
2D Shape Matching by Contour Flexibility

Chunjing Xu, Jianzhuang Liu, Senior Member, IEEE,
and Xiaoou Tang, Senior Member, IEEE

Abstract—In computer vision, shape matching is a challenging problem,

especially when articulation and deformation of parts occur. These variations may

be insignificant for human recognition but often cause a matching algorithm to give

results that are inconsistent with our perception. In this paper, we propose a novel

shape descriptor of planar contours, called contour flexibility, which represents the

deformable potential at each point along a contour. With this descriptor, the local

and global features can be obtained from the contour. We then present a shape

matching scheme based on the features obtained. Experiments with comparisons

to recently published algorithms show that our algorithm performs best.

Index Terms—2D shape, contour flexibility, matching.
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1 INTRODUCTION

THE shape of an object is very important in object recognition.
Using the shape of an object for object recognition and image
understanding is a growing topic in computer vision and multi-
media processing and finding good shape descriptors and
matching measures is the central issue in these applications.

Analyzing the silhouette of an object is the first and most
important step in shape matching. Based on the silhouette of
objects, a variety of shape descriptors and matching methods have
been proposed in the literature. In these papers, a silhouette is
simplified as a curve (contour) represented by a sequence of
landmarks.

Some simple and elegant methods were developed by Kendall
[16], Bookstein [7], and Mardia and Dryden [20]. They introduced
the shape represented by 2D landmarks and investigated the shape
space (which is a Riemannian manifold) and the metric on it.
Klassen et al. [17] presented a new differential geometric shape
representation by employing the direction and curvature functions
of curves. In [10], [25], and [8], moment-based features are used for
shape analysis. For these math-flavored methods, which focus on
global features, the major limitation is that the descriptors are
sensitive to local changes. For example, the left two pairs of
contours in Fig. 1 may cause mismatching by these methods. In
these cases, the significant deformation of the contours introduces
adverse information to the global shape descriptors.

To overcome the problems in the global descriptors, contour
local features and nonlinear methods are introduced. In [13],
Hoffman and Richards noticed that the parts of an object play a
key role in recognition. The psychological evidence they showed
leads to a decomposition scheme in which the boundary curve of
an object is partitioned into parts at negative curvature minima.
From the decomposition, a codon-based shape representation is
proposed. With a similar principle, Siddiqi and Kimia [30]
presented a shape matching scheme based on the decomposition
of silhouettes. Recently, a similar hierarchical segment-based shape
matching algorithm was proposed by McNeill and Vijayakumar in
[22]. Other than the representations with the segments of a

contour, a skeleton-based method is given in [31] and [29] where
the shapes are characterized by shock graphs.

Noticing that contour curvature is one of the intrinsic features to
the visual perception of the shape of an object [6], [3], Sebastian et al.
[28] proposed a method that aligns curves with length and
curvature. Ling and Jacobs [19] developed an inner distance to
define an articulation-insensitive descriptor. In [1], the local features
like concaveness and convexedness are used to build the represen-
tation of a shape. A representation of a shape is given in [14], which
focuses on the local structure that is preserved in deformations. To
obtain a multiscale representation of a shape, wavelets [9] and
Fourier descriptors [18] are used to build hierarchical structures to
describe the coarse-to-fine details of an object.

However, the methods focusing on local features suffer more
from noise. An example is shown in the rightmost pair in Fig. 1.
Therefore, when we design a matching algorithm, we should find
not only a good descriptor but also a proper trade-off between the
global and local features. In this paper, we propose a new
descriptor for closed curves, named contour flexibility, which
depicts the deformable potential at each point along a curve, and
show that both local and global features can be extracted by this
descriptor. Based on the obtained features, a scheme is presented
for shape matching.

The rest of this paper is organized as follows: In Section 2, we
define the contour flexibility and determine an important para-
meter for it. In Section 3, we discuss how to extract local and global
features from a contour with the contour flexibility. A shape
matching scheme based on the obtained features is also presented.
Section 4 describes the implementation of the contour flexibility
and how to use it to obtain the landmarks from a contour. Section 5
gives the experimental results. Finally, we draw conclusions in
Section 6.

