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ABSTRACT We present a ray-tracing analysis of a smart motion detector based on a dynamically

reconfigurable metasurface antenna (DMA). A DMA consists of an array of metamaterial radiators excited

by a single-port waveguide or cavity. By incorporating simple switchable components into each element

and addressing them individually, DMAs can generate a myriad of spatially distinct radiation patterns and

alter them as a function of an applied voltage. These patterns have the potential to probe all regions of

a room or set of rooms and detect motion, even when operating over an extremely narrow bandwidth.

Through the acquisition of time-resolved measurements, the DMA sensor can retrieve temporal signatures

and distinguish between different sources of movements. We investigate this sensing paradigm using a ray

tracing simulation. We first replicate the trends obtained from recent experiments using our simulation

platform to ensure that numerical ray tracing generates data that is a faithful representation of the real-

life physics. We then demonstrate that temporal signals obtained in this manner carry information about the

nature of the movement. Specifically, by using power spectra and filtering, we are able to extract features that

correspond to specific motion patterns. These results constitute the first step toward incorporating DMAs

into a smart sensor equipped with learning algorithms that can distinguish between human and non-human

motion with high fidelity.

INDEX TERMS Ray tracing, antenna radiation patterns, cavity resonators, radio frequency (RF), sensors,

antenna arrays.

I. INTRODUCTION

Occupation sensing technology is an indispensable com-

ponent in the drive towards smart buildings and the inter-

net of things (IoT) [1]–[3]. Smart occupancy sensors can

adjust heating and cooling settings and are crucial in reduc-

ing the energy consumption of residential and commer-

cial buildings [4], [5]. One recent study estimated that such

devices could save upwards of 30% in power and cost in

the United States [6]. In addition, the utility of an occu-

pancy sensor can be extended to monitor the vital signs

of occupants [7]. For example, a non-invasive smart sensor

can monitor for distressed breathing rates in individuals

with medical conditions like sleep apnea and diabetes [8].

Additional medical applications include monitoring the
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elderly [9] for falls [10], which stand as a major source of

concern and risk in their everyday lives [11].

Despite the growing interest, current occupancy sensors—

such as the ubiquitous pyroelectric infrared motion

sensors [12]—do not meet the needs of this growing

field [13]. Many recent works on smart sensing use radio

frequency (RF) and microwave devices as smart occu-

pancy sensors. The appeal of RF and microwave sen-

sors stems from multiple factors. First, RF and microwave

devices can easily keep user data anonymous and they

are not intrusive into individuals’ daily lives. In addi-

tion, microwaves can penetrate clothes and furniture and

bounce off walls and ceilings, generally increasing the range

within which a sensor can operate. This allows RF sen-

sors to operate both in line-of-sight (LOS) and non-line-of-

sight (NLOS) scenarios. Moreover, low power microwaves

and RF waves are deemed harmless to humans and
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animals, mitigating health concerns. Given these advantages,

there has been a significant push to leverage microwave

and RF signals for human presence detection and motion

monitoring [14]–[23].

In active microwave sensing without user cooperation

(i.e. wearing a tag or carrying an RF device), fluctuations

of the received signal are examined to infer human presence.

In this framework, the sensor relies on the fact that a human’s

presence and the inevitable movements (i.e. walking, breath-

ing, etc.) induce tangible fluctuations in the received signal

(e.g. micro-Doppler shifts, shadowing on the channel state

information, or the received signal strength). This idea has its

roots in the physical concept of diffusing wave spectroscopy

where the fluctuation of waves inside a cavity is monitored to

detect and characterize a dynamic scatterer [24]–[28]. Apply-

ing this interpretation, a residential building is approximated

as an irregular cavity, where microwaves bounce around

several times before reaching a receiver. As a result of the

cavity’s irregular geometry, the wave inside the room resem-

bles a speckle pattern; any perturbation to this speckle pattern

can cause significant variations at the receiver. A dynamic

(moving) scatterer, such as a human, can cause significant

variations in the field at the receiver. Since most rooms are

not perfectly reflective and the microwaves attenuate as they

propagate, such schemes can be sensitive to noise and it is

common to use frequency diversity to increase the reliabil-

ity of measurements [29]. Alternatively, one can use spatial

diversity implemented by an antenna array or sensor network

to tap into different modes reverberating inside the room to

detect motion with high fidelity.

Recently, the notion of using spatial diversity to detect

motion has been demonstrated using a novel hardware:

a dynamic metasurface antenna (DMA) [30]. Generally

speaking, a DMA—a schematic for which is shown in

Figure 1(a)—consists of a waveguide or a cavity exciting an

array of metamaterial radiators [31]–[34]. By introducing a

switchable component into each element (e.g. a diode) and

addressing it individually, the DMA allows for the generation

of spatially distinct radiation patterns and their rapid varia-

tion without using complex and power hungry components

(e.g. phase shifters, switches, etc.). The spatially varying

radiation patterns generated by the DMAmultiplex the infor-

mation that could be gathered by a large number of virtual

dipole antennas [35], [36]. In this manner, the DMA allows

for rapid acquisition of information from an electrically large

aperture (or a large antenna array). The spatial diversity real-

ized by a DMA was shown in [30] to drastically improve

the sensor’s ability to detect motion, even in occluded areas.

The applicability of a DMA-based motion detector is further

advanced by its relatively low cost. With a PCB construc-

tion using only simple electronic components (diodes, var-

actors, etc.) DMAs are economical to mass-produce, making

them an appealing alternative hardware choice for motion

detection and occupancy sensing. Using DMAs for detecting

motion inside a residential setting is conceptually depicted in

FIGURE 1. (a) A schematic of the front of a 2D DMA. (b) A residential
environment probed for motion with two DMAs.

Figure 1(b) where the spatial diversity realized by reconfig-

urable patterns of the DMA are used.

