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In this work, we study two-dimensional Galilean field theories with global translations and anisotropic
scaling symmetries. We show that such theories have enhanced local symmetries, generated by the infinite
dimensional spin-l Galilean algebra with possible central extensions, under the assumption that the
dilation operator is diagonalizable and has a discrete and non-negative spectrum. We study the Newton-
Cartan geometry with anisotropic scaling, on which the field theories could be defined in a covariant way.
With the well-defined Newton-Cartan geometry we establish the state-operator correspondence in
anisotropic Galilean conformal field theory and determine the two-point functions of primary operators.
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I. INTRODUCTION

In two-dimensional(2D) spacetime, the global symmetry
in a quantum field theory could be enhanced to a local
one. The well-known example studied by Polchinski in [1]
shows that a 2D Poincaré invariant QFT with scale
invariance could be of conformal invariance, provided that
the theory is unitary and the dilation spectrum is discrete
and non-negative. More recently, Strominger and Hofman
relaxed the requirement of Lorentz invariance and studied
the enhanced symmetries of the theory of chiral scaling [2].
They found two kinds of minimal theories. One kind
is the two-dimensional conformal field theory (CFT2)[3],
while the other kind is called the warped conformal
field theory (WCFT). In a warped CFT, the global sym-
metry is SLð2; RÞ × Uð1Þ, and it is enhanced to an infinite-
dimensional group generated by an Virasoro-Kac-Moody
algebra. For the study on various aspects of 2D warped
CFT, see [4–15]. Another kind of 2D theories which breaks
Lorentz symmetry and has enhanced infinite-dimensional
symmetry group is the Galilean conformal field theory.
It can be obtained by taking the speed of light to be infinite
such that the usual Lorentz symmetry is broken to the
Galilean boost and the Virasoro algebra becomes the

Galilean conformal algebra in 2D. For the study concerning
Galilean conformal field theories in 2D, see [16–22].
In this paper, we would like to investigate other types of

two-dimensional field theories with enhanced symmetries.
We will focus on the theories whose global symmetries
include the translations along two directions, boost sym-
metry and anisotropic scaling symmetry. If the two direc-
tions are recognized as temporal and spatial directions, the
anisotropic scaling is of Lifshitz type x → λx, t → λzt.
Recall that the scaling behavior in a warped conformal field
theory is chiral

x → λx; y → y; ð1:1Þ

while the one in a Galilean conformal field theories (GCFT)
is1

x → λx; y → λy: ð1:2Þ

In Galilean CFT, the boost symmetry is of Galilean type
rather than Lorentzian type

y → yþ vx: ð1:3Þ
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1In some literature, it sometimes refers the Galilean conformal
field theory to be the one with anisotropic scaling t → λ2t and
xi → λxi, in particular in higher dimensions [23]. With the
particle number symmetry, the algebra becomes Schrödinger
algebra. Without the particle number symmetry, the anisotropic
scaling could be t → λzt and xi → λxi with z ≠ 2. In this work,
we focus on the two-dimensional case, and call the GCFT the one
with z ¼ 1 and the anisotropic GCFT the one with z ≠ 1.
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The Galilean CFT can be obtained by taking the non-
relativistic limit of the conformal field theory. Thus the
Lorentzian symmetry is broken in Galilean CFT. In this
work, we discuss the case with more general anisotropic
scaling

x → λcx; y → λdy; ð1:4Þ

and a Galilean boost symmetry. Our consideration is
general enough to include the WCFT and GCFT as special
cases.
The CFTwith anisotropic scaling could be related to the

strong-coupling systems in the condensed matter physics
and in some statistical systems [24–26]. In particular, It is
well known that for the fermions at unitarity which could be
realized experimentally using trapped cold atoms at the
Feshbach resonance [27–29], there is Schrödinger sym-
metry, and near the quantum critical points [30] there is
Lifshitz-type symmetry. In order to study these nonrela-
tivistic strong coupling systems holographically, people
have tried to establish their gravity duals2 [32–34]. One
essential requirement is the geometric realization of the
symmetry.
For a 2D QFT with enhanced symmetry, its role in the

holographic duality becomes subtler and more interesting.
In this case, the dual gravity must involve 3D gravity. As it
is well known, there is no local dynamical degree of
freedom in 3D gravity, but there could be boundary global
degrees of freedom. The AdS spacetime is not globally
hyperbolic and the boundary conditions at infinity play an
important role. For AdS3 gravity, under the Brown-
Henneaux boundary, the asymptotic symmetry group is
generated by two copies of the Virasoro algebra [35],
leading to the AdS3=CFT2 correspondence. However there
exist other sets of consistent boundary conditions. In
particular, under the Compére-Song-Strominger boundary
conditions, the asymptotic symmetry group is generated by
the Virasoro-Kac-Moody U(1) algebra [36]. Therefore
under the Compere-Song-Strominger boundary conditions,
the AdS3 gravity could be dual to a warped conformal field
theory. This AdS3/WCFT correspondence has been studied
in [8,12,37–39]. The study of consistent asymptotical
boundary conditions and corresponding asymptotic sym-
metry group have played important roles in setting up other
holographic correspondences beyond AdS=CFT, including
chiral gravity [40], WAdS/WCFT [41,42], Kerr/CFT [43],
Bondi-Metzner-Sachs (BMS)/Galilean conformal algebra
(GCA)[16,17], BMS/CFT [44–46] and the nonrelativistic
limit of the AdS=CFT [18]. Recall that both WCFT and
GCA are the special cases in our study; therefore, it is
tempting to guess that the anisotropic GCFT could be the
holographic dual of a gravity theory. In order to investigate
this possibility, one needs to study the enhanced symmetry

of the field theory and in particular the geometry on which
the theory is defined.
We first study the enhanced symmetries, following the

approach developed in [1,2]. We find that even with
anisotropic scaling and Galilean boost symmetry there are
still infinite conserved charges, equipped with the infinite
dimensional spin l ¼ d

c Galilean algebra, in the theory. This
algebra is different from the chiral part of the Wl algebra,
even though the weights of the conserved currents are
the same.
The next question we address is on what kind of

geometry such theories should be defined. Can the local
Lorentz symmetry be consistent with the scaling symmetry
such that the theories are defined on the pseudo-
Riemannian manifold? The answer is generally no. Since
the Lorentz boost put the two directions on the equal
footing, only the isotropic scaling could be consistent with
Lorentz symmetry. Actually as shown in [47], the isotropic
scaling may imply the Lorentz invariance, under the
assumption that the propagating speed of signal is finite
and several other assumptions. The existence of isotropic
scaling and Lorentz symmetry may lead to 2D CFT defined
on the Riemann surfaces. In 2D CFT, the combination of L0

and L̄0 gives the dilation and Lorentz boost generator. In
contrast, although 2D GCFT has the isotropic scaling, the
propagating speed in it is infinite and the Lorentz invari-
ance is broken as well. For the theories without Lorentz
invariance, the geometry cannot be pseudo-Riemannian.
Considering the loss of the local Lorentz symmetry, a

natural alternative to pseudo-Riemannian geometry is the
Newton-Cartan geometry. In [4], it was noted that with the
global translation and scaling symmetry, the restriction of
Lorentz symmetry requires the theory to be conformal
invariant while the restriction of Galilean symmetry
requires the theory to be the warped conformal field
theories. The warped CFTs are defined on the warped
geometry, which is a kind of the Newton-Carton geometry
with additional scaling structure. For a Galilean invariant
field theory,3 it could be coupled to a Newton-Cartan
geometry in a covariant way [52–60]. For a 2D Galilean
conformal field theory, it is expected to couple to a Newton-
Cartan geometry with a scaling symmetry, but a detailed
study is lacking. For the Galilean CFT with anisotropic
scaling discussed in this paper, we show that it should be
defined on a Newton-Cartan geometry with additional
scaling structure, similar to the warped geometry discussed
in [4]. These geometries are actually of vanishing curvature
and nonvanishing torsion.
One advantage of coupling the field theory to geometry

is that the symmetries of the theory become manifest.

2For a nice review and complete references, please see [31].