2 CONTOUR FLEXIBILITY

As usual, we assume that the contour of a 2D object is a simple
closed curve and the area enclosed by the curve is topologically
homeomorphic to a disk. We also assume that the centroid of the
curve has been moved to the origin of the 2D coordinate system.

Given a curve L, define two functions of distance transform �þ
and �� on IR2 as

�þðxÞ ¼ dðx; IR2 nDÞ; x 2 IR2; ð1Þ

��ðxÞ ¼ dðx;DÞ; x 2 IR2; ð2Þ

where dð�; �Þ is the euclidean distance between two sets andD is the
domain bounded by L. When x is outside D, �þðxÞ ¼ 0 and
��ðxÞ > 0; when x is inside D, ��ðxÞ ¼ 0 and �þðxÞ � 0. With �þ
and ��, we have the following definition of the contour flexibility:

Definition 1. For a point p on a contour L and a given radius r, the
interior flexibility !þ and exterior flexibility !� at p are defined as

!þðp; rÞ ¼

R

Cþp;r
�þðxÞdx

R

Cþp;r
dx

; ð3Þ

!�ðp; rÞ ¼

R

C�p;r
��ðxÞdx

R

C�p;r
dx

; ð4Þ

where Cþp;r and C�p;r are the connected components containing p in the

sets fx 2 D j kx� pk � rg and fx 2 IR2 n intðDÞ j kx� pk � rg,

respectively, and intð�Þ is the interior of a set. The contour flexibility

! at p is defined as

!ðp; rÞ ¼ minð!þ p; rÞ; !�ðp; rÞð Þ; ð5Þ

where r is called the bendable size.
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Three examples of Cþp;r and C�p;r are given in Fig. 2. For a well-

tuned bendable size r, !ðp; rÞ provides the information about how

extensively the neighborhood of p is connected to the main body

and about the deformation tolerance of an object at p. It can be

observed that the smaller the !ðp; rÞ is, the more flexible (bendable)

the neighborhood of p is. Fig. 3a shows one contour superimposed

by a number of “þ”; the density of “þ” denotes the values of

!ðp; rÞ along the contour. The segments marked by sparse “þ” are

composed of the points with small !ðp; rÞ.
Now, we discuss how to find a proper bendable size r. In order

to obtain a good descriptor of a shape which can extract more

information from the contour, the difference between the values of

flexibility at limb-like parts and the main body should be large.

When r is very large or smaller than the size of the limb-like parts,

!ðp; rÞ tends to be the same everywhere, which cannot reflect the

flexibility of different segments of the contour. Our experiments

show that, when r is taken as the average width of the limb-like

parts of an object, the difference is statistically large enough and,

therefore, !ðp; rÞ can well describe the flexibility of the contour.

Next, we develop a scheme to find the limb-like parts of an object.

Definition 2. Let zðtÞ ¼ ðxðtÞ; yðtÞÞ, 0 � t < 1, be the arc-length

parameterization of a contour L. For any two points p1 ¼ zðt1Þ and

p2 ¼ zðt2Þ on L, the enclosure ratio �ðp1; p2Þ or �
0ðt1; t2Þ is defined as

�ðp1; p2Þ ¼ �0ðt1; t2Þ

¼
zðt1Þ�zðt2Þk k

min jt1�t2 j;1�jt1�t2 jð Þ if t1 < t2

1 otherwise:

(

ð6Þ

It is not difficult to prove that �ðp1; p2Þ is a continuous function

if zðtÞ is smooth. The definition of �ðp1; p2Þ has the property that the

local minima of �ðp1; p2Þ often correspond to limb-like parts. For

example, all of the 15 local minima1 of �ðp1; p2Þ are shown on the

contour in Fig. 3b, where the pairs labeled with 1, 2, 5, 8, and 11 are

the places we should use to define a proper bendable size r. In

Fig. 3b, we also observe that not every local minimum corresponds

to a limb-like part. Thus, we need to develop a method to eliminate

the pairs we do not want to use.