Another interesting advantage of using DMAs for sensing

application is the elimination of the need for bandwidth. Since

DMAs-based sensors can operate at a single frequency [30],

they do not pose any interference concern. Single frequency

(or narrow bandwidth) operation also significantly simplifies

the required RF circuitry and reduces cost. Without concern

about interference and circuit complexity, one can also utilize

a higher frequency (e.g. 20 GHz, as compared to typical WiFi

frequencies) to improve sensitivity and reduce sensor size.

Single frequency operation, however, prevents us from uti-

lizing micro-Doppler signatures, which are commonly used

to determine the source and type of motion. While this lim-

itation may seem to hinder DMAs’ functionality as smart

devices, we note that DMAs can acquire temporal signature

of movements. This capability is due to the DMA’s simple

circuitry which allows for rapid switching between its radi-

ation patterns; A DMA-based sensor is thus able to obtain

information at speeds far in excess of typical motion. Hence,

a DMA-based sensor should be able to generate a temporal

signal with the necessary sampling frequency to identify and

distinguish different motion patterns.

In this work, we present a ray-tracing simulation platform

that enables us to further test and investigate DMA-based

sensors. Ray-tracing allows us to approximate the behavior

of the DMA as a motion sensor. While not a replacement

for physical experiment, simulations allow us to generate
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large quantities of data for different motion patterns, room

geometries, DMA configurations, etc. We can control motion

patterns and physical variables in a quick and repeatable

way that would be unfeasible in experiment. Ray-tracing

also enables us to develop an intuition for the signals gen-

erated under these varied circumstances. Building on the

work in [30]—which was done in a small metallic cavity—

we use the ray-tracing simulation system to demonstrate the

advantage of using a DMA for motion sensing in a residential

environment. We further demonstrate that signals obtained

from these simulations reflect the characteristics of motion

patterns that caused them, giving us confidence that such a

system can be paired with learning algorithms to classify and

detect motion in real-time.

This paper is organized as follows: After describing our

ray tracer, we demonstrate that our system provides a faithful

representation of a DMA operating in a disordered cavity

(i.e. residential room). Next, we use ray-tracing simulations

to highlight the DMA’s advantages as a motion detector by

demonstrating extremely low false negative detection rates.

Lastly, we demonstrate that the temporal signal retrieved by

a DMA exhibits features corresponding to movements in the

room, demonstrating DMA’s potential viability as a smart

motion sensor.

II. RAY TRACING INSIDE A ROOM

Ray tracing has been extensively used to model the prop-

agation of waves inside an indoor environment [37]–[44].

Depending on the desired accuracy and computational power,

a variety of physical phenomena can be incorporated, such

as reflection, refraction, diffraction, and diffusion [44]–[46].

Ray tracing has proven to be a useful technique to obtain

physical insight into the evolution of an electromagnetic wave

as it traverses a closed environment, and can be used to evalu-

ate the performance of certain systems, e.g. a communication

link [37]–[44]. Ray tracing also requires a lower computa-

tional cost than other simulation techniques—e.g. full-wave

simulations, which are prohibitively time consuming. Our

goal here is to use ray tracing as a simple and fast tool to

demonstrate the utility of DMAs in detecting and character-

izing dynamic scatterers inside a room; we do not intend to

develop a platform that can replace real life measurements.

The ray tracing model used throughout this manuscript is

detailed in the Appendix A. It is worth noting that for simplic-

ity and speed, we develop our tracing algorithm in two dimen-

sions (2D). This can be interpreted as modeling the cross

section of the room depicted in Figure 1. To further simplify

the simulation process, we use omnidirectional point anten-

nas to model each transmitter (Tx) and receiver (Rx). Such an

assumption closely resembles many practical scenarios, for

example when using dipole or monopole antennas with their

axes aligned perpendicular to the plane of simulation.

With the exception of Section 5 and the latter two

plots in the Appendix A, the generic room—referred to as

Room 1 and shown in Figure 2—will be used as the geometry

for simulations. As an example, the evolution of the signal

FIGURE 2. A snapshot of one frame of ray tracing simulation in Room 1.
Rays are capped at 3 reflections.

from a single antenna Tx to a single Rx antenna, calculated

using our ray tracingmodel, is also depicted. A small partition

and corner are added to further resemble a typical room. The

Tx antenna is placed at (5.5 m, 3 m), while the Rx antenna

is placed at a (1m, 0.1 m). The room size is 5.5 m by 4 m,

which is typical for many real-life scenarios. For simplicity

and faster simulation speeds, we model objects/humans as

equilateral triangles, as shown in Figure 2. The triangle size

and orientation is adjusted according to the specific scenario:

human breathing is modeled as a sinusoidal variation of the

triangle side length between 40 cm and 41 cm (at a frequency

of 0.2 Hz, typical of a human adult [47]), while fan move-

ment is modeled as rotation around the centroid of a triangle

(triangle side is 40 cm, rotation is at a frequency of≈ 57 Hz).

In all the studies throughout this paper, we assume a stop-

motion process: the object is assumed to be stationary during

each instantaneous measurement.

Because the ray-tracing algorithm is recursive, we are

required to establish a cap on the number of times rays

can bounce off of objects and walls before reaching the

receiver. Because of losses incurred as a result of reflection

and propagation over large distances, there is diminishing

return to setting a larger cap which will be more physically

accurate but will incur exponentially large run-times. After

investigating this trade-off numerically (see Appendix A),

we decided to set the cap at 3 bounces for Room 1.

A. DYNAMIC METASURFACE APERTURE MODEL

We use omnidirectional point antennas to emulate simple

Tx and Rx antennas. This model is a reasonable representa-

tion of most antennas used in current RF occupancy sensors

(e.g. WiFi router antennas). By contrast, instead of an omni-

directional pattern, a DMA generates a complex radiation

pattern exhibiting many lobes in all directions [31]–[34].

When the aperture field distribution (referred here as a mask)

of the DMA changes, the complex pattern also changes.

