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Abstract 

Background: Emergence of cross-resistance to current anti-malarial drugs has led to an urgent need for identifica-

tion of potential compounds with novel modes of action and anti-malarial activity against the resistant strains. One of 

the most promising therapeutic targets of anti-malarial agents related to food vacuole of malaria parasite is haemo-

zoin, a product formed by the parasite through haemoglobin degradation.

Methods: With this in mind, this study developed two-dimensional-quantitative structure–activity relationships 

(QSAR) models of a series of 21 haemozoin inhibitors to explore the useful physicochemical parameters of the active 

compounds for estimation of anti-malarial activities. The 2D-QSAR model with good statistical quality using partial 

least square method was generated after removing the outliers.

Results: Five two-dimensional descriptors of the training set were selected: atom count (a_ICM); adjacency and 

distance matrix descriptor (GCUT_SLOGP_2: the third GCUT descriptor using atomic contribution to logP); aver-

age total charge sum (h_pavgQ) in pKa prediction (pH = 7); a very low negative partial charge, including aromatic 

carbons which have a heteroatom-substitution in “ortho” position (PEOE_VSA-0) and molecular descriptor (rsynth: 

estimating the synthesizability of molecules as the fraction of heavy atoms that can be traced back to starting mate-

rial fragments resulting from retrosynthetic rules), respectively. The model suggests that the anti-malarial activity of 

haemozoin inhibitors increases with molecules that have higher average total charge sum in pKa prediction (pH = 7). 

QSAR model also highlights that the descriptor using atomic contribution to logP or the distance matrix descriptor 

(GCUT_SLOGP_2), and structural component of the molecules, including topological descriptors does make for better 

anti-malarial activity.
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Background

Malaria is a deadly infectious disease with about 228 

million infected cases and 405,000 deaths worldwide, as 

recorded in 2018 [1]. �e disease is caused by the bite of 

a mosquito having the Plasmodium parasite, which con-

sists of five main species, Plasmodium falciparum, Plas-

modium vivax, Plasmodium ovale, Plasmodium knowlesi 

and Plasmodium malariae [2]. Of these species, 90% of 

deaths (mostly in children) were related to P. falciparum 

[3]. Anti-malarial drugs, such as quinine, chloroquine, 

artemisinin, proguanil, pyrimethamine, mefloquine, 

and atovaquone, have been indicated as malaria treat-

ment [4–6]. However, Plasmodium species developed 

resistance to most of these commonly used drugs. �is 

resistance and the lack of a vaccine has become a major 

problem in malarial treatment in recent years [7]. �ere-

fore, there is a pressing need to improve the efficiency by 

modifying existing compounds to face drug-resistance, as 

well as to discover novel anti-malarial compounds.

Due to funding investment constraints, in silico and 

collaborative approaches have become particularly 

attractive approaches for malaria drug discovery efforts. 

Some in silico techniques, namely molecular docking, 

pharmacophore models or quantitative structure–activ-

ity relationships (QSARs) significantly reduce the time 

and cost in the drug discovery process. Among the 

techniques, QSAR is considered a valuable tool that is 

applied extensively in rational drug design. �e predic-

tive QSAR model provides a mathematical correlation 

between the structural properties of the compounds and 

their anti-malarial activities using one-, two-, and three-

dimensional descriptors of physicochemical properties, 

as well as structural characteristics relating to the activ-

ity. Once a reliable QSAR model has been developed, 

the biological activities of molecules can be predicted 

from the molecular descriptors by different methodolo-

gies, such as multiple linear regression (MLR), partial 

least squares (PLS), artificial neural networks (ANN) and 

heuristic method (HM). In recent years, QSAR models 

were applied to a variety of anti-malarial compounds to 

figure out physicochemical and structural characteristics 

that are essential for their activity [8–13]. Some QSAR 

models developed using sulfonamide and its deriva-

tives, 5-(2-methylbenzimidazol-1-yl)-N-alklythiophene-

2-carboxamid derivatives in order to select models that 

had the best predicting ability [6, 14]. Other studies used 

three-dimensional QSAR (3D-QSAR) combining with 

extra analysis gave striking structural characteristics that 

related to anti-malarial efficacy and the mechanism of 

action of anti-malarial compounds [15–17].

