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Abstract— This paper presents a combination of a 3D laser 
sensor and a line-base SLAM algorithm which together produce 
2D line maps of highly cluttered indoor environments. The key of 
the described method is the replacement of commonly used 2D 
laser range sensors by 3D perception. A straightforward 
algorithm extracts a virtual 2D scan that also contains partially 
occluded walls. These virtual scans are used as input for SLAM 
using line segments as features. The paper presents the used 
algorithms and experimental results that were made in a former 
industrial bakery. The focus lies on scenes that are known to be 
problematic for pure 2D systems. The results demonstrate that 
mapping indoor environments can be made robust with respect 
to both, poor odometry and clutter. 

I. INTRODUCTION 
In many typical robot settings for indoor navigation, a 

range sensor takes measurements in a plane parallel to the 
floor. The supposition that this cross-section contains enough 
information for the robot to navigate is commonly called the 
“2D assumption”. However, even structured indoor 
environments can be hard to model if dynamic objects and 
clutter dominate over the static structures which are good for 
navigation. More sophisticated feature extraction algorithms or 
the explicit modeling of dynamic objects during the mapping 
process [4] are examples of worthwhile approaches to be 
explored. But when the amount of clutter increases (Fig. 1), the 
cross-section contains more and more insufficient and 
misleading information for localization and mapping. The 2D 
assumption cannot be held anymore. Another approach is the 
use of 3D laser range data. In combination with mobile robots 
for indoor, two types of 3D sensors are already in use. One 
group is using a fixed mounted 2D scanner. In this case the 
robots are moved for 3D scanning [1]. These kind of 3D 
scanners are used to build static models of the environment. 
They cannot be used for navigation, as they already require an 
accurate 2D localization to accumulate the 3D data. The second 
group of 3D sensors has got an extra servo drive to turn a 2D 
scanner independently of the robot platform. This kind of 
sensor can be used for navigation like it is described in this 
paper. Nevertheless current applications [2] [3] are only used 
for static modeling up to now. This can be attributed to 
relatively long scanning times and the need to stand still during 
the scanning process. 

The introduction of 3D sensors into navigation was first 
done for mobile outdoor robots, as the disadvantages of 2D 

sensors are especially distinct in these environments. One 
procedure in this application is to build up full 3D navigation 
systems including a 3D sensor and a 3D or 2½D map 
representations [4][5]. These systems can be used in 
completely unstructured environments but they have the 
disadvantage of being computationally very expensive. An 
alternative method for 3D outdoor navigation is described in 
[6]. The system combines a 3D sensor with a 2D SLAM 
algorithm and map representation for semi structured outdoor 
environments. By this means it takes advantage of 3D 
perception in combination with less complex 2D navigation 
algorithms. 
 

 

Figure 1.  Cluttered indoor scene (CAS living room) 

This paper pursues a similar strategy as it is on 2D 
navigation with 2D range data, but it releases the 2D 
assumption by processing 3D sensory data and projecting them 
into a virtual plane. Avoiding the complexity of full 3D 
models, we build 2D maps of cluttered indoor environments 
with a combination of a new 3D sensor and a line-based SLAM 
algorithm. Section II describes a 3D sensor that can be used for 
mobile robot navigation and virtual 2D scans that are used to 
interface between the 3D and the 2D world. An exemplary 
feature-based SLAM algorithm that is used to process 2D line 
maps is described in section III. The practical results of a series 
of experiments at an industrial building are described and 
illustrated in section IV. 



II. 

A. 

3D PERCEPTION 
The 3D perception system that is described in this paper 

consists of two parts. The first is a fast 3D laser range sensor 
that is especially adapted for use on mobile robots. This 
scanner is described in section IIa. The second part is a 
construction called virtual 2D scans. Section IIb will introduce 
these virtual scans and will also present an algorithm that is 
able to extract them out of 3D point-clouds. 