Definition 3. Given a set S of pairs that are the local minima of �0ðt1; t2Þ,

a pair ðta; tbÞ 2 S is called a prime pair when there is no another pair

ðti; tjÞ 2 S such that ta � ti � tj � tb and L
T

la;b ¼ fzðtaÞ; zðtbÞg,

where la;b is the straight line connecting zðtaÞ and zðtbÞ.

In this definition, the condition L
T

la;b ¼ fzðtaÞ; zðtbÞg indicates

that the line la;b does not intersect with the contour except at zðtaÞ

and zðtbÞ. We only use the prime pairs to compute the bendable

size r. Here, we define the prime pair according to our intuition on

the limb-like parts of an object, which has also been supported by

our extensive experiments. For example, after removing the

nonprime pairs in Fig. 3b, the prime pairs for the contour are

shown in Fig. 3c, where all of the pairs except the one labeled with

10 denote the widths of the limb-like parts.

Definition 4. Given the set of prime pairs of �0ðt1; t2Þ for a contour,

S ¼ fðtk1; t
k
2Þjk ¼ 1; 2; . . . ;Mg, the bendable size r is defined as

r ¼
1

M

X

M

k¼1

z tk1
� �

� z tk2
� �

�

�

�

�: ð7Þ

Some points are worth mentioning here:

. A small change of r (compared to the size of the object)
results in an insignificant change of !ðp; rÞ since !ðp; rÞ is
defined as one of the two means of �� and �þ in a certain
domain ðC�p;r or C

þ
p;rÞ.

. The bendable size r and the contour flexibility !ðp; rÞ are
proportional to the scale of the contour. However, they are
invariant to the translation, rotation, and the choice of
starting point for the parameterization of the contour.

3 A SCHEME FOR SHAPE MATCHING

A simple closed planar 2D curve can be approximated by a

sequence of samples (landmarks) on it and the landmarks can be

obtained by uniform or nonuniform sampling on the contour. We

denote a sequence of landmarks from a contour by � ¼ fzkjk ¼

1; 2; . . . ; ng in what follows.

3.1 Local Features with the Contour Flexibility

From the theories of Attneave [3] and Biederman [6], the valuable

features for shape recognition most likely come from the corners

(high curvature points) or the parts of an object where changes

occur. For example, in Fig. 4a, from themarked key points, the shape

of the dog can be somehow restored. In Fig. 4b, it can be observed

that only local segments related to the corners are enough for a

successful recognition of the object by humans. It is not surprising

that the contour flexibility exhibits the capability to extract such

interesting parts from the contour because, in most cases, changes

correspond to articulated high flexible parts of an object.
Let � be a sequence of landmarks sampled uniformly from a

curve and � ¼ f!1; . . . ; !ng be the sequence composed of the

values of the contour flexibility at each landmark of �, i.e.,

!i ¼ !ðziÞ; i ¼ 1; 2; . . . ; n: ð8Þ

In Fig. 5, we can observe that the main local minima of � coincide

with the interesting points. With this idea, the matching of the local

features between two contours can be formulated as finding the

matching of fluctuation trends between two sequences, which is

given as follows:
Let �1 ¼ f!

k
1g and �2 ¼ f!

k
2g be two sequences of flexibility for

two contours. As a classical method, dynamic time warping [27] is

often used to match two 1D signals. The application of this

technique to shape matching also can be found in [4]. The basic

idea is to find a warping function �ðkÞ ¼ ðiðkÞ; jðkÞÞ such that the

following energy function is minimized:

E� ¼
1

L�

X

n

k¼1

d !
iðkÞ
1 ; !

jðkÞ
2

� �

; ð9Þ

where iðkÞ and jðkÞ are monotonously increasing functions and L�

is the length of the warping path of � for normalization. The
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Fig. 2. Three examples of Cþp;r and C�p;r.

