)
2 k

(2m)
3 1 k

(2m)
1

k
(2m)
3 k

(2m)
2 −k

(2m)
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 z−2
1 0 0

0 0 z−2
1 z−2

2 0

0 0 0 z−2
2

⎤
⎥⎥⎥⎥⎥⎦

,

G(2m)
(
z2

1 , z2
2

)
=

⎡
⎢⎢⎢⎢⎢⎣

z−2
1 z−2

2 0 0 0

0 z−2
2 0 0

0 0 1 0

0 0 0 z−2
1

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 k
(2m)
1 −k

(2m)
2 k

(2m)
3

−k
(2m)
1 1 k

(2m)
3 k

(2m)
2

−k
(2m)
2 −k

(2m)
3 1 −k

(2m)
1

−k
(2m)
3 k

(2m)
2 k

(2m)
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(27)

When the analysis and the synthesis lattice filters are
moved to obtain the proposed NSPRL structure in the form
given in Figure 5, the delay operators (1, z1, z1z2, z2) at the be-
ginning of the modified analysis polyphase section and those
(z1z2, z2, 1, z1) at the end of the modified synthesis polyphase
section are multiplied with the delay operators of the first
stages of the analysis and the synthesis lattice filters which
are (1, z−2

1 , z−2
1 z−2

2 , z−2
2 ) and (z−2

1 z−2
2 , z−2

2 , 1, z−2
1 ), respectively.

The result of this operation gives the sets of delay operators
(1, z−1

1 , z−1
1 z−1

2 , z−1
2 ) and (z−1

1 z−1
2 , z−1

2 , 1, z−1
1 ) only for the first

stages of these two lattice realizations.
Since the lattice stages, except the first stage, contain the

squares of the delay operators, they can be interpreted as a
pair of stages, the first of which has zero lattice parameters.
Therefore, the NSPRL structure consists of odd-numbered
stages and the word “order” is used to refer to the total num-
ber of delays introduced up to the last stage of the lattice filter
structure.

The analysis section of the NSPRL filter bank

The input-output relations for the first and the odd-num-
bered orders of the analysis filter can be given as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
(p)
0

(
z1, z2

)

X
(p)
1

(
z1, z2

)

X
(p)
2

(
z1, z2

)

X
(p)
3

(
z1, z2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −k
(p)
1 −k

(p)
2 −k

(p)
3

k
(p)
1 1 −k

(p)
3 k

(p)
2

−k
(p)
2 k

(p)
3 1 k

(p)
1

k
(p)
3 k

(p)
2 −k

(p)
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X
(r)
0

(
z1, z2

)

z
−q
1 X

(r)
1

(
z1, z2

)

z
−q
1 z

−q
2 X

(r)
2

(
z1, z2

)

z
−q
2 X

(r)
3

(
z1, z2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(28)

In (28), p = 1, q = 1, and r = 0 for the first order and
p = (2m+1), q = 2, and r = (2m−1) for the odd-numbered
orders where m = (1, 2, . . . ,M). Note that the constraints

k
(p)
2 = −k

(p)
1 k

(p)
3 are to be imposed for orthogonality. The

analysis lattice filter structure is illustrated in Figure 6.

The synthesis section of the NSPRL filter bank

The input-output relations for the first and the odd-num-
bered orders of the synthesis filter are given as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y
(r)
0

(
z1, z2

)

Y
(r)
1

(
z1, z2

)

Y
(r)
2

(
z1, z2

)

Y
(r)
3

(
z1, z2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

z
−q
1 z

−q
2 0 0 0

0 z
−q
2 0 0

0 0 1 0

0 0 0 z
−q
1

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 k
(p)
1 −k

(p)
2 k

(p)
3

−k
(p)
1 1 k

(p)
3 k

(p)
2

−k
(p)
2 −k

(p)
3 1 −k

(p)
1

−k
(p)
3 k

(p)
2 k

(p)
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y
(p)
0

(
z1, z2

)

Y
(p)
1

(
z1, z2

)

Y
(p)
2

(
z1, z2

)

Y
(p)
3

(
z1, z2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(29)

In (29), r = (2m− 1), q = 2, and p = (2m + 1) for the odd-
numbered orders where for m = (M, . . . , 2, 1) and r = 0,
q = 1 and p = 1 for the first order. The constraints are given

as k
(p)
2 = −k

(p)
1 k

(p)
3 . The synthesis lattice filter structure is

shown in Figure 7. Here the output y(n) is the estimate x̂(n)
of the original input signal x(n).
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Figure 6: The analysis section of the NSPRL filter bank.

