Title

2D MOSFET operation of a fully-depleted bulk MoS2 at quasi-flatband back-gate

 Permalinkhttps://escholarship.org/uc/item/3wz261sg

Authors

Najmzadeh, M.
Duarte, J.P.
Khandelwal, S.
et al.

Publication Date

2015-06-21
Peer reviewed

2D MOSFET operation of a fully-depleted bulk MoS_{2} at quasi-flatband back-gate M. Najmzadeh, J.P. Duarte, S. Khandelwal, Y. Zeng, C. Hu

Electrical Engineering and Computer Sciences (EECS), University of California, Berkeley, 94720 CA, USA phone: +1-510-643-1450, e-mail: najmzadeh@berkeley.edu

In this paper, 2D MOSFET operation of a fully-depleted double-gate bulk MoS_{2} is studied at a quasi-flatband of the back-gate for the first time. Several key device parameters such as equivalent oxide thickness (EOT), carrier concentration, flatband voltage, dielectric constant and carrier mobility were extracted from I-V and C-V characteristics and at room temperature. In a similar operation to the inversion-mode SOI MOSFETs in [1], the backgate was used to keep a sheet of mobile charges on the flake back-side by its quasi-flatband operation at a fixed voltage $(0 \mathrm{~V})$. Afterward, the top-gate was used as the active gate to perform mobile charge accumulation or depletion in the channel. Fig. 1 shows the device architecture together with the high frequency R-C equivalent circuit model for this underlap gate architecture. Fig. 2 represents the top-view microscope picture of the fabricated MoS_{2} bulk MOSFET with a flake thickness of 38 nm , measured by AFM. The fabrication steps include mechanical exfoliation of MoS_{2} crystals on a 260 nm thick oxidized Si substrate, e-beam lithography to make S / D pads, 50 nm Ni by thermal evaporation and lift-off, gate patterning, high-k/metal-gate stack deposition (1 nm of $\mathrm{SiO}_{\mathrm{x}}$ by thermal evaporation, 11 nm of ZrO_{2} by ALD deposition at $105^{\circ} \mathrm{C}, 30 \mathrm{~nm}$ of Ni by thermal evaporation) and lift-off. The measurements were done at room temperature using an Agilent B1500A Semiconductor Parameter Analyzer. Fig. 3 shows its $\mathrm{I}_{\mathrm{d}}-\mathrm{V}_{\mathrm{g}}$, reporting a subthreshold slope of $110 \mathrm{mV} / \mathrm{dec}$. and $\mathrm{I}_{\text {on }} / \mathrm{I}_{\text {off }}$ of $\sim 1 \times 10^{5}$, both at $\mathrm{V}_{\mathrm{ds}}=100 \mathrm{mV}$.
EOT, dielectric constant, flatband voltage: Fig. 4 depicts the $\mathrm{C}_{\mathrm{g}}-\mathrm{V}_{\mathrm{g}}$ measurement between the top-gate and the sourcedrain electrodes $\left(\mathrm{V}_{\mathrm{ds}}=0 \mathrm{~V}\right)$ at a high frequency regime (1 MHz). In strong accumulation, the EOT numeric value of the gate stack can be extracted from the maximum value of gate-channel capacitance, resulting an EOT value of 6.3 nm . In the partial depletion regime, between threshold and flatband, the gate-channel capacitance would vary by $1 / C_{g c}^{2}=1 / C_{o x}^{2}+2 /\left(\mathrm{q} \cdot \varepsilon_{\mathrm{ch}} \cdot \mathrm{N}_{\mathrm{d}}\right) .\left(\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{fb}}\right)$ [2]. The flatband voltage can be extracted from the x-intercept of $1 / \mathrm{C}_{\mathrm{gc}}{ }^{2}-1 / \mathrm{C}_{\max }{ }^{2}$, reporting a flatband voltage of -0.45 V . The dielectric constant of the flake can be extracted from the difference in the gate-channel capacitance in strong accumulation and at the threshold voltage (-1.1 V , estimated from the linear onset of $\mathrm{I}_{\mathrm{d}}-\mathrm{V}_{\mathrm{g}}$ in Fig. 3), reporting a numeric value of 7.8. This is almost in the range of the reported experimental dielectric constant numeric values in [3].
Carrier concentration: The carrier concentration can be extracted from the slope of $1 / \mathrm{Cgc}^{2}-1 / \mathrm{C}_{\max }{ }^{2}$ in the linear region between threshold and flatband, reporting a value of $2.1 \times 10^{17} \mathrm{~cm}^{-3}$. Note that this method can be applied to the devices with a flake thickness higher than the Debye length ($\sim 7.2 \mathrm{~nm}$ at this carrier concentration or doping regime).
Series resistance: The series resistance, similar to an inversion-mode MOSFET in [4], can be extracted from the yintercept of $\mathrm{R}_{\mathrm{tot}}=\mathrm{V}_{\mathrm{ds}} / \mathrm{I}_{\mathrm{d}}$ vs. $1 /\left(\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{fb}}\right)$ in linear accumulation regime $\left(\mathrm{V}_{\mathrm{ds}}<\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{fb}}\right)$, see Fig. 4, assuming accumulation as the dominant conduction mechanism in comparison to bulk conduction. This assumption is justified considering the channel accumulation conductance ($\mu . \mathrm{C}_{\mathrm{ox}} \cdot \mathrm{W} / \mathrm{L} .\left(\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{fb}}\right)$) of three times higher than the bulk conductance at flatband ($\mathrm{q} \cdot \mu . \mathrm{N}_{\mathrm{d}} . \mathrm{t} . \mathrm{W} / \mathrm{L}$). An almost similar mobility assumption for bulk and accumulation conduction results a bias range of $\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{fb}}>0.60 \mathrm{~V}$. A series resistance of $434 \mathrm{k} \Omega$ is extracted in Fig. 4, while this fairy high value is due to the used underlap gate design to minimize the parasitic gate-source and drain capacitances. Note that Benzyl Viologen (BV) [5] or $\operatorname{SiN}_{\mathrm{x}}$ [6] doping can be performed in the S / D extensions to suppress such resistances as well as minimize their gate-bias-dependencies especially above flatband and for shorter lengths [7].
Carrier mobility: The effective carrier mobility can be extracted using the split $\mathrm{C}-\mathrm{V}$ method, similar to a junctionless/accumulation-mode device in [8]-[9], covering a wide gate voltage range from threshold to strong accumulation $\left(\mu_{\mathrm{eff}}=\mathrm{I}_{\mathrm{d}} \cdot \mathrm{L} /\left(\mathrm{W} . \mathrm{Q}_{\mathrm{n}} . \mathrm{V}_{\mathrm{ds}}\right) ; \mathrm{Q}_{\mathrm{n}}=\int_{o f f}^{V_{g}} C_{g c} \cdot \mathrm{~d} V_{g}\right) . \mathrm{Q}_{\mathrm{n}}$ is the normalized mobile negative charges in the channel per unit area. Fig. 5 shows the numeric effective mobility values after the series resistance correction, reporting a maximum effective electron mobility value of $48 \mathrm{~cm}^{2} / V . s$. For comparison, the effective mobility is also extracted from I-V characteristics, after a series resistance correction and from the g_{m} values in linear accumulation regime, $\mu_{\mathrm{eff}}=\mathrm{g}_{\mathrm{m}} /\left(\mathrm{C}_{\mathrm{ox}} . \mathrm{W} / \mathrm{L} . \mathrm{V}_{\mathrm{ds}}\right)$, reporting a maximum numeric value of $26 \mathrm{~cm}^{2} / \mathrm{V} . \mathrm{s}$. The slight effective mobility underestimation using only I-V characteristics can be due to neglecting the bias-dependency of the gate-channel capacitance in strong accumulation regime.
Conclusion and further works: In this work, we extracted several device parameters in a double-gate bulk MoS_{2} MOSFET using C-V and I-V characteristics. Such device extraction methodologies were done assuming a typical linear operation of an accumulation-mode MOSFET from depletion to accumulation. This parameter extraction platform can be used to investigate the possible bias-dependency of key material parameters e.g. dielectric constant and bandgap [10], in a high normal electric field considering a back-gate operation. This includes incorporation of photoluminescence measurement on direct bandgap 2D devices, monolayer e.g. MoS_{2} and bulk e.g. ReS_{2} [11] as well
as additional measurement methods e.g. Hall for comparison of e.g. mobility and carrier concentration values.
This work was supported by ATMI Inc. within the i-Rice program.
[1] J. Chen et al., IEEE EDL 1991.
[2] Y. Taur et al., Fundamentals of modern VLSI devices, Cambridge University Press, 2009.
[3] X. Chen et al., Nature Communications 2015.
[4] M. Najmzadeh et al., IEEE TNANO 2012.
[5] D. Kiriya et al., J. Am. Chem. Soc. 2014.