3For various kinds of the Galilean field theories, please see
[48,49]. A brand new application is the discussion on the
gravitational waves using the Newton-Carton framework
[50,51]. We thank A. Bagchi and P. A. Horvathy for bringing
this point to our attention.
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The theories are defined by requiring the classical action is
invariant under certain coordinate reparametrizations. For
2D CFT, the Virasoro symmetries are manifest as the
worldsheet reparametrization invariance. For the back-
ground Newton-Cartan geometry, the coordinate repara-
metrization can be absorbed by the local scaling
transformation as well as the local Galilean boost. In other
words, the theories are defined on the equivalent classes of
the Newton-Carton geometry with special scaling structure.
The geometries related by local scaling and Galilean boost
belong to the same equivalent class.4 Having defined these
theories, we find the infinitely many conserved charges by
considering the currents coupled to the geometric quan-
tities. These conserved charges are exactly the ones
obtained by using the method in [2].
Furthermore, we study the radial quantization and the

state-operator correspondence in the anisotropic GCFT
with anisotropic scaling ratio l being integer, analogous
to the usual CFT2 case. Remarkably, the primary operators
in the theory with l > 1 have different properties. They are
not transformed covariantly under the local transforma-
tions. Consequently the correlation functions become much
more complicated than the usual cases.
The remaining parts are organized as follows. In Sec. II,

we generalize the Hofman-Strominger theorem to the
anisotropic GCFT. Assuming that the dilation spectrum
is discrete and non-negative, the theories coupled to
Newton-Carton geometry with global translation and scal-
ing symmetries have infinitely conserved charges. This
means the global symmetries are enhanced to local ones. In
Sec. III, we discuss the properties of the Newton-Cartan
geometry with additional scaling structure, on which our
field theory could be consistently defined. It turns out that
the geometries should have vanishing curvature but non-
vanishing torsion. In Sec. IV, we give an intrinsic definition
of these field theories, from which one can find the allowed
local transformations and the corresponding infinitely
many conserved charges directly. These discussions match
the results in Sec. II. In Sec. V, we look further into these
theories by considering the Hilbert space and the repre-
sentation of the algebra. The state-operator correspondence
is established. We also discuss the unusual properties of the
primary operators for the l > 1 cases. In Sec. VI, we
calculate the two-point functions of the primary operators.
A byproduct is the correlation functions of the certain
related descendant operators. We conclude and give some
discussions in Sec. VII.

II. ENHANCED SYMMETRIES

In this section, we discuss the enhanced symmetries in
two-dimensional (2D) field theory with boost symmetry

and anisotropic scalings, using the method developed in
[1,2]. Usually for a theory with global symmetries, we can
defines the corresponding conserved Noether currents and
their conserved charges. However there could be ambigu-
ities in defining the currents. In 2D quantum field theory
with scaling symmetry and boost symmetry, under the
assumption that there exists a complete basis of local
operators as the eigenvectors of the dilation operator with a
discrete spectrum, the conserved currents can be organized
in a form such that they have the canonical commutation
relations with the generators. But the currents can be shifted
by certain local operators without changing the commuta-
tion and conservation relations. Analyzing the behavior of
the local operators leads to special relations of the currents,
which in turn tell us that there may be infinite conserved
charges.

A. Global symmetries

The global symmetries of 2D QFT we consider in this
work include the translations along two directions x and y

x → x0 ¼ xþ δx; y → y0 ¼ yþ δy; ð2:1Þ

the dilations

x → x0 ¼ λcx; y → y0 ¼ λdy; ð2:2Þ

where c, d are non-negative. And the Galilean boost
symmetry behaves as

y → y0 ¼ yþ vx: ð2:3Þ

It is worth noting that the dilation scales two directions at
the same time, but could be with different weights c and d.
We use a slightly different notation from the one in [4]. The
generators of the above symmetry transformations are
denoted as H, H̄, D, and B respectively. They annihilate
the vacuum, and satisfy the commutation relations

½H;H̄� ¼ 0; ½D;H� ¼−cH; ½D;H̄� ¼−dH̄; ð2:4Þ

½B;H� ¼−H̄; ½B;H̄� ¼ 0; ½B;D� ¼ ðd−cÞB: ð2:5Þ

We assume that the dilation operator has a discrete
spectrum and the theory has a complete basis of local
operators which obey5

½H;O� ¼ ∂xO; ½H̄;O� ¼ ∂yO;

½D;O� ¼ cx∂xOþ dy∂yOþ ΔOO; ð2:6Þ

4However, there are potential anomalies in the partition
function, since the measure will change under the local trans-
formations. We leave this point to future work.

5In the c ¼ d case, there could be another boost label [19].
However here we are interested in looking for the enhanced
symmetry and need only the information on the scaling dimen-
sion. A complete discussion on the two-point function will be in
Sec. VI, including the c ¼ d case.
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where ΔO is the non-negative scaling dimension of the
operator O. The global symmetries can restrict the two-
point function of O1, O2 to be either of the form

hO1ðx1; y1ÞO2ðx2; y2Þi ¼ x−cðΔ1þΔ2Þ
12 f

�
yc12
xd12

�
; ð2:7Þ

or of the form

hO1ðx1; y1ÞO2ðx2; y2Þi ¼ y−dðΔ1þΔ2Þ
12 f

�
xd12
yc12

�
ð2:8Þ

where x12 ¼ x1 − x2, y12 ¼ y1 − y2 and f is an a priori
unknown function.
Moreover in the special case that the operators Oinv are

invariant under the Galilean boost, which means that the
operators Oinv carry vanishing boost charges

½B;Oinvðx; yÞ� ¼ x∂yOinvðx; yÞ; ð2:9Þ

the two-point function of Oinv does not depend on y12

hOinvðx1; y1ÞOinvðx2; y2Þi ¼ NOinv
x
−2cΔOinv
12 ; ð2:10Þ

where NOinv
is the normalization constant. Here for simplic-

ity, we take O1 ¼ O2 ¼ Oinv. This kind of two-point
function plays an important role in the following discussion.
The generators above are related to the conserved

Noether current by

Q ¼
Z

⋆J; ð2:11Þ

where

⋆ ¼ Hμν ð2:12Þ

serves as the volume in the Newton-Cartan geometry which
will be studied in the next section, J is the conserved
current satisfying

∇μJμ ¼ 0: ð2:13Þ

In flat Newton-Cartan geometry,

Q¼
Z

Jxdxþ
Z

Jydy; with ∂yJxþ∂xJy ¼ 0: ð2:14Þ

The integral contour is the slice where we quantize the
theory and define the Hilbert space.
Corresponding to the generators H, H̄, D, and B, the

currents are denoted as hμ, h̄μ, dμ, bμ. The canonical
commutation relations of the currents and the charges are

½H; hx� ¼ ∂xhx; ½H; hy� ¼ ∂xhy;

½H; h̄x� ¼ ∂xh̄x; ½H; h̄y� ¼ ∂xh̄y; ð2:15Þ

½H; dx� ¼ ∂xdx þ chx; ½H; dy� ¼ ∂xdy þ chy; ð2:16Þ

½H; bx� ¼ ∂xbx þ h̄x; ½H; by� ¼ ∂xby þ h̄y; ð2:17Þ

½H̄; hx� ¼ ∂yhx; ½H̄; hy� ¼ ∂yhy;

½H̄; h̄x� ¼ ∂yh̄x; ½H̄; h̄y� ¼ ∂yh̄y ð2:18Þ

½H̄; dx� ¼ ∂ydx þ dhx; ½H̄; dy� ¼ ∂ydy þ dhy; ð2:19Þ

½H̄; bx� ¼ ∂ybx; ½H̄; by� ¼ ∂yby; ð2:20Þ

½D; hx� ¼ ðcx∂x þ dy∂yÞhx þ 2chx;

½D; hy� ¼ ðcx∂x þ dy∂yÞhy þ ðcþ dÞhy; ð2:21Þ

½D; h̄x� ¼ ðcx∂x þ dy∂yÞh̄x þ ðcþ dÞh̄x;
½D; h̄y� ¼ ðcx∂x þ dy∂yÞh̄y þ 2dh̄y; ð2:22Þ

½D; dx� ¼ ðcx∂x þ dy∂yÞdx þ cdx;

½D; dy� ¼ ðcx∂x þ dy∂yÞdy þ ddy; ð2:23Þ

½D; bx� ¼ ðcx∂x þ dy∂yÞbx þ dbx;

½D; by� ¼ ðcx∂x þ dy∂yÞby þ ð2d − cÞby; ð2:24Þ

½B; hx� ¼ x∂yhx − hx; ½B; hy� ¼ x∂yhy; ð2:25Þ

½B; h̄x� ¼ x∂yh̄x; ½B; h̄y� ¼ x∂yh̄y þ h̄y; ð2:26Þ

½B; dx� ¼ x∂ydx − dx; ½B; dy� ¼ x∂ydy; ð2:27Þ

½B; bx� ¼ x∂ybx; ½B; by� ¼ x∂yby þ by: ð2:28Þ

We choose the above commutation relations by the follow-
ing two requirements. One is that the differential operators
must act on the field properly, while the other is that we
must recover the commutators of the generators.
It is remarkable that there are ambiguities in defining the

Noether currents. One can shift the currents by some local
operators to get the same commutation relations of the
generators and still have the conservation laws. One may
organize the currents with respect to the canonical com-
mutation relations to define the local operators. The above
canonical commutation relations imply that the dilation and
boost currents can be expressed by the translation current
up to some local operators

dx ¼ cxhxþdyh̄xþ sx; dy ¼ cxhyþdyh̄yþ sy; ð2:29Þ

bx ¼ xh̄x þ wx; by ¼ xh̄y þ wy; ð2:30Þ
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where sx, sy and wx, wy are local operators. In the following
we will study the shifts of the currents that do not change
the canonical commutation relations.