Fast 3D Laser Range Scans 
As there is no commercial 3D laser range scanner available 

which could be used for mobile robots, it is common practice 
to assemble 3D sensors out of a standard 2D scanner and an 
additional servo drive [7]. A scanner that is used in our system 
is the SICK LMS 291 in combination with a self-build servo 
drive (scan drive). Different orientations of the 2D scanner in 
combination with different turning axis result in a number of 
possible scanning patterns. Two scanning patterns that are 
practicable for our application are the yawing scan, vertical 2D 
raw scan and rotation around the upright axis (see Fig. 2a), and 
the yawing scan top, 2D raw scan facing up and rotation 
around the upright axis (see Fig. 2b). The yawing scan pattern 
results in the maximal possible field of view of 360° horizontal 
and 180° vertical. The yawing scan top has got also a 
horizontal opening angle of 360° but it covers only the upper 
hemisphere. For this reason a sensor with such a scanning 
pattern is not able to detect obstacles that lie on the ground. On 
the other hand the data is sufficient for localization and 
mapping and the scan time, which is half of the yawing scan 
time, is attractive for faster motion. 
 

(a)  (b)  

Figure 2.  Continuously turning 3D scanner: 
(a) yawing scan, (b) yawing scan top 

Short scanning times and the ability to scan while moving 
are the main criteria that decide on the usability of 3D scanners 
for navigation tasks. For this reason the sensor that is used in 
this paper contains a number of improvements. One 
mechanical improvement is the ability of the scan drive to turn 
continuously, which is implemented by using slip rings for 
power and data connection to the 2D scanner. This leads to a 
homogeneous distribution of scan points and saves the energy 
and time that is needed for acceleration and deceleration of 
panning scanners. Another improvement that becomes 
important with short scanning times of a few seconds is the 
compensation of systematic measurement errors. This 

compensation is done by means of sensor analysis and hard 
real-time synchronization and time stamping. The result of 
these optimizations that are described in detail in [7] lead to 
scan times as short as 4.8s for a yawing scan with 1° horizontal 
and 1° vertical resolution (see Fig. 3), 2.4s for a 2°, 1° yawing 
scan or a 1°, 1° yawing scan top or only 1.2s for a yawing scan 
top with 2°, 1° resolution. Another feature is the ability to scan 
while driving, which is achieved with a move compensation 
algorithm [6]. This algorithm is using a 3D dead-reckoning 
mechanism that combines wheel odometry and a gyroscope. 
The estimated robot position is used to transform the 3D point-
cloud into a world fixed and therefore undistorted coordinate 
frame. 
 

 

Figure 3.  

B. 

3D point-cloud yawing scan 1°, 1° 

Virtual 2D Scans 
The 3D point-clouds that are acquired by the 3D scanner 

contain detailed information about the surrounding 
environment. Because 3D point-clouds are raw data 
representations, they include redundant information and many 
measurement points which are not needed for localization and 
mapping. Approaches which use this raw data for scan 
matching and full 3D modeling are computational very 
expensive. If the goal is to localize or navigate a mobile robot, 
these full 3D algorithms are not efficient. The use of virtual 2D 
scans is more efficient here as it aims to reduce the amount of 
data without loosing information that is essential for mobile 
robot localization. The reduced data sets can afterwards be 
used for computationally less expensive matching and SLAM 
algorithms. The data representation that is chosen of virtual 2D 
scans is similar to the data that can be measured directly with a 
2D laser range sensor. It is defined as a number of object 
surface points that are given in a 2D robot coordinate system. 
For this reason existing 2D scanners can be replaced by more 
intelligent 3D perception systems and can be used by keeping 
existing 2D SLAM algorithms. 

These intelligent sensors are based on algorithms that are 
able to extract the information that is essential for SLAM out 
of 3D point-clouds. This paper describes a first, 
straightforward, heuristic that extracts virtual scans from 
cluttered indoor scenes. Objects that are preferably used for 
indoor localization are walls because they are immobile and 
efficiently modeled as lines. The first step to create this virtual 
2D scan is to project all 3D points onto the plane by setting the 



z-coordinate to zero. A virtual 2D scan that contains primarily 
walls can thereafter be assembled by taking one point out of 
each vertical raw scan (resp. two points for a yawing scan top). 
This point is chosen to be the one with the largest distant to the 
center of the robot. As walls build the boundary of a closed 
indoor scene the chosen point is most probably a wall point. By 
this means points lying on the floor, ceiling or on obstacles are 
filtered out. The thus generated 2D scan is only disturbed by 
open doors, windows and objects that cover the wall 
completely. Fig. 4 shows a virtual 2D scan of the CAS living 
room in comparison to a regular 2D range scan taken at 50cm 
height. A photograph and one view of the 3D point-cloud from 
the same room can be seen in Fig. 1 and Fig. 3. 
 