1. These local minima are computed from the samples of the contour.

Fig. 1. Three examples that may cause mismatching.



optimization of this problem can be solved by dynamic program-
ming. The warping distance between �1 and �2 is defined as

Dð�1;�2Þ ¼ min
�

E�: ð10Þ

In Figs. 6a, 6b, and 6c,2 we show three gestures and their
corresponding flexibility values (signals). The two parts between
the lines denote the significant difference between signals in
Figs. 6a and 6b, which comes from the different positions of the
thumbs. We can observe that signals in Figs. 6a and 6b can be
matched better than signals in Figs. 6a and 6c or Figs. 6b and 6c.
This is consistent with the 2D shapes of gestures shown in the right
of the signals.

The flexibility sequence can be amore useful tool to overcome the
difficulty of matching deformed parts of objects. Compared with
curvature, it is more stable to deformation. An example is given in
Figs. 6f and 6g, where the two parts between the lines correspond to
the tails of the rays. The part in Fig. 6g is longer than that in Fig. 6f
because the second ray has a longer tail. The warping can well
handle this situation and a matching between the two parts can be
established. However, the curvature will suffer from this situation
because its changes can be large when the tail bends.

3.2 Global Matching with Contour Flexibility

Local features can often reflect the shape of an object. However, the
methods focusing on local features may fail to match objects of the
same class when the contours have significant deformation or
noise. For example, the first and the last pairs of images shown in
Fig. 1 are hard to match by these methods. Therefore, it is
unsuitable to enitrely rely on the matching on local features. In this
case, the global shape can play a key role for matching these
contours. In this section, we develop a method in favor of the
global shapes of objects with the contour flexibility.

In what follows, the sequence � of the landmarks from a
contour is also treated as a vector � ¼ ðz1; z2; . . . ; znÞT . Each
landmark is considered as a complex number zk ¼ xk þ jyk. The
vector is normalized to unit length. In addition, without loss of
generality, � is assumed to satisfy

Pn
k¼0 z

k ¼ 0.3 Given two
sequences �1 and �2, the Procrustean distance [16] between the
two sequences

dð�1;�2Þ ¼ cos�1 h�1;�2ij jð Þ ð11Þ

is used to measure the distance between the two sequences, where
h�; �i denotes the inner product of two complex vectors.

The landmarks of a contour can be generated by uniform-length
or nonuniform-length sampling. The traditional method is to
sample the contour uniformly (i.e., to sample at a constant speed).
This method gives the same weight to different landmarks for
matching, which is not suitable for matching flexible parts of two
contours. Our strategy is to give large weights to more inflexible
landmarks and smaller weights to more flexible landmarks. This is
equivalent to using more samples for the matching on the
segments of a contour which are more inflexible. The contour
flexibility !ðp; rÞ defined in (5) is suitable for this purpose. Let

�ðtÞ ¼

R t
0
!ðzðuÞ; rÞdu

R 1

0
! zðuÞ; rð Þdu

; ð12Þ

where r is the bendable size for the arc-length parameterization of
a contour zðtÞ, 0 � t < 1. When we sample the contour with speed
d�=dt, we obtain a sequence that is dense along the inflexible
segments and sparse along the flexible segments. A straightfor-
ward method is to select the set fzð�ðknÞÞjk ¼ 1; 2; . . . ; ng. Let ��1 and
��2 be two sequences obtained from two shapes by the nonuniform
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Fig. 3. (a) The distributions of !ðp; rÞ on a contour. The denser the “þ,” the larger the !ðp; rÞ. (b) Point pairs corresponding to the local minima of �ðp1; p2Þ. (c) Prime pairs.

Fig. 4. (a) A dog with high curvature points marked. (b) The dog composed of only

local segments on the high curvature points.

2. The gestures in the figure are from the GESTURE database, the dogs
are from MPEG-7, and the rays are from the MARINE database. All three
benchmark databases are described in Section 5.

3. With zk  zk � 1
n

Pn
k¼0 z

k, we can always achieve this purpose.