�e anti-malarial activities of various groups of com-

pounds, in particular quinine and its derivatives, had a 

satisfactory correlation with their anti-haemozoin activ-

ity [18]. Haemozoin is formed inside the food vacuoles 

of parasites to prevent lethal toxicity of haem, which is 

a product of the catabolism of haemoglobin. �us, anti-

haemozoin is an important therapeutic target in anti-

malarial treatment. Recently, different approaches were 

highlighted. �ese approaches include the high-through-

put screening (HTS) of anti-malarial drugs based on their 

physicochemical properties of haemozoin formation, 

or building computational models for in silico to screen 

novel anti-malarial drugs, or analog development from 

natural compounds or existing agents [19]. Of which, pre-

diction models of correlation between anti-haemozoin 

and anti-malarial activities strongly assist in anti-malarial 

drug discovery, from modifying known compounds to 

identifying new chemical scaffolds for different targets 

of a large diverse database of compounds [18]. How-

ever, there is no QSAR model for anti-malarial activity of 

anti-haemozoin inhibitors. �e aim of this study was to 

develop quantitative structure–activity relationship mod-

els to determine the influences of physiochemical struc-

tures of haemozoin inhibitors on anti-malarial activities.

Methods

�e best QSAR model will be chosen and could be 

applied for screening and designing better anti-haemo-

zoin compounds for anti-malarial activities in next stud-

ies. QSAR modelling was conducted for anti-malarial 

activities of haemozoin inhibitors using the multiple 

linear regression (MLR) and partial least square (PLS) 

methods. Database of 21 compounds possessing both 

anti-malarial and anti-haemozoin activities were used 

for building QSAR models. �e  IC50 of these compounds 

varied from 0.06 – 10.5  µM (or  pIC50 ranged between 

-1.02 to 1.22). �e QSAR model was chosen based on the 

predicted fitness plots and statistical values of the mod-

els. Evaluation of QSAR models depended on three data 

sets, the training, validation and test sets. �e results 

included the corresponding descriptors (coefficients) 

and correlation of the observed—predicted values of 

Conclusions: The model is capable of predicting the anti-malarial activities of anti-haemozoin compounds. In 

addition, the selected molecular descriptors in this QSAR model are helpful in designing more efficient compounds 

against the P. falciparum 3D7A strain.
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anti-malarial activities and the statistical parameters. �e 

parameters, correlation coefficient or coefficient of deter-

mination  (R2 or r-squared), cross-validated  r2 (or  Q2) 

and  r2 for the external test set  (R2_pred), and root mean 

square error (RMSE) as fitting criteria, were employed 

to evaluate the goodness of the models. �e predictive 

model was tested based on different methods, such as 

internal for training set and external validation for test 

set, as well as Y-randomization method.

Data set

To perform 2D-QSAR, a complete data set containing 21 

anti-haemozoin compounds (Table 1) was taken from the 

experimental anti-malarial activities identifed in a previ-

ous work [20]. �e half maximal inhibitory concentration 

 (IC50) of the anti-haemozoin compounds was converted 

to logarithmic scale  (pIC50) and used as the dependent 

variable. �ese compounds were randomly divided into 

two subsets, a training set (16 compounds) and a test set 

(6 compounds).

2D-QSAR

A flowchart for developing 2D-QSAR was conducted 

following eight steps (Fig. 1). Initially, database included 

21 compounds having anti-Plasmodium 3D7A activ-

ity. �e  IC50 values of these compounds were converted 

into logarithm scale  logIC50 or pIC50  (pIC50 =−  logIC50). 

�e process of energy minimization of the compounds 

was performed using MOE 2015.10. A further step was 

the calculation of 2D descriptors. A total of 206 descrip-

tors described molecular structures, including geo-

metrical, physicochemical, sterical and lipophilic, which 

were calculated using Descriptors tool in MOE 2015.10. 

�e database was subsequently divided into two sub-

sets, a training set and a test set, with a 75:25 ratio. �e 

database was divided randomly using RAND or Diverse 

subset using MOE. Selection of descriptors was carried 

out carefully. Some descriptors were removed based on 

three methods, firstly, if more than 15% compounds had 

descriptor values of 0 using Microsoft Excel. Secondly, 

using Rapidminer Studio 8.2.0 to take out of descriptors 

of the compounds which possess 50% similarity. �irdly, 

remove randomly one of two descriptors having a cross 

correlation value of more than 70% using Rapidminer. 