B. Enhanced symmetries

Let us first study the boost symmetry and the boost
current. The boost currents are related to the translation
currents

bx ¼ xh̄x þ wx; by ¼ xh̄y þ wy: ð2:31Þ

The conservation law reads

∂ybx þ ∂xby ¼ 0; ∂xh̄y þ ∂yh̄x ¼ 0 ð2:32Þ

which allows us to write the current h̄y as

h̄y ¼ −∂xwy − ∂ywx: ð2:33Þ

From the commutation relations, we learn that wx is
invariant under the Galilean boost. From the discussion
on the two-point functions, we find

∂y1hwxðx1;y1Þwxðx2;y2Þi¼ 0; h∂ywx∂ywxi¼ 0: ð2:34Þ

From our assumptions that the spectrum of the dilation
operator is discrete and non-negative, the following equa-
tion is valid as an operator equation

∂ywx ¼ 0: ð2:35Þ

We can shift the currents without changing the canonical
commutation relations

h̄y → h̄y þ ∂xwy; h̄x → h̄x − ∂ywy: ð2:36Þ

The h̄x component must be changed at the same time to
keep the conservation law intact. The similar shifts also
happen in the currents bμ. Under the above shift, we can set

h̄y ¼ 0; ð2:37Þ

such that

∂yh̄x ¼ 0 ð2:38Þ

which implies that h̄x is a function of x

h̄x ¼ h̄xðxÞ: ð2:39Þ

This leads to the existence of an infinite set of conserved
charges,

Mϵ ¼
Z

ϵðxÞh̄xðxÞdx; ð2:40Þ

where ϵðxÞ is an arbitrary smooth function x. It is easy to
see that M1 with ϵ ¼ 1 actually generates the translation
along the y direction, while Mx with ϵðxÞ ¼ x is the boost
generator. This is consistent with the discussion in the
warped CFT literature [2,5]. We should emphasize here that
this infinite set of conserved charges are common in the 2d
local Galilean field theories.
Next let us turn to the dilation current. Depending on the

weight c, we will consider c ¼ 0 and c ≠ 0 separately.

1. Special case: c = 0

In this case, we have

dx ¼ dyh̄x þ sx; dy ¼ dyh̄y þ sy: ð2:41Þ

The equations above can be taken as the defining relations
of new local operators sx and sy, taking into account the fact
that

h̄x ¼ h̄xðxÞ; h̄y ¼ 0: ð2:42Þ

The canonical commutation relations are still valid, as well
as the conservation laws. Considering the conservation
laws of dμ and hμ

∂ydx þ ∂xdy ¼ 0; ∂yhx þ ∂xhy ¼ 0; ð2:43Þ

we have

dh̄x ¼ −∂ysx − ∂xsy: ð2:44Þ

Now sx is an operator of weight zero under the dilation. The
two-point function is

hsxsxi ¼ constant; ð2:45Þ

which implies that

∂ysx ¼ 0 ð2:46Þ

is valid as an operator equation. We arrive at

h̄xðxÞ ¼ −∂xsy: ð2:47Þ

Note that sy is an operator of weight d under the dilation
along the y direction such that

∂yhsysyi ¼ fðxÞ∂yy−2d ≠ 0: ð2:48Þ

But sy is invariant under the Galilean boost as well, which
means that the above relation should be vanishing. The only
way to be self-consistent is to set sy ¼ 0 and therefore
h̄x ¼ 0. This implies that a 2D theory with c ¼ 0 and the
symmetries
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y → yþ vx; y → λy; y → yþ δy ð2:49Þ

is inconsistent and does not exist.

2. Other cases: c ≠ 0

Next we turn to the c ≠ 0 cases, in which we can
normalize the dilation so that c ¼ 1. However, we keep c
unfixed in the following discussion in this section. One
should note that the final results cannot be symmetric in c
and d, since the boost symmetry tells the difference
between x and y directions.
We start from the dilation currents dμ

dx ¼ cxhxþdyh̄xþ sx; dy ¼ cxhyþdyh̄yþ sy: ð2:50Þ

The conservation law of dμ leads to the relation

chy þ dh̄x ¼ −∂ysx − ∂xsy: ð2:51Þ

Moreover we have

h̄y ¼ 0: ð2:52Þ

We can shift the current hμ as follows:

hy → h0y ¼ hy þ
1

c
ð∂ysx þ ∂xsyÞ;

hx → h0x ¼ hx −
1

c
ð∂xsx þ ∂ysyÞ: ð2:53Þ

This will not change the commutation relations and the
conservation laws.
Considering the boost behavior of sx, sy, after the shift

we may have

chy þ dh̄x ¼ 0: ð2:54Þ

We can define a set of charges,

Lϵ ¼
Z

fcϵðxÞhxðx; yÞ þ dϵ0ðxÞyh̄xðxÞgdx

þ
Z

fcϵðxÞhyðxÞgdy; ð2:55Þ

where ϵðxÞ is an arbitrary smooth function on x and
ϵ0ðxÞ ¼ ∂xϵ. hyðxÞ depends only on x, since its boost
charge vanishes. We denote

qx ¼ cϵðxÞhxðx;yÞþdϵ0ðxÞyh̄xðxÞ; qy ¼ cϵðxÞhyðxÞ:
ð2:56Þ

One can check that the charges Lϵ are indeed conserved

∂yqx þ ∂xqy ¼ 0; ð2:57Þ

provided that

∂yhx þ ∂xhy ¼ 0: ð2:58Þ

Note that when ϵ ¼ 1,

L1 ¼
Z

hxdxþ
Z

hydy ð2:59Þ

generates the translation in the x direction, while when
ϵ ¼ x

Lx ¼
Z

fcxhxðx; yÞ þ dyh̄xðxÞgdxþ
Z

fcxhyðxÞgdy

ð2:60Þ

generates the anisotropic scaling symmetry.
In the case that d ¼ 0, from (2.54) we have

hy ¼ 0: ð2:61Þ

And considering the conservation law, we find that hx
depends only on x. This is exactly the case for the warped
CFTs discussed in [2,4].

C. Algebra of enhanced symmetries

After some calculations, we arrive at the algebra,

½Lϵ; Lϵ̃� ¼ Lcϵ0 ϵ̃−cϵ̃0ϵ þ � � � ; ð2:62Þ

½Lϵ;Mϵ̃� ¼ Mdϵ0 ϵ̃−cϵ̃0ϵ þ � � � ; ð2:63Þ

½Mϵ;Mϵ̃� ¼ � � � ; ð2:64Þ

where ϵ and ϵ̃ are arbitrarily smooth functions of x and the
ellipsis denotes potential central extension terms allowed
by the Jacobi identity. The algebra of the plane modes
without central extension is

½ln; lm� ¼ cðn −mÞlnþm;

½ln; mm� ¼ ðdn − cmÞmnþm;

½mn;mm� ¼ 0: ð2:65Þ

This is the infinite dimensional spin-l Galilean algebra,
with l ¼ d

c [24].
The central extension is constrained by the Jacobi

identity [61]. There are various kinds of extensions, which
we list here in order.
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(i) T-extension is always allowable:

½Ln;Lm�¼ðn−mÞLnþmþ
cT
12

nðn2−1Þδnþm;0:

ð2:66Þ

This gives the Virasoro algebra.
(ii) B-extension is only allowable for l ¼ 1:

½Ln;Mm� ¼ ðn −mÞMnþm þ cB
12

nðn2 − 1Þδnþm;0:

ð2:67Þ

This gives the Galilean conformal algebra (GCA).
The field theories equipped with GCA have been
discussed in [19–22].