A typical DMA would consist of an array of metamaterial

irises inserted into the upper conductor of either a waveg-

uide or a cavity (see Figure 1b). Each element radiates as
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FIGURE 3. Far-field normalized directivity patterns for a modulated
8-dipole array with 3 random mask configurations.

a magnetic dipole, such that the radiation pattern for the

composite antenna can be expressed as a sum of dipoles,

each with an amplitude and phase dictated by the field in

the waveguide or cavity at the position of the dipole. Since

our goal here is to produce radiation patterns that are gener-

ally random, we model the DMA as an array of 8 dipoles,

spaced λ/2 apart and with random phase and random binary

amplitude (λ is the wavelength in free space). As an example,

we have generated 3 such masks, with binary amplitude

and phase shown in Table 1. We have simulated far-field

directivity plots for these masks and displayed them in Fig. 3.

As shown in Fig. 3, modulating the mask pattern in this way

generates diverse radiation patterns. This representation of

a DMA produces directivity patterns consistent with those

of an actual fabricated DMA characterized using near field

scanning techniques [32]–[34], [48].

TABLE 1. Binary amplitude (P) and phase (φ, rad) values for 8-dipole
‘‘DMA’’ with 3 random masks.

For each dipole used to represent the DMA, at each simu-

lated time-step, the ray tracing algorithm is conducted sepa-

rately, resulting in a matrix of Nt ×NTxNRx signals, where Nt
is the number of time samples,NTx is the number of dipoles in

the transmitting array, and NTx is the number of dipoles in the

receiving array. The complex amplitude of the signal emanat-

ing from the Tx dipole i and propagating to the Rx dipole k at

time t is given by summing over the complex amplitudes of all

rays between these two points: Si,k (t) =
∑

r Si,k (r, t), where

Si,k (r, t) is the complex amplitude of a given ray. Si,k (r, t) is

given in Equation 9 and is discussed in the Appendix. The

received signal,W , is then computed accordingly:

W (t,mTx,mRx)=

NTx∑

i=1

NRx∑

k=1

mask(mTx, i)mask(mRx, k)Si,k (t)

(1)

where

mask(m, i) =
Pm,ie

jφm,i

√∑
i Pm,i

(2)

is a phase and amplitude modulating function with randomly

generated phase (φm,i ∈ [0, 2π )) and amplitude (Pm,i ∈

{0, 1}). The values of φm,i and Pm,i can change for each

mask and dipole. The denominator in (2) normalizes mask’s

amplitudes so that all masks have comparable power which

is equal to that of a single dipole. Thus, because Pm,i is

either 0 or 1 and because the normalizing denominator in

Equation 2 is the same for all dipoles active in a mask, all

dipoles always output equal power.

It is important to note that a DMA can serve as a trans-

mitter, receiver, or both. In Eq. 1, we consider the case of

using a DMA as both the transmitter and receiver. If one of

the antennas were a single dipole, we would mathematically

model it as a DMA with one dipole and a constant mask

function mask(m, i), where m, i = 1, P1,1 = 1, and φ1,1 = 0.

This would simplify our signal matrix to W (t,m), where t

iterates over time and m iterates over DMA masks.

For a DMA modeled by Nd dipoles there are a multi-

tude of possible masks with which to configure the array

of dipoles. By simulating dipole signals individually and

calculating masks in post-simulation analysis, we are able to

save significant time and computational cost while examining

an exponentially large number of masks (and equivalently,

large number of complex radiation patterns). More specifi-

cally, instead of running Nm ray tracing simulations, we only

run Nd ray tracing simulations. Given that in most practical

implementations, Nd ≪ Nm, we are able to simplify our

simulations considerably.

III. DATA ANALYSIS METHODOLOGY

A. PROCESSING OF RECEIVER DATA

The signal received by the Rx antenna consists of two com-

ponents: the static component, which can be attributed to rays

that do not interact with the moving object, and the dynamic

component, which varies as the object occludes rays’ paths

or changes their trajectories [24]–[27], [29], [45]. The static

component of the signal is usually a function of room geome-

try and objects in the room; it can often dominate the dynamic

component of the signal and doesn’t interest us for motion

detection purposes. Thus, our goal becomes finding a way to

remove the static component of the signal.

One historical approach to this problem is taking an ini-

tial measurement in the room while it is known there is no

motion. Without motion, this signal is completely due to the

room geometry. Thus, this ‘‘calibration measurement’’ can

be subtracted from subsequent measurements where motion

is taking place to isolate the dynamic component caused by

motion. However, if, for example, a chair is moved, or a

closet door is opened, our room geometry changes and a new

calibration measurement must be taken. It’s clear that this is

an ineffective method for our purposes.
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Instead, we can simply assume that the dynamic compo-

nent of the signal is changing betweenmeasurements whereas

the static component almost always remains constant between

measurements. Thus, to isolate the dynamic component,

we simply need to subtract the previous measurement from

each measurement. In doing so, we are effectively ‘‘continu-

ously calibrating’’ our system.

Mathematically, this process can be described as follows:

assume the signal received by a receiver is given byW (t,m),

wherem ∈ {1, 2, ..,Nm} is the selectedmask, t ∈ {1, 2, ..,Ns}

is the current time sample and Ns is the number of samples.

We then define the following difference function:

D(t,m) = W (t + 1,m) −W (t,m), (3)

which is the temporal fluctuation for different masks.

B. SAMPLING RATE

Our goal is to investigate DMAs as motion detector that can

also differentiate between different sources of motion based

on their temporal fluctuation signatures. This requires that

the Tx and Rx apertures can monitor the scene at a rate high

enough to capture temporal variations accurately. However,

high frequency sampling burdens the hardware, consumes

power, and can potentially require greater memory allocation.

To determine a reasonable sampling rate that accurately cap-

tures the events within a regular room with minimal burden

on hardware, we investigate various motion patterns common

to everyday life.

Inmost residential settings, motorizedmoving objects such

as fans, washing machines, or dryers, etc. are the sources

of the highest frequency mechanical motion. Traditionally,

the Nyquist frequency (twice the frequency to be detected)

gives the sampling frequency that will eliminate aliasing.