Fig. 5. (a) The local minima of flexibility on the sequence � from the dog. (b) The

local minima shown on the contour.



sampling method discussed above. We use the Procrustean

distance dð��1; ��2Þ between them for the global matching of the

two shapes.
With the nonuniform sampling method, there are more land-

marks obtained from the less deformable parts of an object (e.g.,
the body of an animal) and fewer landmarks on the parts that can
be easily deformed (e.g., the limbs). Therefore, the main bodies of
two objects will dominate the matching, and the matching
contributed by limb-like parts is lessened. In Fig. 7, we show two
examples of matching with both uniformly and nonuniformly
sampled sequences. We can see that the matching with the
uniformly sampled sequence is disturbed by the deformation of
the articulated parts, while the matching with the nonuniformly
sampled sequences is better.

3.3 Matching with Local and Global Features

In Section 3.2, we assume that the correspondence between the

leading landmarks of two sequences ��1 and ��2 is known. Actually,

it is determined by a cyclic permutation of one of the two

sequences. This correspondence is obtained when the distance

between ��1 and ��2 achieves the minimum, which is defined by

d̂ð��1; ��2Þ ¼ cos�1 max
s2N

��1; �
sð��2Þ

� �
	

	

	

	


 �

; ð13Þ

where �s is a cyclic permutation4 with offset s acting on the

sequence andN is the set of integers. Let ŝ be the offset of the cyclic

permutation determined by (13). Then, ŝ is also used to determine

the leading points of two sequences of �1 and �2 in Section 3.1.
Given two sequences �1 and �2 with the same length n,

obtained by uniform sampling on curves C1 and C2, our scheme
for matching two shapes with the local and global features is given
as follows:

1. Obtain nonuniform sampling ��1 and ��2 as described in
Section 3.2.

2. Determine ŝ for finding leading landmarks of ��1 and ��2

and then adjust the sequence ��2 by ��2  �ŝð��2Þ.
3. Starting from the leading landmarks �z11 2 C1 and �z12 2 C2,

uniformly sample C1 and C2 to obtain two sequences �1

and �2, from which the sequences of the contour flexibility
�1 and �2 are obtained by (8).

4. The matching score between two shapes represented by �1

and �2 is determined by

Md ¼
�

�
d̂ð��1; ��2Þ þDð�1;�2Þ; ð14Þ

where d̂ð�; �Þ and Dð�; �Þ are defined in (13) and (10),

respectively, and � is a weighting factor. In (14), the � is

used for the normalization of d̂ð��1; ��2Þ.

4 IMPLEMENTATION

This section discusses how to find the local minima of �ðt1; t2Þ so

that a proper bendable size of an object can be obtained and how to

carry out nonuniform sampling on a contour to obtain the

landmarks.
Let zðtÞ, 0 � t < 1, be the arc-length parameterization of a

contour. Since �ðt1; t2Þ ¼ 1 when t1 � t2, the local minima can be

found only in the region

� ¼ ðt1; t2Þ 2 ½0; 1Þ � ½0; 1Þjt1 < t2f g: ð15Þ

We first uniformly select a number of initial points on � (say, 100).

Then, beginning from each point, a sequence of gradient descent is

made to reach a local minimum. An example is given in Fig. 8.

After removing the nonprime pairs (see Definition 3) from the

obtained local minima, the bendable size r of the contour can be

computed with the prime pairs according to (7).
From zðtÞ, a uniformly sampled sequence

� ¼ zk ¼ z
k

n


 �

j k ¼ 1; 2; . . . ; n

� 


ð16Þ

can be obtained directly. Then, the piecewise polynomial inter-

polation [26] can be used to generate a nonuniform sequence from

� with sample density proportional to !ðp; rÞ.
Given two curves z1ðtÞ and z2ðtÞ, suppose that their nonuniform

sample sequences are ��1 ¼ fẑ
k
1g and ��2 ¼ fẑ

k
2g, respectively. An

algorithm presented in [21] is available to find the best offset ŝ of

cyclic permutation such that

ŝ ¼ argmax
s2N

��1; �
sð��2Þ

� �
	

	

	

	: ð17Þ
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Fig. 7. (a) Global matching of two uniformly sampled sequences. (b) Global

matching of two nonuniformly sampled sequences.