(iii) M-extension is only allowable for d ¼ 0, the infinite
dimensional spin-0 Galilean algebra

½Mn;Mm� ¼ cMnδnþm;0: ð2:68Þ

This is actually the algebra for the warped CFT, with
cM being the Kac-Moody level.

(iv) Infinite M-extensions, in which there are infinite cM
charges

½Mn;Mm� ¼ ðn −mÞðcMÞnþm;

½Ln; ðcMÞm� ¼ −mðcMÞnþm: ð2:69Þ

The familiar l ¼ 1=2 case is the Schrödinger-
Virasoro algebra [62–64].
The finite spin-1

2
Galilean algebra generated by

fL�1; L0;M�1; ðcMÞ0g is also called the Schrö-
dinger algebra, whose higher dimensional cousin
appears in the studies of nonrelativistic holography
[32,33]. In this case, the algebra has the mass charge
ðcMÞ0 as the central extension, which plays an
important role in the representation theory and
determining the correlation functions by the super-
selection rules.
However, a regular central extension of the mass

charge is not allowed in the case of infinite spin-l
Galilean algebras. In this case, the central charges
need to be extended to be a set of the mass operators
ðcMÞn. This is true for generic value of l. For the
special value l ¼ 1=2, it has been well studied in
[62–64]. But for generic l, it has not been inves-
tigated carefully, to our knowledge. In the following
discussion, we will not consider this case.

III. GEOMETRY

In this section, we discuss the underlying geometry on
which the theories with anisotropic scaling and boost
symmetries can be defined. Recall that a 2D CFT in the

Euclidean signature is defined on a two-dimensional
Riemann surface, which has the translation symmetries,
rotation symmetry, and a scaling symmetry. More impor-
tantly the classical action is invariant under the (anti)
holomorphic transformations

z → fðzÞ; z̄ → fðz̄Þ; ð3:1Þ

but the partition function and correlation functions may
suffer from potential quantum anomaly due to the change
of the measure under the transformations.
For the Galilean field theories, one needs to introduce

the Newton-Cartan structure into the two-dimensional
geometry to make the Galilean symmetries manifest.
Furthermore, a special scaling structure is needed to define
the dynamical variable, the affine connection. For the
warped CFTs, the underlying Newton-Cartan geometry
has been studied in [4]. For the case at hand, we need to
introduce a Newton-Cartan geometry with a different
scaling structure however.

A. Flat geometry

We start with the geometry similar to the flat Euclidean
geometry. Such geometry admits the following symmetries:

H∶ x → x0 ¼ xþ δx; ð3:2Þ

H̄∶ y → y0 ¼ yþ δy; ð3:3Þ

B∶ y → y0 ¼ yþ vx: ð3:4Þ

Note that for different scalings c, d, the flat geometries are
the same.
The invariant vector and one-form are respectively

q̄a ¼
�
0

1

�
; qa ¼ ð 0 1 Þ; a ¼ 1; 2: ð3:5Þ

Similarly, there is a metric

gab ¼ qaqb ¼
�
1 0

0 0

�
ð3:6Þ

which is flat and invariant under boost transformation

g ¼ BgB−1: ð3:7Þ

The metric is degenerate, and it is orthogonal to the
invariant one-form. It has one positive eigenvalue and
one vanishing eigenvalue. Besides, there is an antisym-
metric tensor hab to lower the index

qa ¼ habq̄b: ð3:8Þ
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It is invariant under the boost transformation as well. It is
invertible with habhbc ¼ δac , and its inverse helps us to raise
the index

q̄a ¼ habqb: ð3:9Þ

With hab, we can obtain the upper index metric

ḡab ¼ q̄aq̄b ¼ hachbdqcqd ¼ hachbdgcd: ð3:10Þ

B. Curved geometry

In the previous subsection, the vector space and the dual
one-form space are introduced to define the geometry. The
antisymmetric tensor hab maps the vectors to one-forms,
and the metric gab defines the inner product of the vectors.
This is in contrast with the usual Riemannian geometry, in
which the metric serves also as a tool to map the vectors to
the one-forms.
The curved geometry is defined by “gluing flat geom-

etry,” in the sense that the tangent space is flat with the map
determined by the zweibein. One needs to define the
connection properly. The zweibein is required to map
the space-time vector to the tangent vector,

eaμ∶ vμ → v̄a: ð3:11Þ

The covariant derivative is

D ¼ ∂ þ ωþ Γ ð3:12Þ

where ω is the spin connection to connect the points in the
tangent space, while Γ is the affine connection to connect
the points in the base manifold. In the usual case, the affine
connection is determined uniquely by requiring the metric
to be compatible and torsion free, with zweibein postulate.
In the Galilean case, the torsion free condition cannot
determine the spin connection uniquely, and other con-
ditions should be imposed to get the unique spin connection
and then the affine connection by zweibein postulate
[54,65]. From the zweibein postulate

Dμeaν ¼ 0; ð3:13Þ

and the invertibility of eaμ, one may get the affine con-
nection

Γρ
μν ¼ eρa∂μeaν þ eρaebνωa

bμ ð3:14Þ

where

ωa
bμ ¼ q̄aqbωμ: ð3:15Þ

The torsion and curvature two-forms are respectively

Ta ¼ dea þ ωa
b ∧ eb; Ra

b ¼ dωa
b: ð3:16Þ

The metric compatibility requires

Dμq̄a ¼ Dμqa ¼ 0: ð3:17Þ

Instead of a torsion-free condition, the condition proposed
here is that the geometry is compatible with the scaling
symmetry, i.e., the scaling structure is a covariant constant

DμJab ¼ 0: ð3:18Þ

The scaling structure is defined to select the scaling weights
of vectors and one-forms

Jabq̄
b ¼ −dq̄a; Jabq

b ¼ −cqa: ð3:19Þ

Under the scaling,

x → λcx; y → λdy; ð3:20Þ

the infinitesimal transformation is

Λa
b ¼ δab þ λJab: ð3:21Þ

The scaling structure is expressed covariantly as

Jab ¼ −cðqcqcÞ−1qaqb − dðq̄cq̄cÞ−1q̄aq̄b ð3:22Þ

by requiring that

q̄aqa ¼ 0: ð3:23Þ

Note again that q̄a and qa are boost invariant vector and
one-form, and then the vector qa and one-form q̄a are
defined by the scaling structure in turn. Now the condition
that the scaling structure is covariant constant implies

qa∂μqa ¼ 0; q̄a∂μq̄a ¼ 0; ð3:24Þ

which means that

qaqa ¼ const:; q̄aq̄a ¼ const: ð3:25Þ

As at different points, the normalization should be the
same, one can choose the constants to be unit.
The fact that the scaling structure is covariantly constant

also implies the spin connection can be expressed as

ωμ ¼ −
1

cþ d
ðcq̄a∂μqa þ dqb∂μq̄bÞ: ð3:26Þ

One should also impose that

Dμqa ¼ 0: ð3:27Þ
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This means the weights of vectors do not change when
being parallel transported. This condition implies

q̄a∂μqa ¼ qa∂μq̄a: ð3:28Þ

Then one reaches the conclusion that in the ðx; yÞ coor-
dinates in the tangent space

ωμ ¼ 0; ð3:29Þ
and in turn

R ¼ 0: ð3:30Þ

However, the affine connection and the torsion

Γρ
μν ¼ eρa∂μeaν ; Ta ¼ dea ð3:31Þ

are now not vanishing. This is the same as the warped
geometry of warped CFTs.