�ese selected descriptors were also separated according 

the ratios of between 0 to 1 using Normalize in Rapid-

miner Studio based on the Eq. 1 below.

of which: Xn : Value; X0 : Initial value; Min0,Max0 : Mini-

mum, maximum of initial values.

(1)Xn =

X0 − Min0

Min0 − Min0

Contigency tool in MOE and BestFirst—a searching 

method with assessment algorithm CfsSubsetEval in 

Weka 3.8.1 were used to find out the suitable descriptors.

Some outliers were removed by using PCA or Z-score, 

if the compounds had Z-score values of more than 2.0 

before building 2D-QSAR. Using MOE with Model tool, 

2D-QSAR models were developed using MLR. �e best 

models were selected based on the highest values of the 

square of the coefficient of determination  (R2) value, 

internally cross-validated R2  (Q2), and the external vali-

dated  R2  (R2_pred). Of which, external validation used 

the test set while the training set was for model develop-

ment. �e internal validation parameters that were used, 

represented models’ goodness-of-fit and robustness. 

Finaly, evaluation of 2D-QSAR model on two datasets, 

training set and test set: Internal and external validations 

were conducted. �e internal validation used the leave-

one-out (LOO) cross-validation to internally validate the 

QSAR model. �is is done by excluding the point(s) of 

training set data, then constructing the model based on 

the remaining data activities and finally, using this model 

to test the excluded data. �is process was repeated until 

the training set activities were predicted. �e coefficient 

of cross-validated  R2 (or  Q2) was calculated for the train-

ing set. �e external validation was using the model for 

prediction of the biological activities of test set. �e value 

of predicted correlation coefficient  (R2_pred) value was 

calculated for the test set.

Results and discussion

To conduct this study, database of 21 anti-haemozoin 

compounds was taken for building 2D-QSAR models 

(Table  1) to explore the structure–activity relationship 

of haemozoin inhibitors acting as anti-malarial agents. 

�ese compounds had in  vitro anti-malarial activities 

against P. falciparum 3D7A and were used for QSAR 

modelling. �e data set was randomly split into a training 

set (15 compounds) for model construction and test set 

(6 compounds), for validation of the model, respectively. 

�e quality of a built QSAR model was demonstrated by 

the fitting and its predicting ability.

Variable selection

Five two-dimensional descriptors of the training set 

were selected for QSAR modelling as they all had low 

inter-correlation (Table  2). �ey included atom count 

(a_ICM); + adjacency and distance matrix descriptor 

(GCUT_SLOGP_2: the third GCUT descriptor using 

atomic contribution to logP (using the Wildman and 

Crippen SlogP method) instead of partial charge); average 

total charge sum (h_pavgQ) in pKa prediction (pH = 7); a 

very low negative partial charge, including aromatic car-

bons which have a heteroatom-substitution in “ortho” 
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Table 1 Structures and their anti-malarial activities  (IC50 values) of 21 anti-haemozoin compounds in building 2D-QSAR model

No Compound Structure Anti-malarial activity (3D7A) 
 IC50 (mM) ± SD

Anti-haemozoin 
activity  IC50 
(mM)

C1

 

0.06 42.98

C2

 

0.56 ± 0.27 18.3

C3

 

1.01 ± 0.50 25.96

C4

 

1.54 ± 0.07 53.44

C5

 

3.06 ± 1.30 110

C6

 

4.80 ± 1.70 198.1

C7

 

6.80 ± 4.40 29.04

C8

 

7.00 ± 1.40 43.98
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Table 1 (continued)

No Compound Structure Anti-malarial activity (3D7A) 
 IC50 (mM) ± SD

Anti-haemozoin 
activity  IC50 
(mM)

C9

 

8.00 4.58

C10

 

8.00 ± 2.80 156

C11

 

8.15 ± 2.60 34.67

C12

 

8.95 ± 1.30 103.5

C13

 

9.00 ± 1.40 14.01

C14

 

9.00 36.16

C15

 

9.00 160
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position (PEOE_VSA-0) and molecular descriptor 

(rsynth: estimating the synthesizability of molecules as 

the fraction of heavy atoms that can be traced back to 

starting material fragments resulting from retrosynthetic 

rules). �e study demonstrated that the average total 

charge sum (h_pavgQ) in pKa prediction (pH = 7) was 

the most important descriptor with the correlation coef-

ficient values of about 0.41 (Table 2).