However, in the simulations considered here, a rotating fan at

60 Hz does not necessarily result in a 60 Hz sinusoidal signal.

This phenomenon is illustrated in the following example.

We have simulated a fan located at (1 m,2 m) rotating at

f0. Due to the rotational symmetry of the equilateral triangle

used, we set the rotational frequency to be
f0
3
to emulate a

fan rotating at f0. We use a DMA with a single, fixed mask

as a transmitter and a single dipole as a receiver; the same

phenomenon can be demonstrated for a single dipole trans-

mitter or for a DMA with many masks. The signal received

in this study, given by D(t), is plotted in Figure 4 (a). For this

simulation, the triangle had a diameter of 40 cm and a rotation

frequency of f0 = 60 Hz. The received signal was sampled at

1 kHz.We clearly see rapid fluctuation of the dynamic signal,

even though the sampling frequency is an order of magnitude

higher than the motion frequency to be detected.

This phenomenon, which resembles aliasing, can be detri-

mental to the occupancy sensor proposed here: the signal

due to a rotating fan aliases to lower frequencies or appears

aperiodic, and can easily confuse a classifying algorithm that

is based on detecting features in the temporal signal. The

aliasing effect is more evident when examining the autocor-

relation and power spectrum of the received signal. To do

that, we have computed the autocorrelation of a discrete time

series, f (t) using (4), where l is the lag time, Nt is the number

of time samples, and f̄ is the mean of all values of f :

Ã(l) =

1
Nt

∑Nt
i=1(f (ti) − f̄ )(f (ti + l) − f̄ )

1
Nt−1

∑Nt
i=1 |f (ti) − f̄ |2

(4)

Similarly, we computed the power spectra given using the

discrete fast-Fourier transform (DFFT), defined below at an

angular frequency ω, for the same time series, f (t):

F̃(ω) =

Nt∑

i=1

f (ti)e
−jωi
Nt (5)

The autocorelation and the power spectrum of the

received signal computed in this manner are shown

in Fig. 4 (c) and 4 (e). We clearly see that although the object

under test is a fan rotating at 60 Hz, we see frequency content

aliased all over the spectrum.

To understand the reason behind rapid variation of the

received signal and its aliasing, we need to examine the

physics of the system at hand more closely. The irregularly

shaped room considered here, akin to most practical set-

tings, acts as a cavity for the microwaves. The waves bounce

around and interfere with each other, forming a speckle-

looking pattern inside the room. Once the object moves in this

setting, it perturbs the field pattern formed within the room,

resulting in fluctuation of the received signal. As documented

in diffusing wave spectroscopy literature [24], such detection

schemes are extremely sensitive to even small changes (less

than half of a wavelength). At our sampling frequency of

1 kHz, rotation of a triangle at 60 Hz results in a displacement

of 21◦ every time a sample is taken. Such a large variation in

angular position causes the ray pattern of the scene to vary

significantly frame to frame. As a result, the received signal

exhibits rapid fluctuations with (temporal) frequency content

much larger than the actual target rotation.

In real-life, RF electronic circuitry does not sample a signal

instantaneously. Instead, it captures the received signal during

a finite duration, commonly referred to as an integration time

or an exposure time. Incorporating an integration time into

our model allows us to average out the rapid fluctuation

due to high sensitivity of received signal to small perturba-

tions. To model integration time in our simulation platform,

we instantaneously sample the roomNI times over the desired

integration period and coherently average these samples. The

signal stored in the received signal from Tx dipole i to Rx

dipole k , Si,k (t), is then the result of these complex sums,

generated at a sampling rate of fs.

From a design perspective, we have two ‘‘knobs’’ to turn

in our simulations: sampling rate, fs, and the duration of the

integration time. Additionally, because we emulate the analog

process of taking a measurement over an integration time

using discrete samples, the number of samples per integration

time (NI ) play a crucial role in ensuring a faithful repre-

sentation of real-life scenarios. The integration time, while

crucial to practical implementations, is heavily dependent on
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FIGURE 4. Demonstrating the benefit of incorporating an integration time into the simulation sampling regime. (a) and (b) were
generated in Room 1, with wooden walls and a reflection cap of 3. Tx is a 3-dipole array, Rx is a single dipole.

the choice and cost of hardware and does not fit into our

studies. Thus, we assume a constant integration time.

The choice of sampling rate thus requires thorough analy-

ses. Too low a sampling rate will lead to aliasing and will not

accurately capture the motion patterns; alternatively, too high

a sampling rate and the simulation will incur long runtimes

that may be unnecessary. As before, we focus here on strik-

ing a balance between simulation accuracy and unnecessary

runtimes. More critical, however, is ensuring that the number

of sampling points within an integration time is high enough

to be a statistically accurate representation of the state of the

signal.

With these considerations in mind, we used the follow-

ing setting in our studies: to emulate an IF bandwidth of

about 2 kHz—a value often achievable for most off-the-

shelf components—we set the integration time per sample

to 470 µs. This value is small enough that a triangle rotating

at about 60 Hz will not rotate significantly during integration.

We then performed a number of studies to obtain appropriate

values for fs and NI . Our goal was to obtain a relatively una-

liased receive signal when monitoring a fan, while keeping

the lowest fs possible. We tested values of fs = 200−1000 Hz

and values of NI = 5 − 40 when monitoring the signal

received from a rotating fan.We concluded that themost com-

putationally efficient parameters that would mitigate aliasing

were fs = 400 Hz and NI = 10.

As shown in Figure 4, the introduction of a sufficiently

large integration time consisting of dense samples signifi-

cantly improves aliasing. For instance, in Figure 4 (c) we

see peaks in the autocorrelation spaced at 1 s, indicating

periodicity at a frequency of 1 Hz. We can see, looking

at Figure 4 (d), that the inclusion of an integration time
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drastically limits aliasing at such low frequencies. Similarly,

comparing Figure 4 (e) and Figure 4 (f), we can see the elim-

ination of spikes in the power spectrum on that are separated

by 1Hz.