C. Affine connection

In this subsection, we discuss the various constraints to
determine the affine connection without the help of the
zweibein. The starting point is the Newton-Cartan geom-
etry ðM;Aμ; GμνÞ. Aμ is a temporal one-form which defines
the local time direction, while Gμν is the inverse metric on
the spatial slice. One may define

Gμν ¼ ĀμĀν; Gμν ¼ AμAν; ð3:32Þ

and the antisymmetric tensor

Hμν ¼ eaμebνhab ¼ ea½μe
b
ν�hab ¼ A½μĀν�: ð3:33Þ

The velocity field Aμ is defined by

AμĀμ ¼ 0; ĀμAμ ¼ 0; ð3:34Þ

where Āμ is the dual one-form of Aμ

Āν ¼ HμνAμ: ð3:35Þ

The vectors and one-forms are related to the zweibein in the
last subsection by

Â ¼ ê · q̂: ð3:36Þ

In components, we have

Āμ ¼ eμaq̄a; Aμ ¼ eaμqa; ð3:37Þ

Āμ ¼ eaμq̄a; Aμ ¼ eμaqa: ð3:38Þ

The question is what conditions should be imposed to
determine the geometry completely. In the following, we

review the fact that metric compatibility and the torsion free
condition cannot determine the affine connection uniquely.
The covariant derivative acts on the tensor as

DμVν
ρ ¼ ∂μVν

ρ þ Γν
σμVσ

ρ − Γσ
ρμVν

σ: ð3:39Þ

The torsion is

Tμ
νρ ¼ Γμ

νρ − Γμ
ρν; ð3:40Þ

and the curvature is defined as usual. Then the constancy
condition of Aμ implies

DμAν ¼ ∂μAν − Γρ
μνAρ ¼ 0 ð3:41Þ

which gives constraints on the temporal affine connection

Γρ
μνAρ ¼ ∂μAν: ð3:42Þ

Along with the torsion-free condition

Tμ
νρ ¼ Γμ

νρ − Γμ
ρν ¼ 0; ð3:43Þ

one gets the point that the temporal one-form is closed

∂μAν − ∂νAμ ¼ 0: ð3:44Þ

Considering the constancy of Āμ, one finds the affine
connection

Γμ
νρ ¼ ĀμĀσðĀðρ∂νÞĀσ − Āðνj∂σĀjρÞÞ

þ Āμ∂ðνĀρÞ þ ĀμĀσAðνFρÞσ; ð3:45Þ

where Fμν is an arbitrary antisymmetric tensor. Moreover
we impose the condition that the scaling structure is
covariant constant, which implies that the parallel transport
keeps the scaling weight of the vectors invariant. This fact
implies that

DμAν ¼ 0; ð3:46Þ

and then

Fμν ¼ 0: ð3:47Þ

The requirement that the scaling structure is covariantly
constant implies also

ĀμĀμ ¼ const: ð3:48Þ

This in turn determines Aμ and the affine connection

Γρ
μν ¼ 0: ð3:49Þ
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Actually the conditions are too strong to allow interesting
geometry.
To get the nonvanishing affine connection, one may relax

the torsion free condition. The only constraints we impose
are the metricity and the condition that the scaling structure
is covariantly constant. Then the affine connection reads

Γρ
μν ¼ Aρ∂μAν þ Āρ∂μĀν: ð3:50Þ

In this case, the curvature is vanishing, but the torsion
tensor is not

R ¼ 0; Tρ
μν ¼ Aρ∂ ½μAν� þ Āρ∂ ½μĀν�: ð3:51Þ

This is the case we focus on in this paper. Note that if one
does not require the covariantly constant scaling structure,
there are remaining ambiguities, the so-called Milne boost,
in defining the velocity vector.
One may impose another set of consistent constraints,

including the metric compatibility, torsion-free and

RðμνÞ
½ρσ� ¼ 0: ð3:52Þ

These conditions imply

dF ¼ 0; F ¼ dQ: ð3:53Þ

F is closed and can be expressed as an exterior derivative of
a local Uð1Þ connection coupled to the particle number
current. This is the so-called geometry with Newtonian
connection. The field theories defined on such geometries
have nonvanishing central terms which are the particle
numbers or the mass extensions.

IV. DEFINING FIELD THEORIES

In this section, we discuss what kinds of field theories
could be coupled to the geometry discussed above in a
covariant way, and check that there are indeed infinitely
many conserved charges in these theories. As the case c ¼
0 is trivial, here we focus on the case c ≠ 0. To simplify the
notation, we use the freedom in the overall rescaling to
set c ¼ 1.
The geometry is defined by Aμ, Āμ, Aμ, Āμ, satisfying

AμAμ ¼ 1; ĀμĀμ ¼ 1; AμĀμ ¼ 0; ĀμAμ ¼ 0: ð4:1Þ

In the discussion below, the canonical one-forms are
chosen to be

A ¼ dx; Ā ¼ dy: ð4:2Þ

Under the scaling

x → λx; y → λdy; ð4:3Þ

the vector field and one-form field transform as

Aμ → λAμ; Āμ → λdĀμ; ð4:4Þ

Aμ → λ−1Aμ; Āμ → λ−dĀμ: ð4:5Þ

Under the boost

y → yþ vx; ð4:6Þ

there is

Aμ → Aμ; Āμ → Āμ þ vAμ; ð4:7Þ

Aμ → Aμ − vĀμ; Āμ → Āμ: ð4:8Þ

Now we want to find the diffeomorphism of the
geometry by considering an infinitesimal coordinate trans-
formation,

x → xþ ϵðx; yÞ; y → yþ ξðx; yÞ: ð4:9Þ

The infinitesimal variations are

δdx ¼ ∂xϵdxþ ∂yϵdy;

δdy ¼ ∂xξdxþ ∂yξdy: ð4:10Þ

This should be the same as the one arisen from the Galilean
boost and anisotropic transformations locally,

δdx ¼ λdx;

δdy ¼ dλdyþ vdx: ð4:11Þ

Comparing (4.10) with (4.11), we get the constraints on the
transformations,

d∂xϵðx; yÞ ¼ ∂yξðx; yÞ; ð4:12Þ

∂yϵðx; yÞ ¼ 0: ð4:13Þ

The allowed infinitesimal transformations are

x → xþ ϵðxÞ; y → ð1þ dϵ0ðxÞÞy; ð4:14Þ

x → x; y → yþ ξðxÞ: ð4:15Þ

It turns out the allowed finite symmetry transformations are

x → fðxÞ; y → f0ðxÞdy; ð4:16Þ

and
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x → x; y → yþ gðxÞ: ð4:17Þ

From the infinitesimal transformations (4.14), (4.15), we
read the generators

ln ¼ −xnþ1∂x − dðnþ 1Þxny∂y; ð4:18Þ

mn ¼ xnþd∂y; ð4:19Þ

which satisfy the algebra (2.65)

½ln; lm� ¼ ðn −mÞlnþm;

½ln; mm� ¼ ðdn −mÞmnþm;

½mn;mm� ¼ 0:

This algebra is analogous to the Witt algebra, and it is
called the spin-d Galilean algebra. The central extended
one g̃ ¼ g ⊕ C has been discussed in Sec. II.
Now we require that the action of the theory is invariant

under the symmetries above

δS½δAμ; δĀμ� ¼ 0 ð4:20Þ

where

δAμ ¼ λAμ; δĀμ ¼ dλĀμ þ vAμ: ð4:21Þ

The corresponding currents can be read from

δS½δAμ; δĀμ� ¼
Z

HðJμδAμ þ J̄μδĀμÞ; ð4:22Þ

with

J̄μAμ ¼ 0; JμAμ þ dJ̄μĀμ ¼ 0: ð4:23Þ

In the canonical coordinate ðx; yÞ,

ð⋆J̄Þx ¼ h̄x; ð⋆J̄Þy ¼ h̄y; ð⋆JÞx ¼ hx; ð⋆JÞy ¼ hy:

ð4:24Þ

The conditions are simply

h̄y ¼ 0; hy ¼ −dh̄x; ð4:25Þ

which are exactly the relations (2.37) and (2.54).
The other condition is the conservation of the

currents [4]

DμJ
μ
a ¼ 0: ð4:26Þ

With

Jμ ¼ qaJμa; J̄μ ¼ q̄aJμa; ð4:27Þ

we have

∇μJμ ¼ 0; ∇μJ̄μ ¼ 0: ð4:28Þ

This implies

∂yh̄x ¼ 0; ∂yhx þ ∂xhy ¼ 0: ð4:29Þ

This allows us to define infinitely many conserved charges
as in Eqs. (2.40) and (2.55).
In summary, we have shown that the field theory defined

on the Newton-Cartan geometry with anisotropic scaling
and boost symmetry indeed possesses the conservation
currents and charges we need. In the following discussion,
we denote h̄x ¼ MðxÞ and hx ¼ Tðx; yÞ.

