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ABSTRACT

In this work we propose a positioning method for ground vehicles in planar motion, based on sensor fusion of stereo cameras

and sparse ranging measurements obtained from a wireless network. The proposed method is an alternative localization

solution when Global Navigation Satellite System (GNSS) is unavailable, with notably low requirements on infrastructures.

It does not require a database of landmarks and it works in single-link scenarios, i.e., at most one station reachable at



any time. In theory, to estimate two dimensional position without ambiguity, at least three ranging anchors are required.

However, in GNSS-denied environments, it is often difficult to achieve simultaneous connectivity to three wireless stations.

We propose to apply visual odometry technique to estimate relative motion of the vehicle using stereo cameras, and fuse

the vision system with a single ranging link. The sensor fusion method can resolve absolute position unambiguously if the

vehicle sequentially connects to two stations with known coordinates. Furthermore, the accuracy of the estimated trajectory

is improved by fusing both ranging and visual measurements.

INTRODUCTION

In GNSS-denied environments, various onboard sensors are used for the relative navigation of dynamic vehicles, such as

inertial measurement units (IMUs) and vision systems. Visual odometry (VO) techniques based on stereo cameras have

shown promising performance in the trajectory estimation of dynamic vehicles using visual cues. The state-of-the-art visual

odometry methods, such as [1–4], are able to keep the accumulated position error as low as one percent of the travelled

distance, using real images collected on urban streets from the public benchmark datasets [5]. With the aid of other sensors

such as IMUs and laser scanners, the drift in visual odometry can be further reduced [6–8]. However, the technique is only

capable of positioning the rover relative to the starting location. There are also landmark-based visual navigation approaches

that provides absolute localization capability, such as the work [9–11]. The map-based methods, however, requires an up-to-

date database of landmarks with known coordinates. Additionally, the mismatch error between the images and the database

is difficult to monitor, especially when there are similar or repetitive patterns in the scenes.

Reliable absolute positioning in absence of GNSS often relies on signals-of-opportunity (SOP) networks consisting of

stations or anchors with known positions, e.g., cellular networks, WiFi, ultra-wideband (UWB) tags, etc. One state-of-

the-art method of positioning using cellular network as SOP is [12]. In general, by estimating the round-trip delay, range

measurements can be obtained from the wireless radio signals. In order to obtain an unambiguous position of a vehicle

in planar motion, at least three anchor points with known location are required for trilateration. For ranging based two

dimensional (2D) positioning problems, by exploiting the range from a single station, the possible position of the rover

distributes uniformly on a circle centered at the station, i.e., the red-circle in the example in Fig. 1. If a second station is

in connection at the same time, the localization solution is constrained to two ambiguous points, marked as blue stars in

the figure. The localization ambiguity can be solved by adding a third anchor for ranging-only positioning. However, in

practice, most signals of opportunity networks do not provide ubiquitous threefold coverage, since they are not designed

for pure navigation purposes. Fig. 2 is an example of a wireless network providing only single-station coverage with some

dead zone between stations. It is hence valuable to investigate the absolute positioning capability in such challenging but

realistic scenarios, in which only one ranging link from the base station network is available at any time.

In this work, we propose a 2D positioning approach based on the sensor fusion of a stereo camera rig and single link ranging

measurements. By processing the visual cues and the ranging measurements from multiple epochs, the absolute position

in the global reference frame can be estimated if the vehicle sequentially connects to two stations with known coordinates.
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Figure 1: 2D positioning geometry
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Figure 2: A wireless network with single-station coverage

Figure 3: Projection model for a stereo camera rig

Although two stations are required to resolve the whole geometry, it is not necessary in our method to connect to both

stations simultaneously. It can tolerate short hand-over periods with radio black-outs, which enables positioning of ground

vehicles using networks even with non-overlapping coverage. The proposed method has significantly lower requirements

on the infrastructures than other methods. Furthermore, we couple the visual and ranging measurements to improve the

accuracy of the vehicle trajectory estimation.

The organisation of the paper is as follows: first, we briefly introduce the stereo-camera-based visual odometry technique.