3.4. Computation of the lattice coefficients

Once the analysis and the synthesis filter structures are ob-
tained, the next step is to determine the lattice coefficients at
each stage using an optimization algorithm. The optimiza-
tion algorithm developed here depends on the determination
of the stopband edges and the minimization of the stopband
energy in the 2D frequency domain. Although the analysis
lattice filter consists of four filters at each stage, it is sufficient
to consider only one of them since the others are shifted ver-
sions of it.

The desired frequency response of any of the four sub-
band filters can be used to determine the stopband energy.

Taking H
(2m+1)
2 as the HH filter, the objective is to minimize

the energy content outside region 2 shown in Figure 2. That
is,

E(2m+1) =

∫∫

(ω1,ω2)∈R′2

∣∣H
(2m+1)
2

(
e jω1 , e jω2

)∣∣2
dω1dω2,

(30)

where R′2 = {0 ≤ (ω1,ω2) ≤ π, (ω1,ω2) �∈ R2}. The four
subband regions shown in Figure 2 are usually designed for
the ideal subband decomposition systems. Region 2, for ex-
ample, covers the frequency spectrum [π/2 → π,π/2 → π]
having a square-shape characteristic. However, it is possible
to adjust these stopband edges as [π/2± ε1,π/2± ε2] accord-
ing to the desired frequency specifications.

In (30), the transfer function of the (2m+1)th-order filter
can be written in terms of those of the (2m−1)th-order filters
using (28) as follows.

(i) For the first-order stage,

H
(1)
2

(
e jω1 , e jω2

)

=
1

δ(1)

[
− k

(1)
2 + k

(1)
3 e− jω1 + e− jω1e− jω2 + k

(1)
1 e− jω2

]

(31)

since

H
(0)
0

(
e jω1 , e jω2

)
= H

(0)
1

(
e jω1 , e jω2

)
= H

(0)
2

(
e jω1 , e jω2

)

= H
(0)
3

(
e jω1 , e jω2

)
= 1

(32)

for all (ω1,ω2).
(ii) For the odd-numbered order stages,

H
(2m+1)
2

(
e jω1 , e jω2

)
=

1

δ(2m+1)

×
[
− k

(2m+1)
2 H

(2m−1)
0

(
e j2ω1 , e j2ω2

)

+ k
(2m+1)
3 e− j2ω1H

(2m−1)
1

(
e j2ω1 , e j2ω2

)

+ e− j2ω1e− j2ω2H
(2m−1)
2

(
e j2ω1 , e j2ω2

)

+k
(2m+1)
1 e−j2ω2H

(2m−1)
3

(
e j2ω1 , e j2ω2

)]
,

(33)

where (m = 1, 2, . . . ,M) and δ(2m+1) is the normalization
constant defined previously. The magnitude squared term in
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Figure 7: The synthesis section of the NSPRL filter bank.

(30) can be calculated for the odd-numbered orders as

∣∣H(2m+1)
2

∣∣2
= H

(2m+1)
2 H

(2m+1)∗

2

=
[
k2

2H0H
∗
0 + k2

3H1H
∗
1 + H2H

∗
2 + k2

1H3H
∗
3

+ k1

(
e j2ω1H3H

∗
2 + e− j2ω1H∗

3 H2

)

− k2

(
e j2ω1e j2ω2H0H

∗
2 + e− j2ω1e− j2ω2H∗

0 H2

)

+ k3

(
e j2ω2H1H

∗
2 + e− j2ω2H∗

1 H2

)

− k1k2

(
e j2ω2H0H

∗
3 + e− j2ω2H∗

0 H3

)

+ k1k3

(
e− j2ω1e j2ω2H1H

∗
3 + e j2ω1e− j2ω2H∗

1 H3

)

− k2k3

(
e− j2ω1H1H

∗
0 + e j2ω1H∗

1 H0

)]

×
1

(1 + k2
1 + k2

2 + k2
3

) .
(34)

For clarity, the superscripts, (2m− 1), that denote the orders
of the transfer functions as well as the lattice parameters, and
the arguments (e j2ω1 , e j2ω2 ) in (34) are omitted. The same
equation can be used for the first-order lattice filter by replac-
ing the transfer functions with unity (see (32)) and dropping
the squares in exponential terms.