V. QUANTIZATION

In this section, we consider how to define the theories on
the geometry discussed above. We will use the language in
terms of operators in the discussion, and we focus on the
case with l ¼ d=c being integer.6 For simplicity, we set
c ¼ 1 such that d is just an integer. Our study follows the
treatments in the study on the WCFTs [5–7,9].

A. Cylinder interpretation

The starting point is the so-called canonical cylinder
characterized by a spatial circle ϕ and a temporal direction t

ðϕ; tÞ ∼ ðϕþ 2π; tÞ: ð5:1Þ

One can get other kinds of spatial circles by tilting
t → tþ gðxÞ. The compactified coordinate is considered
in order to eliminate any potential infrared divergence.
Now, we define the “lightcone coordinates,”

xþ ¼ tþ ϕ; x− ¼ t − ϕ: ð5:2Þ

We impose the symmetry on the xþ; x− directions as
discussed before

xþ → fðxþÞ; x− → f0ðxþÞdx−; ð5:3Þ

and

xþ → xþ; x− → x− þ gðxþÞ; ð5:4Þ

6The known examples of warped CFTs and GCA field theories
are of this kind. In the case with integer l, the Cartan algebra is
ðL0;M0Þ. One can discuss the common eigenstates of them and
construct the highest weight representation. We can choose l to
be other values as well, but there is noM0 then. The discussion is
similar. From the highest weight representation marked by the
eigenvalue of L0, one can also construct the descendant states
with Ln<0;Mn<0.
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with fðxþÞ and gðxþÞ being arbitrarily smooth functions of
xþ. Inspired by the study on the WCFTs [5–7,9], let us
consider the following complex transformation which maps
the canonical cylinder to the reference plane:

z ¼ eix
þ ¼ etE−iϕ; ỹ ¼ ðizÞdx−; ð5:5Þ

where tE ¼ −it is the Wick-rotated time. The first trans-
formation is the same as the usual one in 2D CFT, while the
second one is motivated by Eq. (5.3). We have not
considered the tilting of the ỹ direction yet. The real time
cylinder is capped off at t ¼ 0 by a reference plane with
imaginary time.

tE → −∞; z → 0; ð5:6Þ

tE → ∞; z → ∞: ð5:7Þ

The Hilbert spaces are defined on the equal imaginary time
slices. On the reference plane, this leads to the radial
quantization. The “in state” and “out state” are defined by
inserting the operators at tE ¼∓ ∞. On the reference plane,
these states are defined at the origin and the radial infinity.
One can further put the operators at ỹ ¼ 0 using the
translation symmetry of the ỹ direction. The Hamiltonian
operator relates different Hilbert spaces on the canonical
cylinder while the dilation on the plane relates the Hilbert
spaces on different radial slices (of z, but different ỹ) with
each other.
One can inverse the procedure above to get the canonical

cylinder from the reference plane. Notice that z provides
one real degree of freedom after the continuation, while the
other degree of freedom is offered by ỹ instead of the
analytical continuation of z̄.
The reference plane keeps the symmetries (5.3) and

(5.4), which acts on the coordinates z, ỹ as

z → fðzÞ; ỹ → f0ðzÞdỹ;
z → z; ỹ → ỹþ gðzÞ:

The generators of the algebra act on the plane in the
following way:

Ln ¼ −znþ1∂z − dðnþ 1Þznỹ∂ ỹ; ð5:8Þ

Mn ¼ znþd∂ ỹ: ð5:9Þ

The generators

L1; L0; L1;M−d;…;Md ð5:10Þ

can act regularly on each point, and they generate the global
subgroup.
Now we want to find a set of basis operators filling

the representation of the algebra, by the theory of

nduced representation. The subgroup keeping the origin
invariant is

L0; Ln>0;M−dþ1;M−dþ2; � � � : ð5:11Þ

The local operators can be labeled by the eigenvalues
ðhO; ξOÞ of the generators of the Cartan subalgebra L0, M0

½L0;Oð0;0Þ� ¼ hOOð0;0Þ; ½M0;Oð0;0Þ� ¼ ξOOð0;0Þ:
ð5:12Þ

Requiring hO to be bounded below, one arrives at the
highest weight representations

½Ln;Oð0;0Þ� ¼ 0; ½Mn;Oð0;0Þ� ¼ 0; for n> 0: ð5:13Þ

This defines the primary operator. One can get the tower of
descendant operators by acting L−n,M−n with n > 0 onO.
The operators inserted at the origin give the states,

Oð0; 0Þj0i → jhO; ξOi: ð5:14Þ

This gives a bijection between the states in the Hilbert
space at infinitely past and the operators insertion at the
origin on the reference plane. Using the commutation
relations, the states above fill the representation of the
algebra as well. Such representation will be discussed in the
following subsection.
The operators at other positions can be obtained by using

the translations,

Oðz; ỹÞ ¼ U−1Oð0; 0ÞU; U ¼ e−zL−1þỹM−d : ð5:15Þ

In order to compute the commutators ½Ln;Oðz; ỹÞ� and
½Mn;Oðz; ỹÞ�, we notice the relations

½Ln;Oðz; ỹÞ� ¼ U−1½ULnU−1;Oð0; 0Þ�U;

½Mn;Oðz; ỹÞ� ¼ U−1½UMnU−1;Oð0; 0Þ�U:

By using the Baker-Campell-Hausdorf formula

e−ABeA ¼ Bþ ½B;A� þ 1

2!
½½B;A�; A� þ � � � ; ð5:16Þ

we have

ULnU−1 ¼
Xnþ1

k¼0

ðnþ1Þ!
ðnþ1−kÞ!k!ðz

kLn−k−dkỹzk−1Mnþ1−d−kÞ;

ð5:17Þ

and get
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½Ln;Oðz; ỹÞ� ¼ ð−znþ1∂z − dðnþ 1Þznỹ∂ ỹ þ ðnþ 1ÞznhO þ dnðnþ 1Þzn−1ξOÞOðz; ỹÞ

þ
Xn

k¼nþ2−d
Ck
nþ1dkỹz

k−1ðMn−d−kþ1OÞðz; ỹÞ; for n ≥ −1: ð5:18Þ

Similarly, by using

UMnU−1 ¼
Xnþd

k¼0

ðnþ dÞ!
ðnþ d − kÞ!k! z

kMn−k; ð5:19Þ

we find

½Mn;Oðz; ỹÞ� ¼ ðznþd∂ ỹþCn
nþdz

nξOÞOðz; ỹÞ

þ
Xnþd−1

k¼nþ1

Ck
nþdz

kðMn−kOÞðz; ỹÞ; for n≥−d:

ð5:20Þ

where Cm
n is the binomial coefficient.

A special case is d ¼ 0. Now M0 does not keep the
origin invariant. Nevertheless, M0 is still the generator of
the Cartan subalgebra,

½M0;Oðz; ỹÞ� ¼ ξOOðz; ỹÞ; ð5:21Þ

and

½Mn;Oðz; ỹÞ� ¼ zn∂ ỹOðz; ỹÞ ¼ znξOOðz; ỹÞ: ð5:22Þ

B. Representation

The Hilbert space is spanned by the states filling the
proper representations of the algebra. The critical
assumption is that the spectrum of L0 is bounded below
so that we can find the highest weight representations.
Starting with an arbitrary state, by acting with the gen-
erators Ln, Mn (n > 0), one must reach a state annihilated
by all the generators with positive roots. This is the primary
state, which is a highest weight state. The Cartan sub-
algebra is ðL0;M0Þ, so we can find the states with the
common eigenstates of ðL0;M0Þ. We consider the case that
the primary operators can be diagonalized,

L0jh; ξi ¼ hjh; ξi; M0jh; ξi ¼ ξjh; ξi; ð5:23Þ

Lnjh; ξi ¼ 0; Mnjh; ξi ¼ 0; n > 0: ð5:24Þ

By using the generators Ln, Mn with n < 0, one gets the
descendant states, which are labeled by two vectors I⃗, J⃗,

jI⃗; J⃗; h; ξi ¼ LI1
−1 � � �MJ1

−1 � � � jh; ξi: ð5:25Þ

A state is either a primary state or a descendant state, and
the Hilbert space is spanned by the modules