While the integration time reduced the amount of aliasing,

we still can see in Figure 4 (d) peaks in the autocorrelation

corresponding to frequencies lower than 60 Hz. The same

can be said about the Figure 4 (f) where we see peaks in

the power spectrum at frequencies other than 60 Hz. This

is due to the fact that we are not dealing with a pure sinu-

soidal signal, and we need a very high sampling frequency

to totally eliminate aliasing. However, for the purposes at

hand, the residual aliasing is tolerable as far as it does not

overlap with frequency component associated with human

movements. In other words, as long as the fan generates

frequency components that can be used to distinguish its

presence from a human, we can rely on post processing to

deduce human presence, as discussed in Section V.

IV. SIMULATION ACCURACY

For the proposed ray tracing simulation platform to be

useful, it needs to be representative of real-life scenarios.

In this section we attempt to reproduce experimental results

obtained in a physical cavity [30]. In doing so, we also

demonstrate the benefits of generating and sampling multi-

ple masks using DMAs in simulation. The data presented

in Figures 6, 11, 12were all acquired in simulation; we do not

present any of the experimental data from [30] in this paper.

To emulate the scenario examined in [30], we defined a

2D geometry which is the cross-section of the 3D cavity

used in [30]. This setup, referred to as Room 2, is shown

in Figure 5. It is important to note that while we attempt to

reproduce the experimental results of [30], several factors

limit us from obtaining the identical results in our numerical

simulation. Firstly, as stated before, our simulations only cap-

ture reflections from surfaces and ignore diffraction. Addi-

tionally, we are only considering rays within a maximum

number of bounces. Further, our simulation is limited in its

ability to fully emulate the disorder of a physical cavity.

In physical cavities, such as a rooms, disorder is a byproduct

of having people, chairs, objects and a constantly evolv-

ing geometry. Various material surfaces—and, thus, different

microwave reflectivities—introduce another layer of disor-

der. This disorder generates the diverse modes that the DMA

can capitalize on. We attempted to emulate disorder to some

extent, as seen in Figure 5, by introducing irregular shapes.

However, we did not model each surface as having its own

microwave reflectivity. Lastly, by reducing our simulation to

2D, we may lose many reflections or variations that may have

contributed to the ability to detect movements.

Since the experiments in [30] were conducted with metal-

lic walls, we assumed the reflectivity coefficient R (see

Appendix A), 0.9. With more reflection, rays can bounce

more than 3 times before they become statistically insignif-

icant. After redoing the studies discussed in Appendix B,

with R = 0.9, we decided to increase the reflection cap

FIGURE 5. A cross-section of Room 2: the cavity used in [30]. This is the
exact geometry used in simulation. Walls are metallic and rays are
capped at 6 reflections. Compare to Figure 1(a) in [30].

to 6. In [30], an approximately 11 × 11 cm2 DMA was

used as the Tx aperture and a monopole antenna as the Rx

antenna. To emulate this configuration, wemodeled the DMA

as a line of 15 dipoles separated by λ
2
, corresponding to an

11.25 cm long array at 20 GHz. Additionally, [30] tested the

configuration where an open-ended waveguide (OEWG) was

used as the Tx antenna in lieu of a DMA; this configuration

was modeled using a single dipole as the Tx antenna. The Rx

antenna was always modeled as a single dipole.

To study the ability to detect motion, [30] used two objects:

1) an aluminum corner on a linear rail which we emulated by

a 5 cm square periodically translating over a distance of 55cm

with periodicity of 1 s (the blue square on a vertical, two-sided

arrow in Figure 5) and 2) an aluminum block on rotation stage

which was emulated by a 5 cm square rotating around an axis

5 cm away from its center at 2.3 Hz. We then programmed

the periodic movements listed in Table 2:

TABLE 2. Motion schedule used for false negative rate analysis.

This simulation resulted in a raw measurement matrix,

Si,k (t), as defined in Section II-A, where i ∈ {1, 2, .., 15}

is one of the Tx dipoles, k = 1 is a single Rx dipole, and

t ∈ {0, 1
fs
, .., 30} is time, measured in seconds. For simplicity,

we chose to sample at fs = 40 Hz. While this low sampling

frequency may be inadequate for detecting high frequency

content (as discussed earlier), it is high enough to detect

motion at frequencies less than 3Hz.Maskswere simulated in

the manner discussed in Section II-A to generate W (t,m)—

similar to notation used in [30]—where m is one of 300

masks with randomly generated phase and binary amplitude.

To emulate the conditions in [30], we added complex, white

159680 VOLUME 7, 2019



O. S. Mizrahi et al.: 2D Ray Tracing Analysis of a DMA as a Smart Motion Detector

FIGURE 6. Comparing the accuracy of different detection systems in Room 2 (metal walls, reflection cap = 6) using ray-tracing
simulation data. Tx is a 15-dipole array, Rx is a single dipole. The top plot shows false negative rates for different antenna
configurations when Rx captures both amplitude and phase information. The bottom plot shows false negative rates for different
antenna configurations when Rx only captures amplitude information. Detection accuracy is improved by use of phase information
as well as use of multiple masks. Compare to Figure 4(c,d) in [30].

Gaussian noise (WGN) to W (t,m) with a standard deviation

equal to that of the measurements in [30].

In Appendix C we have analyzed the return signal and the

effect of using different masks in obtaining higher fluctua-

tion of the return signal for small movements in occluded

areas. Similar results are also reported in the experiments

of [30]. Next, we focus on the ability to detect motion.

As in [30], most of our analysis is based on the difference

signal, D, which contains the fluctuation of the received

signal, as defined:

D(ti) = opt
(

|W (ti+1,m) −W (ti,m)|
)
m

(6)

Similar to (3), we used the difference from subsequent

measurements to sift out the dynamic component of the sig-

nal while eliminating the background. However, in contrast

to (3), wewere concernedwith variation, and not the direction

of variation. Thus, we took the absolute value of this differ-

ence. Finally, to lower the dimensionality of the data, we used

opt ()m to denote optimization over all masks. In [30], this

optimization equated to averaging over all the masks. How-

ever, we explored taking the maximum of all variation from

different masks in this discussion as an alternative method to

project the data into one dimension.