QSAR model development

After selecting molecular descriptors, the linear QSAR 

models were built using the training set data. �e outliers 

were checked and removed based on their values of PCA 

(principal component analysis), Z-score, and ZX-score 

of more than 2. �ere are four QSAR models that were 

developed based on the selection of different methods, 

namely PLS (Partial least squares) and PCR (Principal 

component regression), respectively with or without out-

liers (Table 3).

Validation of QSAR models

�e evaluation of the QSAR models included the inter-

nal and external validations. �e parameters for internal 

validation were  R2 (a correlation coefficient),  Q2 (predic-

tive ability of the built QSAR models in the training set 

data employing leave-one-out (LOO) cross-validation 

method), and  R2_pred (predictive ability for the test set). 

QSAR model is selected if it complies with the three 

Table 1 (continued)

No Compound Structure Anti-malarial activity (3D7A) 
 IC50 (mM) ± SD

Anti-haemozoin 
activity  IC50 
(mM)

C16

 

9.26 ± 1.80 30.69

C17

 

9.28 ± 2.40 28.5

C18

 

9.50 ± 0.70 24.72

C19

 

10.00 ± 1.40 41.18

C20

 

10.00 38.54

C21

 

10.50 ± 2.10 87.76

IC50 half maximal inhibitory concentration



Page 7 of 15Nguyen et al. Malar J          (2021) 20:264  

criteria: the values of the high correlation coefficient  (R2) 

between the experimental and the predicted values, the 

predictive ability of the model for the training set  Q2 > 0.5, 

and the low standard deviation (RMSE). �e comparison 

of four generated 2D-QSAR models were evaluated and 

compared in Table 3. �e results showed that the QSAR 

models gave similar evaluation results by using PLS or 

PCR methods with outliers. �is means that using differ-

ent methods for the whole training dataset did not affect 

the development of the QSAR models. However, after 

removing outliers, the PLS model gave the better results, 

and the PCR model without outliers was worst than the 

others (Table 3). �erefore, the best QSAR model was the 

PLS model without outliers. �e regression equation is 

represented as following: 

where:  R2 = 0.745031, RMSE = 0.166261,  Q2 = 0.316410, 

and  R2_pred = 0.9554.

�e high values of  R2 = 0.745; low standard error 

(RMSE = 0.166) and the good predictive ability: 

 R2_Pred = 0.9554 (for the test set) indicated suitability 

of the model for predicting the anti-malarial activities 

of other haemozoin inhibitors from the existing anti-

haemozoin compounds (Table  3). �e experimental or 

observed versus predicted amounts of  pIC50 of haemo-

zoin inhibitors as anti-malarial structures against 3D7A 

strain were presented in Table  4 and Fig.  1. As can be 

seen in the Table 4, the predicted values of  pIC50 values 

pIC50 = − 4.90988 + 1.98542 × a_ICM + 0.74756

× GCUT_SLOGP_2 + 0.59815 × h_pavgQ

+ 0.00837 × PEOE_VSA − 0−0.12277 × rsynth.

Fig. 1 General steps of generating the QSAR model

Table 2 Correlation matrix for inter-correlation of five selected descriptors and their correlation with the bioactivity  (pIC50) against P. 

falciparum 3D7A with the Pearson’s correlation coefficient values

IC50: half maximal inhibitory concentration

Descriptor type Descriptor a_ICM GCUT_SLOGP_2 h_pavQ PEOE_VSA-0 rsynth

Atom count Atom information content (a_ICM) 1 0.0031 0.0385 0.0683 0.0647

Adjacency and distance Matrix Using atomic contribution to logP (GCUT_SLOGP_2) 0.0031 1 0.0169 0.0001 0.0088

Average total charge sum h_pavQ 0.0385 0.0169 1 0.0084 0.0447

Particle charge PEOE_VSA-0 0.0683 0.0001 0.0084 1 0.0573

Molecular Estimates the synthesizability of molecules (rsynth) 0.0647 0.0088 0.0447 0.0573 1

pIC50 0.1327 0.1204 0.4059 0.0962 0.0733
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were in good agreement with the values of experimental 

 pIC50.

�e linear graphical plot was depicted in Fig.  2. �e 

graph illustrated the good overlap of the observed and 

predicted activities of the data set with the high of cor-

relation coefficient of  R2 = 0.9554 (Fig. 2). �e predicted 

values of  pIC50 varied between −  1.021 to 1.222 with 

the value ranges of the selected descriptors presented in 

Table 5. �e decrease of these descriptors led a decrease 

of  pIC50 values meaning the increase of  IC50 which is a 

decrease of anti-malarial activities.