 

Figure 4.  
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B. 

C. Observation 

D. 

IV. 

A. 

Virtual 2D scan (black), Regular 2D scan (50cm height, red) 

LINE-BASED SLAM 
This section describes the line-based SLAM algorithm which 
has been employed for the experiments. Assuming that the 
reader is familiar with the standard SLAM framework as 
initially proposed by [8], [9] we will focus on the particularity 
of our method. 

Feature Representation 
When lines are used as landmarks for SLAM the 
representation problem of uncertain features becomes visible. 
Several line models have shortcomings when used for SLAM 
such as the Hessian (alpha, r)-representation whose error 
propagation across frame transforms leads to physically 
meaningless covariance matrices. Here we use the SPmodel 
[10] to represent line segments. In the SPmodel, a reference 
frame is attached by default to each feature regardless its type. 
Errors are represented locally in that frame and in case of a 
non-full pose feature (e.g. lines or (x,y)-points) the so called 
binding matrix selects those rows in the feature state vector 
that “make sense” for the given feature type. 
To represent finite line segments, the segment endpoints are 
expressed relative to the frame of the supporting line as single 
rank (i.e. one dimensional) locations with a constant 
uncorrelated typical uncertainty. 

Robot Displacement 
A differential drive configuration is used as the kinematic 
model for the robot. This simplification allows us to apply an 
uncertainty model that models non-systematic odometry errors 
(correctly) in the wheel space and not in the Cartesian space 
[11]. From the odometry data delivered by the wheel encoders 
for the robot x- and y-position and the IMU device for the 
vehicle orientation, the encoder values for the left and right 
wheel are determined and taken as inputs for the kinematic 
model. Given a higher frequency odometry update with 
respect to the rate of the observations, a recursive formulation 
yields the sought process model Jacobian. This Jacobian is 
needed to update the first row and column of the map 
covariance matrix during the state prediction step. 

The line extraction algorithm from [12] has been used. It uses 
a sliding window technique and fit expressions that minimizes 
weighted squared errors perpendicular from the points onto 
the line. Its complexity is O(n*nw) where n is the number of 
scan points, nw the size of the window and nw<<n holds. 
Collinear segments are fused in a final steps using an NNSF-
like clustering algorithm based on a Mahalanobis distance 
matrix. 

Data association 
Line segments are an example of features with a physical 
extension. This plus of information can be used to support data 
association. After measurement prediction, based on the 
infinite line parameters, candidates are found which are 
compatible on a significance level alpha by means of the usual 
validation gate approach. Then, the candidate that has an 
overlap length greater than zero maximizing the overlap 
between the predicted map feature and the observation is 
chosen. For the calculation of the overlap length, endpoints are 
transformed into the frame of the map line and projected 
prependicularly. 
Finally, integration uses an iterative EKF under a strongest 
observation policy. We first integrate those observations in the 
local map that are most certain thus fostering good filter 
convergence. This strategy helps to disambiguate remaining 
data association uncertainties during the integration process. 

EXPERIMENTS 
This section shows the experimental results of two test runs 

made in a 100x100m industrial like indoor environment. The 
description includes the used robot system (section IVa), the 
test environment (section IVb) and the experimental results 
(section IVc). 

Experimental Setup 
The experimental robot consists of an iRobot ATRV based 

mobile platform for urban exploration and a 3D laser range 
scanner with external processing unit (see Fig. 5). The platform 
allows remote controlled driving via WLan. Further more the 
onboard unit calculates an odometric position estimation 
combining wheel encoders and a fiber optic gyro. The 3D 
scanner is built out of a Sick LMS 291 and a scanDrive which 



is a servo drive that is especially constructed for fast and 
continuous scanning. A scalable processing box (SPB [13]) 
that is based on an embedded-PC with Linux/RTAI real-time 
operating system is doing the 3D scanning and data acquisition. 
The ATRV onboard unit and the SPB are interconnected via 
CAN-Bus. 

The mapping experiments were carried out with a remote 
controlled robot driving at about 0.1m/s. The 3D scanner is set 
up to measure full 180°x360° range scans with a resolution of 
1°x1°. That results in a scan time of 4.8s. With the robot 
driving at the given speed the 3D scanner is able to measure 
one 3D scan, respectively one virtual 2D scan, about every 
0.5m. 

Within these first experiments, all 3D data processing and 
SLAM is done offline in a MATLAB environment. 
 