To further highlight the fact that the ray tracing simulation

platform is a reasonable representation of the physics of

actual cavities, we computed the false negative rates for the

motion schedule of Table 2. To do this, we began by setting a

threshold,Dthresh, the fluctuation abovewhich is an indication

of movement. In [30], Dthresh is defined as a function of the

standard deviation of measurements taken in a motionless

room (thus noise). Similarly, we defined the threshold as:

Dthresh = 2.5 × SD(WGN). (7)

In the motion schedule considered here, motion is always

occurring; as a result, if a received signal fluctuation falls

below the threshold in (7), consider that as as a false nega-

tive. Low false negative rates are strongly desired in smart

sensing schemes; we can see in Figure 6 that using the DMA

significantly reduces false negative rates.

We can also augment our detection process by using a pri-

ori knowledge: when using a system sampling at several

hundred Hz (potentially kHz) we can assume that motion

occurring at one time sample must still occur at least in

the subsequent or prior samples. We searched for points in

our normal signals where data fell below Dthresh at ti but

was above Dthresh at ti−1 or ti+1 and considered these points

true positives. The false negatives rates when using this aug-

mented detection process are also plotted in Figure 6 and

labeled as advantaged. We clearly see that using some prior

knowledge can bring DMA sensor false negative rates to a

very low value, acceptable for most applications.

We also investigated the possibility of further simplifying

the sensor circuitry by examining the case that the receiver

does not detect phase and measures intensity only. Phase

detection has the potential to improve false negative rates

because it allows the sensor to detect a variation between

subsequent measurements which have the same intensity but

a different phase. Loss of this capability means that measure-

ments with the same intensity but different phase will fall

below our threshold and the system will report no motion.
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Data emulating the output of intensity only sensors is also

plotted in Figure 6; clearly, intensity only measurements have

higher false negative rates.

Moreover, we can make observations about the benefit of

using a DMA for motion detection by examining the data

presented in Figure 6. We see that employing various masks

(versus taking many measurements of a fixed configuration

or using a simple omnidirectional antenna) decreases the

rate of false negative readings. When the mask configuration

is fixed, or when a simple dipole is being used, the only

benefit gained from repeatedly taking measurements is the

ability to average out noise. By using different masks, we can

probe different cavity modes, allowing our system to detect

movements in any location with high fidelity. We also know

from Figure 12 that different masks pick up on different tem-

poral variations in the room. Thus, multiple masks generate a

diverse set of measurements that can benefit from optimiza-

tion methods. In contrast to the mean used in [30], we used

the maximum of variation in these plots as the method of

optimization. We did not attempt to explore many different

methods and do not make conclusions about what may be

the best way to utilize such diverse measurements. Further

studies are needed before any such conclusion can be made.

What these data do demonstrate is that using the DMA to

multiplex diverse cavity modes provides a wide distribution

of measurements that can be used to detect motion better than

the measurements from a fixed antenna configuration.

Most importantly, these results align with the ones pre-

sented in [30] demonstrating the utility of our ray tracing

simulation platform. As discussed in the beginning of this

section, the inability to fully emulate disorder limits our

simulation’s accuracy. However, the general trends presented

in this section fall in line with those presented in [30] and

substantiate our assertion that our ray tracing simulations

capture salient features of the wave propagation inside a

cavity or a room as it pertains to motion detection.

V. TEMPORAL SIGNAL ANALYSIS AND

FEATURE EXTRACTION

Detecting motion alone is not sufficient for the proposed

device to act as an occupancy sensor. It also needs to dis-

tinguish the source of motion, i.e. whether it is a human

or non human. In previous works, this distinction has been

made using Doppler or micro-Doppler shifts due to human

movement [14], [49]. Similarly, WiFi-based sensors moni-

tor channel state information [17], [22]. Such classification

schemes are only useful when using a finite bandwidth. Even

when using high frequency bandwidth, such scenarios are

complicated and usually rely on complicated processing of

channel state information or expensive learning algorithms.

The single frequency operation of our sensor prevents us

from using previous methods based on micro-Doppler shifts.

To combat this problem, we note that one of the distinct

features of using DMAs as the center hardware of occupancy

sensors is the fact that they can vary their masks at a high

rate and obtain reliable detection for a large portion of a

room, even in occluded areas (as demonstrated in the previous

section). This fast acquisition rate also means we can retrieve

the temporal signature of the movements inside the room.

These signatures can be used to distinguish between different

types of motion. In this section, we examine this possibility.

First, we demonstrate that the temporal patterns of the

fluctuating signal received by our sensor corresponds to a spe-

cific type of motion (rapidly rotating fan, stationary breathing

human, a walking human, etc.). Toward this goal, we exam-

ined the motion schedule in Table 3 in Room 1. In this table,

we have also used color coding to further distinguish different

types of movement.

TABLE 3. Motion schedule used in classification analysis.

In the first part of this motion schedule, a moving person

is modeled by a 40 cm triangle following a random path.

Its breathing is modeled by the slight (±5 mm) sinusoidal

variation of the triangle’s diameter. In the second part of

the motion schedule, we simulated a fan spinning which

is modeled by a rotating 40 cm triangle. If one motion is

occurring, the other shape remains in the room but does not

move or rotate. This assumption allows us to identify the

signatures of each motion, contrast them against each other,

and evaluate how they superimpose in the third part of this

motion schedule.

For this simulation, we set Tx to be a DMA modeled

by 8 dipoles and we set Rx to be a single dipole. The

mask-optimized signal corresponding to this motion is shown

in Figure 7 (a) and is calculated accordingly, where we opti-

mize over 100 possible masks.