Interpretation of descriptors

It was clearly inferred that the average total charge sum 

(h_pavgQ) in pKa prediction (pH = 7) contributed the 

most to the values of  pIC50, which could be used as one 

indicator for predicting anti-malarial activities of other 

anti-haemozoin agents. �e higher average total charge 

sum (h_pavgQ) in pKa prediction (pH = 7) resulted in 

increasing values of  pIC50, or decreasing of  IC50, indi-

cating better anti-malarial activities (Table 4). �e posi-

tive sign of these descriptors indicated that the larger 

the value of  pIC50, the lower  IC50 of the compound. In 

addition, this feature was also taken for evaluation and 

prediction of anti-malarial activities for some anti-malar-

ial drugs, such as quinine, pyrimethamine, halofantrine 

and mefloquine. It was found that the higher their calcu-

lated h_pavgQ values, the better anti-malarial activities.

Furthermore, the decrease of distance matrix descrip-

tor (GCUT_SLOGP_2) or the third GCUT descriptor 

using atomic contribution to logP could lead better anti-

malarial activity. �e result was compatible with the pre-

vious study as this descriptor represents for lipophilicity 

and low lipophilicity, especially at pH 3, 4, and 5 were sig-

nificantly related to better anti-malarial activity of anti-

haemozoin molecules.

In addition, the positive sign of the PEOE_VSA-0 

descriptor, a very low negative partial charge, including 

aromatic carbons which have a heteroatom-substitu-

tion in “ortho” position suggests that increasing in the 

PEOE_VSA-0 will decrease the inhibitory potency of 

Fig. 2 Plot of the correlation between the experimental  pIC50 and the  pIC50 predicted anti-malarial activities using partial least squares model

Table 5 Values ranges of selected descriptors in 2D-QSAR model

a_ICM GCUT_
SLOGP_2

h_pavQ PEOE_VSA-0 rsynth

Min 1.500031 0.058723 − 0.558641 24.509808 0.370370

Max 1.880740 0.194329 0.988134 129.772461 0.839999
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anti-haemozoin compounds. �e increase of atom count 

(a_ICM), topological descriptors or structural compo-

nents of the molecules have an effect on the variation of 

anti-malarial inhibitory activity of the anti-haemozoin 

compounds. Moreover, molecular descriptor (rsynth: 

estimating the synthesizability of molecules as the frac-

tion of heavy atoms that can be traced back to starting 

material fragments resulting from retrosynthetic rules) 

was the least contributive. In addition, the predicted 

 pIC50 in Table 4 were much different with the experimen-

tal  pIC50 values for the outliers, especially C1, C2, C12, 

C16. As a result, removing these outlier compounds from 

the training set for building QSAR model was essential.

�e limitation of this study is the toxicity evaluation. 

In fact, there is no model predicting both the struc-

ture–activity and the structure–toxicity relationships, 

but they are separate models either predicting the struc-

ture–activity or the structure toxicity. �erefore, this 

QSAR model is not suitable for predicting the toxicity 

of the compounds. Another QSAR model for toxicity is 

required.

Conclusion

With the 15 anti-haemozoin compounds, the satistically 

satisfactory 2D-QSAR model using PLS method was 

generated after removing the outliers. Five two-dimen-

sional descriptors of the training set were selected: atom 

count (a_ICM); adjacentcy and distance matrix descrip-

tor (GCUT_SLOGP_2: the third GCUT descriptor using 

atomic contribution to logP; average total charge sum (h_

pavgQ) in pKa prediction (pH = 7); a very low negative 

partial charge, including aromatic carbons which have a 

heteroatom-substitution in “ortho” position (PEOE_VSA-

0) and molecular descriptor (rsynth: estimating the syn-

thesizability of molecules as the fraction of heavy atoms 

that can be traced back to starting material fragments 

resulting from retrosynthetic rules), respectively. �e 

interpretation of the developed model suggests that the 

anti-malarial activity of haemozoin inhibitors increases 

with molecules having higher average total charge sum 

(h_pavgQ) in pKa prediction (pH = 7). �e QSAR model 

also highlights that the descriptor using atomic contribu-

tion to logP or the distance matrix descriptor (GCUT_

SLOGP_2), and structural component of the molecules, 

including topological descriptors does make for better 

anti-malarial activity.
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