Fig. 1: The device architecture, showing a top-gate operation between threshold and flatband voltage (left) and a high frequency model of the device (right).

Fig. 3: $\mathrm{I}_{\mathrm{d}}-\mathrm{V}_{\mathrm{g}}$ characteristics at $\mathrm{V}_{\mathrm{ds}}=100 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{bg}}=0 \mathrm{~V}$.

Fig. 5: Extraction of series resistance in linear accumulation regime from the total source-drain resistance vs. $1 /\left(\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{ff}}\right)$.
[6] K. Chen et al., APL Mat. 2014.
[7] M. Najmzadeh et al., SSE 2014.
[8] C.G. Sodini et al., SSE 1982.
[9] T. Rudenko et al., APL 2012.
[10] E.J.G. Santos et al., ACS Nano 2013.
[11] S. Tongay et al., Nature Communications 2014.

Fig. 2: The top-view microscope picture of the measured underlap top-gate MoS_{2} MOSFET.

Fig. 4: $\mathrm{C}_{\mathrm{g}}-\mathrm{V}_{\mathrm{g}}$ characteristics at 1 MHz and $\mathrm{V}_{\mathrm{ds}}=0 \mathrm{~V}$.

Fig. 6: Effective mobility extraction using split-CV and I-V, after series resistance correction.