Subsequently, the sensor fusion algorithm is proposed. We begin with the estimation of the anchor position in navigation

frame using vision and a single ranging link, followed by proposing a method to improve the numerical convergence

probability. Then, the method to estimate the vehicle position in the global reference frame is introduced. In the following

section, the simulation results of the proposed positioning method are provided for evaluation, and conclusions are drawn

from the analyses.



Figure 4: Projection of a point in the navigation frame

SYSTEM MODEL AND INTRODUCTION TO STEREO VISUAL ODOMETRY

Fig. 3 shows the projection model for the chosen stereo setup. The origin of the camera frame (C) is defined at the

projection center of the left camera. Ω ⊂R
2 is the image plane. Applying the pinhole model, the perspective projection can

be formulated as

ũiL = di[uiL,1]
T = KL

~X
(C)
i , (1)

where di = X
(C)
i,z is the depth of the point, and KL is the camera intrinsic matrix. uiL ∈ R

2 denotes the Cartesian coordinates

of the point’s two-dimensional (2D) location in the image, and ũiL ∈ P
2 is the corresponding homogeneous coordinates in

the extended Euclidean space. Assuming the image planes of both cameras in the stereo rig are well aligned, the position of

the right camera in the camera frame is~b(C) = [l,0,0]T . The projection of the same point on the right camera is

ũiR = di[uiR,1]
T = KR(~X

(C)
i −~b(C)). (2)

Using the matched visual features at both image planes, the depth di can be retrieved and the three-dimensional (3D) location

of the point can be estimated as X̂
(C)
i .

We define a navigation frame (N) as a fixed coordinate frame with its origin at the starting location of the rover. The

navigation frame of each rover is related to the world reference frame by a specific transformation dependent on the initial

position and attitude of the vehicles. The projection of a point in the navigation frame is shown in Fig. 4. For a stereo

rig mounted on a vehicle constrained to be moving in a plane, the pose can be parameterized by three parameters ξ
(N)
[k]

=
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The planar position is ~β
(N)
k = [c

(N)
[k],x

,c
(N)
[k],y

]T . The feature location measurements of the point i at time k can be modeled as

µik = uik +nu,ik ∈ R
4, (4)



with uik = [ui[k],L;ui[k],R] ∈ R
4,E{nu,ik}= 0,E{nu,iknT

u,ik}= Σu,ik. E{·} denotes the expected value function.

Using feature detectors, several feature points can be matched between the stereo images and tracked over frames for a

period of time. Using Nk tracked features with 3D coordinates {X̂
(N)
i : i = 1, ...,Nk} triangulated at time k, the pose of the

vehicle at time k+1 can be estimated by minimizing the reprojection error

ξ̂
(N)
[k+1]

= arg min
ξ N
[k+1]

Nk

∑
i=1

∥

∥

∥
µi,k+1 −π(X̂

(N)
i ,ξ

(N)
[k+1]

)
∥

∥

∥

2

Σ−1
u,ik+1

, (5)

where π(·, ·) : R3 ×se(2)→R
4 is the projection function, and ‖ ·‖Σ−1 denotes the Mahalanobis distance in the metric given

by the covariance matrix Σ.

Using the estimated pose, the position of the newly detected features in frame k+1 can be updated. As a result, the motion

tracking can be continued as long as sufficient features can be tracked across consecutive frames. In addition, state-of-the-art

visual odometry algorithms usually apply a batch optimization for both 3D map point position and the vehicle poses over a

short period of time, so that the drift of the estimated trajectory can be mitigated. By applying the stereo visual odometry

technique, the rover obtains a set of egomotion estimates {ξ̂
(N)
[k]

} expressed in its own navigation frame, which consists of

position estimates {β̂
(N)
[k]

} and attitude (heading) estimation {φ̂
(N)
[k]

}.

ANCHOR POSITION DETECTION IN NAVIGATION FRAME USING VISION AND RANGING FUSION

In many cases, a wireless network can only provide a single-link coverage, i.e., the rover is connected to only one station

at a time. In one-link situations, the rover cannot position itself by just using the ranging measurements obtained from the

radio signal. However, for a dynamic rover which is capable of estimating its egomotion using visual odometry, we show in

this section that the anchor position in the rover’s navigation frame (N) can be estimated given sufficient motion dynamics.