The lattice coefficients can be computed by equating the
gradient of the objective function with respect to the lattice
parameters to zero.

3.5. Extension of the 1D two-channel PRL filter
to the 2D four channel separable PRL filter
and the relationship with the proposed
NSPRL filter

Here, the 1D two-channel PR lattice filter structure devel-
oped by Vaidyanathan and Hoang [14] is extended to 2D in
order to obtain a 2D four-channel SPRL filter bank.

The lattice filter realization in [14] splits the 1D fre-
quency spectrum into an L and an H pass component. As in
the case of separable filters, a second split can be applied to
these L and H subbands to obtain LL, LH, HH, and HL sub-
bands in 2D. In general, a 2D filter is said to be separable in

the z-domain if its transfer function can be written as a prod-
uct of two 1D transfer functions. Hence, the transfer func-
tions of the filters for the four-band split of a 2D signal can
be written in terms of 1D filters as

HLL

(
z1, z2

)
= HL

(
z1

)
HL

(
z2

)
,

HLH

(
z1, z2

)
= HL

(
z1

)
HH

(
z2

)
,

HHH

(
z1, z2

)
= HH

(
z1

)
HH

(
z2

)
,

HHL

(
z1, z2

)
= HH

(
z1

)
HL

(
z2

)
.

(35)

The transfer functions of the L and H filters of order 1 can
be, respectively, given as

H
(1)
L (z) = 1− α1z

−1,

H
(1)
H (z) = α1 + z−1,

(36)

where α1 is the lattice filter coefficient for the 1D first-order
filter.

The transfer functions for the separable LL, HL, HH,
and LH filters can be expressed easily using (35) and (36).
It should be noted that only the odd-ordered stages exist.
The input-output relation of the separable 2D filter for stage
(2m + 1) is defined as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
(2m+1)
0

(
z1, z2

)

X
(2m+1)
1

(
z1, z2

)

X
(2m+1)
2

(
z1, z2

)

X
(2m+1)
3

(
z1, z2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α2m+1 α2
2m+1 −α2m+1

α2m+1 1 −α2m+1 −α2
2m+1

α2
2m+1 α2m+1 1 α2m+1

α2m+1 −α2
2m+1 −α2m+1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
(2m−1)
0

(
z1, z2

)

z−2
1 X

(2m−1)
1

(
z1, z2

)

z−2
1 z−2

2 X
(2m−1)
2

(
z1, z2

)

z−2
2 X

(2m−1)
3

(
z1, z2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)
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Figure 8: Frequency response of the desired HH filter; (ωs1 ,ωs2 ) = (0.22π, 0.22π).

Hence, starting from a 1D filter and using the concept
of separability, a 2D filter is derived. The structure consists of
only one parameter at each stage, which is, in fact, the param-
eter of the 1D lattice filter. This means that if the calculated
lattice parameters lead to a desired pair of L and H filters in
1D, then they will also result in the desired LL, HL, HH, and
LH filters in 2D.

When (37) is compared with the transfer function of the
analysis section of the proposed 2D four-channel NSPRL fil-
ter bank obtained by polyphase technique, it is easily seen
that the separable structure is a special case of that of the
NSPRL under the following conditions:

k
(m)
1 = k

(m)
3 = αm, (38a)

k
(m)
2 = −

(
αm
)2
. (38b)

Equation (38b) indicates that the separable lattice filter
is orthogonal and satisfies the PR property as in the case of
proposed 2D four-channel NSPRL filter where the condition
k2 = −k1k3 is imposed as a constraint. Therefore, all the
requirements satisfied by the proposed NSPRL filter struc-
ture are also fulfilled by the separable lattice filter structure
provided (38a) holds. For the separable filter, this condition
is equivalent to the additional constraint that the stopband
edge frequencies along both directions should be equal, that
is, ωs1 = ωs2 ; where ωs1 and ωs2 are the stopband frequen-
cies along the horizontal and the vertical directions, respec-
tively, for the separable filter. Only when (38a) holds, the
four-quadrant symmetry is satisfied and separable design be-
comes possible.

4. COMPUTER SIMULATIONS AND RESULTS

The computer simulations, carried out with the MATLAB
programming language, consist of two parts: the design of
the subband filters for different stopband edge frequencies
and the processing of a monochrome image, of size 256×256

with 8-bit gray scale, by these filters to verify the PR prop-
erty of the proposed structure. Many different simulations
are carried out. Two design examples are presented, one in-
volving square filters, the other rectangular filters.