Dm,o(t) = max
(

|D(m, t)|
)
m

(8)

Its corresponding temporal spectrogram, computed using

0.2 Hz frequency resolution and 0.3 second temporal reso-

lution, is shown in Figure 7 (b).

Examining Figures 7 (a) and 7 (b), we can discern some

interesting signatures. Aperiodic motion of a person follow-

ing a random path is characterized by a relatively arbitrary

signal signature with drastic variations in signal magnitude

due to blocking/unblocking of the sensor. A rotating fan,

on the other hand, results in almost periodic variations, with

temporal periodicity much higher than most human-induced

movements. The superposition of these two motion patterns

results in a periodic signal ‘‘corrupted’’ with a random signal,

indicating the possibility of two motion patterns inside the

room.

The spectrogram of the received signal, shown in

Figure 7(b), reinforces confidence that motion patterns have

characteristic signatures. From t = 0−15 s, we do not see any

dominant frequency content. From t = 15−30s, we see bands

at high frequencies with significant power concentration.
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FIGURE 7. (a) The difference signal received by our sensor over a
40 second simulation containing the motion schedule summarized
in Table II. This simulation was done in Room 1 with wooden walls and a
ray reflection cap of 3. Tx is an 8-dipole array, Rx is a single dipole. The
entire simulation is given in the top plot. An expanded portion of the
0-15s interval is given in the bottom plot for clarity. (b) A spectrogram of
the 40 second simulation.

One of these bands occurs at the fan’s rotation frequency

(approximately ≈ 57 Hz); other bands are the result of spec-

tral leakage caused by aliasing of the signal. This is largely an

artifact of our simulation’s lack of noise and simple geometry.

For the last 10 seconds we can see characteristics associated

with both motion patterns: the high frequency content from

the fan and random perturbations caused by the obstructing,

moving person.

These plots instill confidence in several factors. Firstly,

we can see that our simulation produces the expected results

for different motion patterns. An aperiodicallymoving person

produces an aperiodic signal with little to no predictable

patterns. High-frequency motion produced by a rotating fan

produces periodic signals. Thanks to anti-aliasing sampling,

we are able to pick out the frequency of rotation down to 1Hz.

Finally, when both motion patterns superimpose, we can find

signatures of both.

In another simulation, we modeled what a detector might

see on a warm summer night. In one corner of the room, a per-

son is stationary and breathing at 0.2 Hz. In another corner of

the room, a fan rotates at around 57 Hz. Figure 8 (a) shows

the temporal difference signal from mask 1, Dm(1, t). In this

FIGURE 8. (a) The temporal difference signal obtained from a simulation
where a stationary person breathes at 0.2 Hz while a fan spins at 57 Hz.
This simulation was done in Room 1 with wooden walls and a reflection
cap of 3. Tx is an 8-dipole array, Rx is a single dipole. (b) The temporal
difference signal above, after application of a Hann window lowpass filter.

case, both objects were not translating and, thus, it wasn’t

necessary to sample and optimize over multiple masks.

The data collected by our sensor is presented in Figure 8.

Upon first inspection, it might not seem that a person is

present. By applying a Hann window lowpass filter with

cutoff at 1 Hz, however, we can easily identify the periodic

signature of breathing at 0.2 Hz.

VI. CONCLUSION

In this paper, we outlined a simple and fast ray tracing sim-

ulation platform that can be used to explore the potential of

dynamic metasurface apertures in detecting and characteriz-

ingmotion in a room.We demonstrated that its results capture

salient features of experimental ones previously reported.

Using this simulation tool, we were also able to reaffirm

the notion that DMAs’ many spatially distinct radiation pat-

terns significantly improve the capability to detect motion,

even when there is no line of sight between transmitters and

receivers.

Having a reliable simulation platform is useful for future

development of this sensor. Firstly, we can design and test

motion patterns that may be impossible to generate physi-

cally; we can repeat this testing with exact precision in a way

not possible in experiment. Additionally, being able to define

and test cavity geometries quickly allows us to explore the

potential of this technology without having to reconstruct or

find new physical cavities—some of whichmay be physically

impractical to build or impossible to find.
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FIGURE 9. (left) Visualization of ray tracing algorithm and application of
image theory. (right) Corresponding recursion tree, showing all ray paths
from Rx radiator to Tx radiator. The path Rx-e2-e1-Tx is not possible using
only specular reflection and is pruned.

Finally, we demonstrated that the motion signatures gener-

ated by this simulation platform can be analyzed to generate

predictions about sources of those motions. In this paper,

we demonstrated that simple Fourier transformations and

filters provided insight into motion signatures that were not

explicitly obvious initially. This can be taken a step further.

In future work we hope to demonstrate that learning algo-

rithms can be trained with these data patterns. With enough

training, algorithms as simple as support vector machines can

not only detect motion, but characterize it.

APPENDIX A

RAY TRACING MODEL

The ray tracing algorithm computes all eligible paths between

the Tx antennas indexed by i ∈ {1, 2, . . . ,NTX }, and the Rx

antennas indexed by k ∈ {1, 2, . . . ,NRX }. Our simulation

only accounts for specular reflection using image theory [50],

and neglects diffraction and refraction. More specifically,

the algorithm begins from the kth Rx radiator and checks

whether any of the Tx radiators are visible or not; if that is

the case, a ray between the Tx antenna and the Rx antenna

is‘‘drawn.’’ Next, the algorithm generates a list of all edges

that are visible to the kth Rx antenna and uses image theory

to compute its images about all those edges. Looking through

the edge that was used to produce the images, the algorithm

then determines whether any of the Tx antennas are visible

to any of the images of the kth Rx antenna. This process

repeats until a reflection limit is reached; the limit is neces-

sary to prevent an infinite runtime. Essentially, ray tracing is a

recursive algorithm where the base case is where a reflection

point is visible to the receiver. Each iteration is brought on

by reflection about an edge. This approach, historically used

in many ray tracing implementations [37], [38], is visually

illustrated in Figure 9.