It should be mentioned that even if the coordinates of the anchor is known in both global frame and navigation frame, the

position of the rover in the global reference frame cannot be determined uniquely. The problem and a possible solution are

discussed in detail in the next section.

Fig. 5 shows the model of the 2D anchor detection problem in the navigation frame of the rover.

At time instant k (sampled at k-th keyframe of the vision system), the range measurement between the rover and the base

station is

ρ[k] = ‖~x
(N)
b −~β

(N)
[k]

‖+η[k], (6)

where~x
(N)
b is the base station location in the navigation frame, and η[k] is the ranging noise with covariance E{η[k]η

T
[k]}=σ2

k .

The position of the rover in the navigation frame can be obtained from egomotion estimation using visual odometry. With

sufficient dynamics of the rover, the station position estimation problem is formulated as in Eqn. (7) by stacking the

measurements over time:

x̂
(N)
b = argmin

~x
(N)
b

‖ρ −Fb(~x
(N)
b )‖Σ−1 , (7)

where the k-entry of Fb(~x
(N)
b ) is the range function ‖~x

(N)
b − β̂

(N)
[k]

‖ and Σ−1 is the measurement covariance matrix. Obviously

the cost function is nonlinear, so the convergence of the numerical algorithm to the global minimum is highly dependent

on the initialization of the estimated parameters. The initial values can be obtained by a coarse estimation using direct

trilateration methods such as the approach from Thomas and Ros [13]. However, depending on the measurement error

distribution, the coarse estimates can be significantly inaccurate in practice, which results in unsolved convergence problem

of the nonlinear optimization.

As a solution, we parameterize the station location using polar coordinates instead of Cartesian coordinates, because the

range measurements provide good initialization for one of the parameters. By using the parameterization ζb = [r[1],ϕ]
T , the

problem can be reformulated as

ζ̂b = argmin
ζb

‖ρ −F(ζb)‖Σ−1 , (8)



ϕ 
x

y

O

(N)

ρ[1] = r[1] + η[1]

ρ[2] 

ρ[3] 

ρ[4] 

Figure 5: 2D anchor detection using ranging measurements

where F(ζb) = [F1, ...,FK ]
T with the k-th entry Fk = ‖[r[1] cos(ϕ),r[1] sin(ϕ)]T − β̂

(N)
[k]

‖. The optimization can be obtained

iteratively by solving a linearized problem as

ζ̂b = argmin
ζb

‖ρ − JF(ζb)ζb‖
2
Σ−1 (9)

ζ̂b,i+1 = ζ̂b,i +
(

JT
F |ζ̂b,i

Σ−1JF |ζ̂b,i

)−1

JT
F |ζ̂b,i

Σ−1
(

ρ −F(ζ̂b,i)
)

(10)

where JF |ζ̂b,i
is the Jacobian matrix of function F(·) linearized at ζ̂b,i.

The initialization of the azimuth angle ϕ can be done based on multiple assumptions { j = 1, ...,N j|ϕ
j}, and the optimization

in Eqn. (8) can be resolved independently for each initialization assumption. With ζ̂
j

b as the solution of the j-th initialization,

the global minimum can be selected from the local minima by

ζ̂b = min({ j = 1, ...,N j|ζ̂
j

b}). (11)

As a result, the base station (anchor) location in the rover’s navigation frame can be obtained from

x̂
(N)
b = [r̂1 cos(ϕ̂), r̂1 sin(ϕ̂)]T . (12)

Ideally only three keyframes are required to solve the problem as long as the egomotion is non-colinear. Nevertheless, the

uncertainty can be rather high due to the presence of ranging noise. As a result, using all available measurements over a

period of time to solve the least-squares problem can significantly improve the accuracy.