Example 1. In this example, an HH filter design is consid-
ered and the PR property of the proposed NSPRL structure
is verified. The desired cut-off frequencies are (ωs1 ,ωs2 ) =
(0.22π, 0.22π). The specifications on filter characteristics are
given in Figure 8. The same procedure is repeated for SPRL
and 3PLF in order to compare their performances. Note that
3PLF is not a PR filter. The reflection coefficients of the pro-
posed method are calculated using the optimization proce-
dure discussed in Section 3.3. In order to design the SPRL
filter bank, the 1D reflection coefficients tabulated in [14]
are used and the 2D filters are designed according to (38).
For the 3PLF, the reflection coefficients are calculated as in
Section 3.3 without imposing the constraint k2 = −k1k3 and
without using the normalization factor since these are the re-
quirements for the PR property. All filters are taken to be of
order 7. To give the notion of evolution of the frequency re-
sponses of the subband filters towards the desired response,
the magnitude plots obtained at the end of the first and the
seventh orders are shown in Figure 9 for each of the three fil-
ter structures. The lattice filter parameters and the stopband
average power for each order are also given in Table 1. From
Figure 9, it is clearly seen that as the order of the lattice filter
structure increases, the transfer function of the HH filter and
therefore those of other subband filters become closer to the
desired filter characteristics and sharper subband filters are
obtained.

The subband filters are applied to the Lena image and the
resulting subband images at the end of the seventh-order fil-
ter and the reconstructed images, in the absence of encod-
ing/decoding, are illustrated in Figures 10 and 11, respec-
tively. As observed from the subband images, the 3PLF can-
not decompose the original image into its subband compo-
nents as much as the NSPRL or the SPRL filter banks do. It
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Figure 9: Frequency reponses of the subband filters for (1st row) NSPRL order 1; (2nd row) NSPRL order 7; (3rd row) SPRL order 1; (4th
row) SPRL order 7; (5th row) 3PLF order 1; (6th row) 3PLF order 7. Cut-off frequencies for the HH filter are (ωs1 ,ωs2 ) = (0.22π, 0.22π).
(a) LL filters; (b) HL filters; (c) HH filters; (d) LH filters.
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Table 1: Results of the filter design with (ωs1 ,ωs2 ) = (0.22π, 0.22π).

Filter structure Order Lattice filter coefficients Stopband average power

k1 k2 k3

NSPRL

1 −1 −1 −1 0.1415

3 0.1913 −0.0366 0.1913 0.0660

5 0.4229e-003 −0.0002e-003 0.4229e-003 0.0660

7 −0.0426 −0.0018 −0.0426 0.0621

SPRL

1 −2.6380 −6.9590 −2.6380 0.1147

3 0.7154 −0.5119 0.7154 0.0312

5 −0.2598 −0.0675 −0.2598 0.0035

7 0.0639 −0.0041 0.0639 0.0004

3PLF

1 −0.6809 −0.6247 −0.6809 0.1823

3 0.1074 −0.0205 0.1074 0.1529

5 0.0496 −0.0042 0.0496 0.1466

7 −0.0557 −0.0042 −0.0557 0.1388

120

80

40

40 80 120

120

80

40

40 80 120

120

80

40

40 80 120

120

80

40

40 80 120

120

80

40

40 80 120

120

80

40

40 80 120

120

80

40

40 80 120

120

80

40

40 80 120

120

80

40

40 80 120

(a)

120

80

40

40 80 120

(b)

120

80

40

40 80 120

(c)

120

80

40

40 80 120

(d)

Figure 10: The subimages obtained using (1st row) the 7th-order NSPRL subband filters; (2nd row) 7th-order SPRL subband filters; (3rd
row) 7th-order 3PLF subband filters. For (ωs1 ,ωs2 ) = (0.22π, 0.22π). (a) LL subimages; (b) HL subimages; (c) HH subimages; (d) LH
subimages.
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Figure 11: (a) The original image; (b) the reconstructed image using the proposed NSPRL filter bank; (c) the reconstructed image using the
SPRL filter bank; (d) the reconstructed image using the 3PLF (ωs1 ,ωs2 ) = (0.22π, 0.22π).

Table 2: SNR values related to reconstruction by different filter
banks for (ωs1 ,ωs2 ) = (0.22π, 0.22π).