H ¼⊕
X

Vh;ξ; ð5:26Þ

where Vh;ξ is the module consisting of a primary state and
the tower of all its descendants. Note that all the null states
must be removed.
We have defined the Hilbert space at the origin and

discussed the operator-state correspondence. The in-states
are

jOini ¼ lim
z;ỹ→0

Oðz; ỹÞj0i: ð5:27Þ

The dilation operator relates one Hilbert space to the others
on the reference plane. Now we consider the Hilbert space
at the infinity. After the Wick rotation the Hermitian
conjugation becomes the reflection of the imaginary time
tE → −tE, and on the reference plane

z → z0 ¼ 1

z�
; ỹ → ỹ0 ¼

�
−1
z�2

�
d
ỹ�; ð5:28Þ

where z� is the complex conjugate of z. The dual space is
defined by the out-states

hOoutj ¼ lim
z0;ỹ0→0

h0jÕðz0; ỹ0Þ ð5:29Þ

which can be defined at the infinity on the reference plane,
corresponding to the infinite future on the canonical
cylinder.
The operator O transforms as

Oðz0; ỹ0Þ ¼
�
−1
z�2

�
h
Oðz; ỹÞ; ð5:30Þ

so the conjugate of the primary operator O is

O†ðz; ỹÞ ¼ O
�
1

z�
;
�
−1
z�2

�
dỹ�

��
−1
z�2

�
h
: ð5:31Þ

The dual state is

hOoutj ¼ lim
z0;ỹ0→0

h0jÕðz0; ỹ0Þ ¼ lim
z;ỹ→0

h0jO†ðz; ỹÞ¼ jOini†:

ð5:32Þ

To map the descendant states to the dual space, consider the
mode expansion of the stress tensors,
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MðzÞ ¼
X
n

Mnz−n−1−d; ð5:33Þ

Tðz; ỹÞ ¼
X
n

Lnz−n−2 − d
X
n

ðnþ 1ÞỹMn−dz−n−2: ð5:34Þ

One can impose the condition that M, T are Hermitian in
the real-time theory, or equivalently they are real in the
imaginary-time theory. This leads to

M†
n ¼ ð−1Þdþ1M−n; L†

n ¼ L−n: ð5:35Þ

The inner product and the map are defined by the adjoint
structure above. As

L†
0 ¼ L0; M†

0 ¼ ð−1Þdþ1M0; ð5:36Þ

h is always real, but ξ is real for odd d and is purely
imaginary for even d. In the usual case of CFT2, one
imposes such conditions, with further constraints on the
spectrum and central charges, to get a unitary field theory.
For the highest weight representations of the anisotropic

Galilean field theories, there are generically the states with
negative norm, indicating they are not unitary theories. This
can be shown from the study of Grim matrix. For example,
for l ≥ 1, if the level 1 Grim matrix does not have negative
eigenvalues, then ξ must be imaginary. However, the
adjoint structure Eq. (5.36) requires ξ to be real for odd
l, thus the theory with odd l cannot be unitary. Actually
theGalilean conformal field theories have been shown in [20]
to have nonunitary highest weight representations. For the
WCFT, there exists unitary theory, but the holographic one
dual to semiclassical gravity in asymptotically (warped)
AdS3 has been shown to be nonunitary [8,9,12]. In the cases
where the theory is not unitary, one can define other adjoint
structure.

VI. TWO-POINT CORRELATION FUNCTIONS

In this section, we calculate the correlation functions of
the primary operators in the theories with anisotropic
scalings. In the usual CFT, unitarity implies the operator
product expansion (OPE) convergence. For the nonunitary
theories we may assume the OPE convergence to explore
potential properties. In the theories discussed above, con-
sidering the radial quantization on the reference plane, it is
natural to expect that the operator product expansion is
convergent if the theories are unitary. However, such
theories cannot be unitary unless all the ξ’s are vanishing.
Nevertheless, we assume OPE convergence in such theo-
ries. With the OPE convergence, the higher point functions
can be reduced to lower ones by inserting a complete set of
operator basis. Thus the data of such theories are the
spectrum and the OPE coefficients.
The correlation functions with imaginary time must be

time ordered in order to be well defined. Correspondingly

they are radially ordered in the reference plane. We will
keep this point in mind without expressing the radial-
ordering explicitly.
In this work, we only focus on the anisotropic GCFT

with integer l. The more general case needs careful
consideration. If l is a half-integer, the mass charges play
an important role in the representation theory, and change
almost everything. For example, l ¼ 1

2
, the mass charge

conservation is also needed to determine the correlation
functions.
The vacuum is invariant under the global group dis-

cussed in the previous section

h0jG ¼ 0; ð6:1Þ
where G are the generators of the global subgroup.
Consequently the correlation functions are invariant under
the global transformations

h0jGOðx1; y1ÞOðx2; y2Þj0i ¼ 0 ð6:2Þ
where

G ∈ fL−1; L0; L1;M−d;…;Mdg: ð6:3Þ
Moving G from the left to the right gives the constraints on
the two-point functions. For example, the translation
symmetries require that the correlation functions must
depend only on x ¼ x1 − x2 and y ¼ y1 − y2.
Let us discuss case by case, setting c ¼ 1. The d ¼ 0

case is special, since the representation is special. As shown
in [9], there is

hO1ðx; yÞO2ð0; 0Þi ¼ dOδh1;h2δξ1;−ξ2
1

x2h1
eξy: ð6:4Þ

For d ¼ 1, there are no descendant operators involved
when doing the local transformations on the primary
operators. The two-point function is different from the
other cases [19]

hO1ðx; yÞO2ð0; 0Þi ¼ dOδh1;h2δξ1;ξ2
1

x2h1
e2ξ

y
x: ð6:5Þ

For d ≥ 2, the correlation functions become much more
involved. The correlation functions of the descendant
operators with the primary operators are not vanishing in
such cases. Namely we have to consider the following
correlation functions:

fðn; dÞ ¼ hðMnO1Þðx; yÞO2ð0; 0Þi: ð6:6Þ

Solving the constraints from the invariance of the two-point
functions under the global transformations, one gets

fð−dþ 1; dÞ ¼ −
1

2
xfð−d; dÞ; ð6:7Þ
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fðn; dÞ ¼ ðd − 1Þ!ðd − nÞ!
2ð2d − 1Þ!ð−nÞ! ð−1Þ

nþdxnþdfð−d; dÞ;

for n ∈ ½−dþ 2; 0�: ð6:8Þ

In the end, one finds

hO1ðx;yÞO2ð0;0Þi¼dOδh1;h2δξ1;ð−1Þdþ1ξ2

1

x2h1
e2C

d
2d−1ð−1Þdþ1ξ y

xd ;

ð6:9Þ

where Cn
m is the binomial coefficient. When d ¼ 1, it

reduces to Eq. (6.5).

VII. CONCLUSION AND DISCUSSION

In the present work we studied a class of general GCFT
with anisotropic scaling x → λcx, y → λdy. Under the
assumption that the dilation operator is diagonalizable,
and has a discrete, non-negative spectrum, we showed in
two different ways that the field theories with global
translation, Galilean boost and anisotropic scaling, could
have enhanced symmetries. The first way is to generalize
the Hofman-Strominger theorem to the case at hand. The
global symmetries are enhanced to the infinite dimensional
spin-l (l ¼ d=c) Galilean algebra with possible central
extensions. The second way relies on the Newton-Cartan
geometry with scaling structure on which the field theory
could be defined in a covariant way. Then the enhanced
local symmetries could be understood as the consequence
that the action of the field theory is invariant under
coordinate reparametrization.
Furthermore we discussed the properties of the aniso-

tropic GCFT. We establish the state-operator correspon-
dence by studying the representation of the algebra of
the enhanced symmetries. We noticed that when l > 1 the
primary operators do not transform covariantly under the
local symmetries. And consequently the two-point corre-
lation functions become more involved, as we had to
consider the correlation functions of a certain set of
descendant operators at the same time.
Having a covariant formalism, we can go further to

explore other properties of such theories. One interesting
issue is the scaling anomaly in the partition function. The
theory is defined on the equivalent class of the geometry.
However, the measure is not invariant under the local
transformation.7 An effective action should be given to
describe the anomaly of the partition function. In 2D CFT,
such effective action is a Liouville action [67]. For the