 

Figure 5.  

B. 

C. 

Experiments in a former industrial bakery 

Test Environment 
A large indoor environment that was used as an industrial 

bakery before has been available for the experiments described 
in this paper is. Currently it is used as a training site by 
Swedish military, police and fire brigades. 

The experiments covered two test areas of 20x30m and 
30x30m with a number is interconnected rooms. The rooms 
have got a flat floor, but there are several steps between rooms. 
Though they are traversable with the ATRV, they lead to large 
odometry errors. A lot of pipes and electrical installations are 
mounted on the walls and on the ceiling (see Fig. 5). Various 
obstacles and 6 people were in the test area during the 
experiment. Especially because of the occluded walls the test 
area is known to be problematic for pure 2D mapping. 

Results 
The algorithm that is used to process virtual 2D scans was 

applied to all 208 3D point-clouds out of both test runs. The 
experiments show very good and stabile results for wall 
extraction in closed indoor scenes. This can be traced back to 
the fact that only one correct wall point per vertical 2D scan is 
needed to produce a correct representation in the virtual 2D 

scan. This removes a vast of obstacles. Only obstacles that 
fully occlude the wall, e.g. people walking closely to the robot 
cannot be removed. As the virtual 2D scan contains mostly 
wall points it turns out to be ideal input data for the following 
2D algorithms. The output is comparable with a 2D scan taken 
in an empty room or corridor. 

Fig. 6 shows a clipping of a typical scene in a corridor. In 
this case two persons, a ladder, open cupboard doors and 
several other obstacles occlude the corridor. As it can be seen 
in the lower part of Fig. 6, a normal 2D scan (red points) 
contains many measurement points on these obstacles in 
contrast to the virtual 2D scan (black points) that represents 
large parts of the walls. 
 

 

 
Figure 6.  Experimental data of cluttered corridor 

The algorithm was applied to build two maps. The first run, 
revisiting the start point twice, consists of 156 steps and 
results in a map with 103 landmarks (Fig. 7a & 7b). The 
second run, starting in a big hall, has 72 steps and yields a map 
with 126 features (Fig. 8a & 8b). 
In addition to the clutter in the test environment, two 
circumstances made localization and mapping more difficult. 
On reason is the large odometry drift of the skid steering  



(a)  (b)  
 

Figure 7.  

V. 

Mapping experiment 1: (a) virtual 2D scan and odometry, 
(b) line-based map calculated by SLAM algorithm 

platform. The second difficulty is the lower data rate of virtual 
2D scans in comparison to standard 2D sensors. In our 
experiments the observations are made about every 0.5m. 
In spite of that the SLAM algorithm was able to calculate 
consistent maps for both test runs. This robustness can be 
attributed to the use of virtual 2D scans. The 360° opening 
angle of the scanner allows the complete observation of the 
surrounding. This is especially useful while passing doors, as 
features in the old room and in the new room can be seen in 
the same scan. Another essential fact benefit is the ability to 
observe also partially occluded walls. This contributes to the 
localization and mapping process as it provides landmarks that 
cannot be seen with a 2D sensor. The fact that obstacles and 
clutter are mostly removed from virtual 2D scans allows 
having more confidence in the sensed observation. For this 
reason the SLAM algorithm needs less observations to add a 
new feature into the map correctly. 
We further observe an over-segmententation of the map. Walls 
are modeled by several, sometimes overlapping segments 
where one long segment could be expected. This type of 
inconsistency in the description of the environment is typical 
for single-segment features and has been observed in [10] and 
[12]. As this problem is already known from pure 2D system it 
cannot be led back to the new 3D perception. 

CONCLUSION 
This paper presented a novel method for robust localization 

and mapping of cluttered indoor environments. The new ability 
to model cluttered environments with line-feature maps is 
gained by the use of 3D perception. We introduced an 
algorithm to extract virtual 2D scans from full 3D laser range 
data. These virtual 2D scans that contain mainly static wall 
points are used as input data for a 2D line-based SLAM 
algorithm. By this means we presented an effective 
combination of rich 3D perception and efficient 2D localization 
and mapping. The applicability of this new method was 
demonstrated by experiments within industrial indoor 
environments. 
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Figure 8.  Mapping experiment 2: (a) virtual 2D scan and odometry, 
(b) line-based map calculated by SLAM algorithm 
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