Filter structure SNR (dB)

NSPRL 90.15

SPRL 74.61

3PLF 15.14

is seen that the PR of the Lena image is not possible with the
3PLF as expected. The proposed method and the SPRL filter
perfectly reconstruct the image. To judge these images quan-
titatively, the signal to noise (i.e., reconstruction error) ratio
(SNR) is calculated as the ratio of the mean squared value of
the original image to that of the error image, where the error
image is the difference between the original and the recon-
structed images. These values are tabulated in Table 2.

Example 2. This example is carried out for the design of a
HH filter with cut-off frequencies (ωs1 ,ωs2 ) = (0.80π, 0.30π)
in order to test the performances of the NSPRL filter and
the 3PLF under nonsymmetrical filter conditions. For each
order, the lattice filter parameters and the stopband average
power values are given in Table 3. The subband and the re-
constructed images are shown in Figures 12 and 13, respec-
tively, and the SNR values are tabulated in Table 4. The PR
property of the proposed method is observed even though
the cut-off frequencies in each direction are not equal.

In Example 1, the first and the third coefficients of the

lattice filter (k
(2m+1)
1 and k

(2m+1)
3 ) are observed to be equal

although they are not constrained to be so. This is the
consequence of having square-shaped filter characteristics in
the frequency domain (i.e., both of the stopband edge fre-
quencies are selected identical). When the two stopband edge
frequencies are taken to be different as in Example 2, these
two lattice filter coefficients are unequal as seen in Table 3.

When the autocorrelation functions of the original and
the subband images are examined, it is seen that LL subimage
contains significantly more energy than the others do. This
means that the proposed NSPRL filter structure has a good
energy compaction performance and compacts most of the
energy in the LL subband.

5. CONCLUSIONS

In this paper, we present a new lattice filter structure for the
design of a nonseparable 2D four-band subband decompo-
sition system. First, the analysis lattice filter structure is con-
structed according to the frequency specifications of the four
subband filters and then the synthesis filter is obtained us-
ing the polyphase representation of the subband filter bank
satisfying the requirements for alias-free and PR conditions.
The PR solution, however, requires orthonormal filter de-
sign which decreases the number of independent filter pa-
rameters from three to two. The proposed 2D four-channel
NSPRL filter bank reconstructs the original image exactly, in
the absence of decoding/encoding of the subbands, with no
restrictions on the symmetry conditions of the desired fre-
quency characteristics and the filter length. It is also shown
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Table 3: Results of the filter design with (ωs1 ,ωs2 ) = (0.80π, 0.80π).

Filter structure Order Lattice filter coefficients Stopband average power

k1 k2 k3

NSPRL

1 −1 −1 −1 0.7987

3 0.2428 −0.0238 0.0979 0.7841

5 −0.0831 0.0027 0.0319 0.7823

7 0.0296 0.0005 −0.0175 0.7821

3PLF

1 −0.0593 −0.0554 −0.1132 0.9638

3 0.0027 0.0019 −0.0639 0.9557

5 0.0063 −0.0008 −0.0126 0.9554

7 −0.0022 −0.0007 0.0050 0.9553
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Figure 12: The subimages obtained using (1st row) the 7th-order NSPRL subband filters; (2nd row) 7th-order 3PLF subband filters—all
(ωs1 ,ωs2 ) = (0.80π, 0.30π). (a) LL subimages; (b) HL subimages; (c) HH subimages; (d) LH subimages.
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Figure 13: (a) The original image; (b) the reconstructed image using the proposed NSPRL filter bank; (c) the reconstructed image using the
3PLF—all for (ωs1 ,ωs2 ) = (0.80π, 0.30π).

that the SPRL filter bank constructed from the 1D lattice fil-
ter using the design parameters of [14] is a special case of the
proposed NSPRL filter bank under four-quadrant symmetry
conditions.

The proposed structure is easy to implement and can
be used in image compression where each subband can be
encoded using appropriate techniques. Moreover, this struc-
ture not only allows the design of square-shaped filters, but
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Table 4: SNR values related to reconstruction by different filter
banks for (ωs1 ,ωs2 ) = (0.80π, 0.30π).

Filter structure SNR (dB)

NSPRL 81.11

3PLF 18.68

also that of rectangular-shaped filters. This is in fact a conse-
quence of the nonseparable approach and thus, the proposed
filter can be used for processing special 2D data to concen-
trate signal energy into fewer subbands.
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