warped CFT, the effective action is a Liouville-type action.
It would be interesting to study the effective action of the
anisotropic GCFT. We leave this issue to future work.
Another interesting problem is to construct explicitly the
simple examples realizing the enhanced symmetries. This
may help us to understand the symmetries better.
Another important direction is trying to bootstrap these

field theories. Some efforts have been made for l ¼ 1
[21,22] and l ¼ 1=2 [68]. It will be interesting if one can
obtain any dynamical information for these nonrelativistic
conformal field theories using some well-established boot-
strap equations with appropriate inputs and reasonable
assumptions. One subtle but essential point is that the
theories now are generally nonunitary. To our best knowl-
edge, there are few analytical bootstrap results for non-
unitary (conformal) theories. In fact, unitarity is needed for
the non-negativity of the square of the OPE coefficients,
which is crucial for both the numerical and analytical
bootstrap methods. Also, note that the algebras here are
generally not semisimple (while the conformal algebra is);
studying the bootstrap in such theories is nontrivial. Even
though the algebra generically include an SLð2; RÞ sector,
the constraints from a crossing equation could be different
from a simple 1D CFT, which has been studied in the
Sachdev-Ye-Kitaev model [69–71].
The anisotropic GCFTs allow us to study the holo-

graphic correspondence beyond AdS=CFT. For the non-
relativistic scale invariant field theory, the underlying
spacetime is better described by a Newton-Cartan geometry
with additional scaling structure. The bulk dual would be at
least one dimensional higher. The symmetry consideration
may lead to the construction of the bulk dual. For example,
as proposed in [4], the lower spin gravity could be the
minimal set of holographic duality of warped CFT. It would
be interesting to investigate the holographic dual of a
general GCFT with anisotropic scalings.
In this work, we focused on the case that l is an integer

and there is no infinite M-extension. One interesting
question is to study the case with infinite M-extension.
When l ¼ 1=2, the infinite M-extension gives the
Schrödinger-Virasoro algebra. But for a generic value of
l, there is not much study, as far as we know.

ACKNOWLEDGMENTS

We are grateful to Luis Apolo, Stephane Detournay, Wei
Song, and Jian-fei Xu for valuable discussions. The work
was in part supported by NSFC Grants No. 11275010,
No. 11335012, No. 11325522, and No. 11735001. We
thank Tsinghua Sanya International Mathematics Forum
for hospitality during the workshop “Black holes and
holography.”

7For the Galilean field theories in higher dimensions, the
anomaly issue was studied in [66].

2D GALILEAN FIELD THEORIES WITH ANISOTROPIC … PHYS. REV. D 101, 066029 (2020)

066029-15



[1] J. Polchinski, Scale and conformal invariance in quantum
field theory, Nucl. Phys. B303, 226 (1988).

[2] D. M. Hofman and A. Strominger, Chiral Scale and Con-
formal Invariance in 2D Quantum Field Theory, Phys. Rev.
Lett. 107, 161601 (2011).

[3] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,
Infinite conformal symmetry in two-dimensional quantum
field theory, Nucl. Phys. B241, 333 (1984).

[4] D. M. Hofman and B. Rollier, Warped conformal field
theory as lower spin gravity, Nucl. Phys. B897, 1 (2015).

[5] S. Detournay, T. Hartman, and D. M. Hofman, Warped
conformal field theory, Phys. Rev. D 86, 124018 (2012).

[6] A. Castro, D. M. Hofman, and N. Iqbal, Entanglement
entropy in warped conformal field theories, J. High Energy
Phys. 02 (2016) 033.

[7] A.Castro,D.M.Hofman, andG.Sárosi,WarpedWeyl fermion
partition functions, J. High Energy Phys. 11 (2015) 129.

[8] W. Song, Q. Wen, and J. Xu, Modifications to holographic
entanglement entropy in warped CFT, J. High Energy Phys.
02 (2017) 067.

[9] W. Song and J. Xu, Correlation functions of warped CFT, J.
High Energy Phys. 04 (2018) 067.

[10] K. Jensen, Locality and anomalies in warped conformal
field theory, J. High Energy Phys. 12 (2017) 111.

[11] T. Azeyanagi, S. Detournay, and M. Riegler, Warped black
holes in lower-spin gravity, Phys. Rev. D 99, 026013 (2019).

[12] L. Apolo and W. Song, Bootstrapping holographic warped
CFTs or: How I learned to stop worrying and tolerate
negative norms, J. High Energy Phys. 07 (2018) 112.

[13] P. Chaturvedi, Y. Gu, W. Song, and B. Yu, A note on the
complex SYK model and warped CFTs, J. High Energy
Phys. 12 (2018) 101.

[14] L. Apolo, S. He, W. Song, J. Xu, and J. Zheng, Entangle-
ment and chaos in warped conformal field theories, J. High
Energy Phys. 04 (2019) 009.

[15] W. Song and J. Xu, Structure constants from modularity in
warped CFT, J. High Energy Phys. 10 (2019) 211.

[16] A. Bagchi, Correspondence between Asymptotically Flat
Spacetimes and Nonrelativistic Conformal Field Theories,
Phys. Rev. Lett. 105, 171601 (2010).

[17] A. Bagchi and R. Fareghbal, BMS/GCA Redux: Towards
flatspace holography from non-relativistic symmetries, J.
High Energy Phys. 10 (2012) 092.

[18] A. Bagchi and R. Gopakumar, Galilean conformal algebras
and AdS=CFT, J. High Energy Phys. 07 (2009) 037.

[19] A. Bagchi and I. Mandal, On representations and correlation
functions of Galilean conformal algebras, Phys. Lett. B 675,
393 (2009).

[20] A. Bagchi, R. Gopakumar, I. Mandal, and A. Miwa, GCA in
2d, J. High Energy Phys. 08 (2010) 004.

[21] A. Bagchi, M. Gary, and Zodinmawia, Bondi-Metzner-
Sachs bootstrap, Phys. Rev. D 96, 025007 (2017).

[22] A. Bagchi, M. Gary, and Zodinmawia, The nuts and bolts of
the BMS bootstrap, Classical Quantum Gravity 34, 174002
(2017).

[23] C. R. Hagen, Scale and conformal transformations in
galilean-covariant field theory, Phys. Rev. D 5, 377 (1972).

[24] M. Henkel, Local Scale Invariance and Strongly Anisotropic
Equilibrium Critical Systems, Phys. Rev. Lett. 78, 1940
(1997).

[25] M. Henkel, Phenomenology of local scale invariance: From
conformal invariance to dynamical scaling, Nucl. Phys.
B641, 405 (2002).

[26] S. Rutkevich, H. W. Diehl, and M. A. Shpot, On conjectured
local generalizations of anisotropic scale invariance and
their implications, Nucl. Phys. B843, 255 (2011).

[27] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin,
J. H. Denschlag, and R. Grimm, Crossover from a Molecu-
lar Bose-Einstein Condensate to a Degenerate Fermi Gas,
Phys. Rev. Lett. 92, 120401 (2004).

[28] C. A. Regal, M. Greiner, and D. S. Jin, Observation of
Resonance Condensation of Fermionic Atom Pairs, Phys.
Rev. Lett. 92, 040403 (2004).

[29] M.W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F.
Raupach, A. J. Kerman, and W. Ketterle, Condensation of
Pairs of Fermionic Atoms near a Feshbach Resonance,
Phys. Rev. Lett. 92, 120403 (2004).

[30] S. Sachdev, Quantum Phase Transitions, 2nd ed.
(Cambridge University Press, Cambridge, England, 2011).

[31] S. A. Hartnoll, Lectures on holographic methods for
condensed matter physics, Classical Quantum Gravity 26,
224002 (2009).

[32] D. T. Son and M. Wingate, General coordinate invariance
and conformal invariance in nonrelativistic physics: Unitary
Fermi gas, Ann. Phys. (Amsterdam) 321, 197 (2006).

[33] K. Balasubramanian and J. McGreevy, Gravity Duals for
Nonrelativistic CFTs, Phys. Rev. Lett. 101, 061601 (2008).

[34] S. Kachru, X. Liu, and M. Mulligan, Gravity duals of
Lifshitz-like fixed points, Phys. Rev. D 78, 106005 (2008).

[35] J. D. Brown and M. Henneaux, Central charges in the
canonical realization of asymptotic symmetries: an example
from three-dimensional gravity, Commun. Math. Phys. 104,
207 (1986).
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