2D POSITIONING IN GLOBAL REFERENCE FRAME

As discussed in the previous section, the base station location can be estimated in the rover’s navigation frame using

ranging measurements from the single station and the visual odometry outputs. However, in the global frame (W ), there is

an unobservable angle which results in ambiguous rover position. Fig. 6 shows the ambiguity in an intuitive example. As
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Figure 6: Polar ambiguity in positioning based on single-station ranging and vision fusion.

shown in the figure, if the whole trajectory of the rover is rotated from the true positions with polar angle α to the trajectory

in dashed line with α
′
, all the measurements from both cameras and radio receiver are invariant. The problem is discussed in

detail in our earlier work [14]. By using range measurements and a monocular camera, the heading angle θ can be estimated

by the method proposed in [14]. The heading angle θ is an equivalent parameterization of the beacon direction angle ϕ in

the navigation frame. The transformation between the two representations in Fig. 6 and Fig. 5 follows the relation

ϕ =
π

2
−θ +π =

3π

2
−θ . (13)

The geometric ambiguity caused by the unobservable polar angle can be resolved after the rover is connected to a second

station. In a radio network with non-overlapping coverage that no more than one station is in the covered range at any place,

e.g., the trajectory in Fig. 7, the connection to the two stations are never simultaneous. Nevertheless, since the motion in

the navigation frame can be estimated using visual odometry, the ambiguity can be resolved even if the two stations are

connected sequentially, which can also tolerate short hand-over periods with radio black-outs.

By using the anchor position detection method in , the position of the base stations in the rover’s navigation frame (N)

can be estimated. We denote the two stations’ location in the global global frame as ~x
(W )
b1

and ~x
(W )
b2

respectively, and the

estimated position in the navigation frame are x̂
(N)
b1

and x̂
(N)
b2

. With the anchor position estimation, the positioning problem

is transferred to find the optimal transformation between the two reference frames, which is the well-known rigid body

estimation problem [15]. In the planar motion case, the problem is simplified to the following least-squares estimation:

{t̂(N→W ), R̂(N→W )}= argmin
t,R

2

∑
i=1

‖Rx̂
(N)
bi

+ t −~x
(W )
bi

‖2, (14)

where t ∈ R
2,R ∈ SO(2).

The problem can be solved by the state-of-the-art algorithms mentioned in [15] using singular value decomposition (SVD).
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By knowing the coordinate transformation between the global frame and the navigation frame, the rover trajectory can be

transformed to estimates in the global frame without ambiguity as:

β̂
(W )
[k]

= R̂(N→W )β̂
(N)
[k]

+ t̂(N→W ). (15)

In addition, the absolute attitude can be estimated as:

R̂(k→W ) = R̂(N→W )R̂(k→N), (16)

where R̂(k→N) can be obtained from visual odometry using the method introduced in .

The obtained coordinates β̂
(W )
[k]

in the global frame are coarse position estimates which are transformed from the visual

odometry outputs. In order to improve the positioning accuracy, the coarse estimates can be used as initial values for a

non-linear optimization which fuses both visual and ranging measurements as:

β̂ (W ) = argmin
β (W )

Nb

∑
i=1

∥

∥

∥
ρi −‖~x

(W )
bi

−β (W )‖2

∥

∥

∥

2

Σ−1
ρi

+
Nk

∑
k=2

‖l[k]−Skβ (W )‖2

Σ−1
l[k]

, (17)

where β (W ) = [β
(W )
[1]

,β
(W )
[2]

, ...,β
(W )
[Nk]

]T is the position vector in global frame, ρi = [ρi,[1],ρi,[2], ...,ρi,[Nk]]
T the ranging mea-

surements from i-th station, l[k] = β̂
(N)
[k]

− β̂
(N)
[k−1]

the translation estimate from visual odometry at time k, and

Sk =

[

~0 −1 0 1 0 ~0
~0 0 −1 0 1 ~0

]T

is a sparse selection matrix with non-zero entries only at 2k − 3 to 2k-th columns. The non-linear optimization can be

solved iteratively using Levenburg-Marquart algorithm [16], which is similar as the process in Eqn. (9) and (10). Due to

the sparsity of the measurement space, the solution can be computed efficiently using iSAM2 algorithm [17].

Since in this work we focus on positioning instead of mapping, the fusion in Eqn. (17) is based on loose coupling of the

visual and ranging sensors to reduce complexity. If a global map of the feature points is tracked and maintained during

the visual odometry estimation (it becomes visual simultaneous localization and mapping technique), the accuracy can be

further improved using tightly coupled fusion as used in [18] and [19]. Nevertheless, there is a trade-off between accuracy

and computational complexity.