For each ray, we track the amplitude decay and phase

accumulation as it travels from Tx to Rx. The signal due to

ray, r from the ith Tx dipole to the kth Rx dipole is given

by Si,k (r):

Si,k (r) =
RBi,k (r)

Di,k (r)
e−jβDi,k (r) (9)

where R is the reflection coefficient for walls and objects,

Bi,k (r) is the number of times the ray reflects off of sur-

faces, Di,k (r) is the distance of the ray, and β is the free

space wavenumber. All dipoles output the same power, deter-

mined by the number of active dipoles in a mask (see

Section IV.A).

The operation frequency considered in this paper is

20 GHz, which is the same as the one used in [30]. This

frequency of operation allows for an antenna with high sen-

sitivity and a small foot print. Single frequency operation

significantly simplifies the transceiver design and lowers cost

compared to broadband transceivers. Moreover, as discussed

in the introduction, by operating at a single frequency and

using omnidirectional patterns, the sensor can easily avoid

interference at higher frequencies. If interference is a con-

cern, the proposed sensor can easily be modified to operate

within an ISM band, such as at 24 GHz.

Assuming 20 GHz operation, the attenuation constant,

R, is selected based on empirical results available in [51].

We use the reflection coefficient for wood, due to its ubiq-

uity in residential and commercial construction, and because

it has high attenuation relative to other common building

materials over K-band [51]. We also assume the reflection

attenuation does not change significantly with the incident

angle as has been shown empirically in [51]. Assuming the

worst-case scenario in our material parameters implies that

results from these simulations should only improve if a set of

materials more representative of actual buildings are used in

simulation.

APPENDIX B

REFLECTION LIMIT

An important factor influencing the accuracy of the described

algorithm is the limit on the number of ray bounces, Nb.

As this number increases, the accuracy of the model improves

at the cost of longer simulation times. Since rays incur sig-

nificant attenuation with reflections and longer paths, there

is diminishing return in accuracy to increasing the number of

bounces. To this end, we searched for an optimal limit on Nb
to navigate this trade-off by running a repeatable simulation

of an object moving along an arbitrary path throughout the

room. Because we are solely concerned with the accuracy

of the system under different recursion caps, we only used

a single Tx and single Rx for this simulation. We ran this

simulation with different caps on the maximum reflections,

as shown in Figure 10(a).

To highlight the diminishing return, we have calculated

the average relative percent error, as defined below. We use

S(t,Bmax) =
∑

r S1,1(r) to denote the receiver signal at a

time t with a maximum number of bounces, Bmax.

RE(Bmax) =

〈
|S(t,Bmax) − S(t, 5)|

S(t, 5)
× 100

〉

t

(10)

In this case, we have only used a single dipole for Tx and Rx.

〈〉t denotes averaging over all time. S(t,5), the signal for a

system with a maximum number of bounces equal to 5, was

used here as the ground truth.

As shown in Figure 10 (b), there isminimal signal contribu-

tion for rays beyond 3 bounces, which exhibit relative errors
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FIGURE 10. (a) The received signal with different Bmax for a 20 frame
simulation of a subject following an arbitrary path through Room 1. Walls
are wooden, Tx/Rx are single dipoles. (b) The average percent error over
all frames for various Bmax, relative to the case where Bmax = 5.

below 0.01%. Thus, given the potentially exponential runtime

complexity dependence on the reflection limit, we only con-

sider up to 3 reflections throughout this paper as a com-

promise between convergence and runtime, unless otherwise

stated.

APPENDIX C

UTILITY OF DMA IN DETECTING MOTION

In Figure 11 we plot a single row ofW (masks at a single time

instance) from both varied and fixed mask configurations.

In the varied mask configuration, each column in W was

generated using a distinct and randomly generated mask.

In the fixed mask configuration, the same mask was used

to generate data for each column; any variance in this case

is the result of the addition of WGN. As we see, the varied

mask data has a larger spread in the complex domain than the

fixed mask data, demonstrating that sampling various masks

achieves a level of variation higher than that of the noise.

As in [30], we have demonstrated that signal variation with

multiple masks at a single point in time exceeds the magni-

tude of variation caused by noise, implying that variation is

due to the sampling of variousmasks. To further highlight this

FIGURE 11. W (ti , m) for 300 different masks (blue) and for
300 measurements with a fixed mask configuration (red) using
ray-tracing simulation data. The spread of the blue points demonstrates
the variety offered by multiple masks. The spread of the red points is only
due to noise in the signal. Data obtained in Room 2 with metallic walls
and a ray reflection cap of 6. Tx is a 15-dipole array, Rx is a single dipole.
Compare to Figure 3(a) in [30].

FIGURE 12. Histograms of the quantity Z , for signals obtained in multiple
mask (left) and fixed mask (right) configurations for ray-tracing
simulation data. Data obtained in Room 2 with metallic walls and a ray
reflection cap of 6. Tx is a 15-dipole array, Rx is a single dipole. Compare
to Figure 3(d,e) in [30].

point, we defined the quantity Z as:

Z (ti) = SD
(
|W (ti+1,m) −W (ti,m)|

)
m
, (11)

which is the standard deviation over all masks for the dif-

ference between subsequent measurements. As discussed

in [30], Z attempts to demonstrate empirically that different

masks serve to sample different mode variations in the room.

The histogram of values of Z are plotted in Fig. 12. In a

noiseless environment, we expect to have Z = 0 for the fixed

mask case because a single mask can only probe variation in

one mode; thus, the difference between subsequent measure-

ments will have no spread. Even with noise, as in Figure 12, Z

forms a tight distribution about zero for the fixed mask case.

In contrast, when using multiple masks, we observe different

levels of variation, indicating each mask is probing different

set of cavity modes.
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Figures 11 and 12 demonstrate that our simulation exhibits

trends similar to those depicted in [30]. These results also

reaffirm our understanding that using different masks pro-

vides signal variation above the standard deviation of noise,

especially between subsequent measurements.
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