Figure 8: Instance of test trajectory for anchor detection method.
Table 1: Estimation error of the station position in the navigation frame.

Convergence rate RMSE(x̂
(N)
b,x ) - [m] RMSE(x̂

(N)
b,y ) - [m]

polar parameterization 94% 0.7188 0.2258

Cartesian parameterization 0% 44.6757 16.1089

SIMULATION RESULTS

500 trajectory instances are generated with independent random walk noise for testing our anchor detection method. An

instance of the trajectories is shown in Fig. 8. In the simulation, the base station locates at (20,−20,0) in the navigation

frame. The ranging measurement noise has standard deviation of 1 [m] and the error of the visual odometry is 1 percent

of the translation vector. Both parameters are chosen according to empirical values from real camera and UWB sensor

hardware measurements. The root-mean-square-error of the estimated station position is shown in Table 1.

To evaluate the performance of the sensor fusion method, we test the algorithm on various trajectories and different geometry

between the base stations and the rover. Take the instance in Fig. 7 as a typical scenario. We set two stations without

overlapping coverage. The coverage radius of a base station is assumed to be 10 meters in radius. The stereo rigs’ intrinsic

parameters and sensor model are provided by a real camera. Noise is added on both the visual measurements and the range

measurements. Fig. 9 shows an instance of the noisy feature points distribution on both images of the stereo rig in the

simulation.

In this scenario the rover is sequentially connected to two different stations, and there is a radio dead zone between the

covered areas of the two stations. Neither the radio-only method nor the vision-only method is capable of locating the rover

in global frame in such cases. By applying the anchor position detection method, the coordinates of the two stations in the

rover’s navigation frame (N) can be estimated respectively. Following the proposed sensor fusion method, the trajectory

of the rover in global frame (W ) can be estimated with the limited infrastructure in the scenario. The result of 500 runs of

the simulation exploiting independent random noise is shown in Fig. 10. The ranging noise is assumed to be 0.5 percent of

the true range, which is set according to empirical values of our ultra-wide-band (UWB) based two-way ranging hardware.

The standard deviation of the visual odometry error is 1 percent of the translation vector. In the plot, the yellow curve

illustrates the root-mean-squared-error (RMSE) of the rover position in global frame over time. The positioning error is



Figure 9: An instance of the stereo feature locations in the simulation.
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between 0.1 [m] to 0.3 [m]. The visual odometry approach, which is denoted using the blue curve in the plot, can only

estimate the position in navigation frame, but cannot deliver a positioning solution in global frame. It can be seen that the

estimation error accumulates over time, since it can only estimate the relative motion. In order to compare with the vision-

only approach, the position error of the sensor fusion method in navigation frame is shown as the red curve. By applying

the ranging measurements from the anchor stations, the drift is significantly mitigated. Referring to the geometry in Fig.

7, the sensor fusion method has advantages in accuracy over the vision-only approach when the rover is in the connectivity

range of the base stations.

CONCLUSION

In GNSS-denied environments, the positioning of a dynamic rover can rely on a wireless network with ranging capability

and an onboard stereo camera rig. We propose a sensor fusion based positioning method, which only requires to connect

to one single station at any time. By exploiting the pose estimation from the visual odometry technique, the trajectory of

the moving rover can be estimated without ambiguity by connecting to different base stations sequentially. Compared with

pure radio based positioning methods, the proposed technique has much less requirements on infrastructures and is more

feasible in practice.
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[16] J. J. Moré, “The levenberg-marquardt algorithm: implementation and theory,” in Numerical analysis. Springer, 1978,

pp. 105–116.

[17] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “iSAM2: Incremental smoothing and

mapping using the Bayes tree,” The International Journal of Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.

[18] C. Zhu, G. Giorgi, Y. Lee, and C. Gnther, “Enhancing accuracy in visual slam by tightly coupling sparse ranging

measurements between two rovers,” in 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), April

2018, pp. 440–446.

[19] Y. Lee, C. Zhu, G. Giorgi, and C. Guenther, “Stereo vision-based simultaneous localization and mapping with ranging

aid,” in 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), April 2018, pp. 404–409.