4. For example, the cyclic permutation of a sequence fa b d e fg with
offset 2 is fd e f a bg.

Fig. 6. The sequence of some shapes. (a) Gesture #0. (b) Gesture #9. (c) Gesture

#11. (d) Dog #11. (e) Dog #11 after 20� skew. (f) Marine #802. (g) Marine #821.



5 EXPERIMENTS

To demonstrate the feasibility of the proposed approach, this
section gives the experimental results obtained by applying it to 2D
object retrieval based on the contours (silhouettes) of the objects.
We test our algorithm on three benchmark databases with
comparisons to several recent methods. The weighting factor �
in (14) is set to 1/3.

5.1 MPEG-7 Database

Part B of the MPEG-7 Core Experiment CE-Shape-1 data set [35] is
often used to test shape matching methods. There are 70 groups of
objects in the database and 20 binary images in each group. In a
benchmarking test (Bullseye test), each shape is taken as a query
and the 40 shapes with the highest scores (or smallest distances in
our case) are retrieved from the database (including the query).
The percentage of matched images out of 20� 70� 20 ¼ 28;000 is
the retrieval rate of the test.

Our comparison includes nine most recent methods, which are
all shown in Table 1.5 This table indicates that our algorithm
outperforms the others.

In our experiments, we also test our algorithm in which either
local features or global features are used. We find that the former
results in a better score, with 82.65 percent versus 71.43 percent in
the Bullseye test. However, the global features are quite useful in
matching heavily noisy samples, such as some shapes from the
“Devices” class in MPEG-7.

To demonstrate that the flexibility can improve the matching
performance, another experiment is designed to carry out the
Bullseye test on MPEG-7 by only using the Procrustean distance
with uniformly sampled or flexibly sampled landmarks. The
experiment shows that the flexibility can improve the Bullseye test
score from 63.01 percent to 71.43 percent.

5.2 Gesture Database

Here we test our algorithm with the Gesture database.6 There are
17 classes and 980 hand gesture samples in it. All of the queries are
shown in Fig. 9a. In the benchmarking test proposed in [23],
human relevance data are used to evaluate the performance of
retrieval. In [23], the authors provided the evaluation on four
methods including sequential moments [12], Fourier descriptor
[34], geometric moments [15], and the dynamic programming

method proposed by themselves. These data are included in our

comparison. McNeill and Vijayakumar’s evaluation on another

two methods, HPM-F and HPM-Fn, with this data set [22] is also

included. Fig. 10a shows the precision-recall plots from [23] and

[22] with our results added, where the precision is defined as the

ratio of relevant gestures retrieved out of all the retrievals, while

the recall is the ratio of relevant gestures retrieved out of all of the

relevant gestures in the database. The results again show that our

algorithm works best.

5.3 Marine Database

There are 20 classes and 1,100 marine species samples in the

database. In Fig. 9b, all of the queries are shown. The same tests

and evaluations as those in Section 5.2 are performed with this

data set. The precision-recall diagram is shown in Fig. 10b, in

which the data from [23] and [22] are also included. In this test, our

algorithm again shows the best performance.

6 DISCUSSION AND CONCLUSION

We have presented a novel shape descriptor, called contour

flexibility, for 2D shape matching. The bendable potential for each

point on the contour can be characterized by this descriptor. The

application of the descriptor to extracting the local and global

features of a shape is given. With the obtained features, we have
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5. These scores, except ours, are from [22], [11], and [5].
6. The Gesture database and the Marine database discussed in Section 5.3

can be downloaded from http://www.intelligence.tuc.gr/~petrakis/.

Fig. 8. (a) The terrain map of �ðt1; t2Þ for the contour shown in the right image. There are 36 local minima labeled by “þ” on the map. (b) The prime pairs superimposed on

the contour. The local minima corresponding to the prime pairs can be found in the terrain map.

TABLE 1
Retrieval Rates for the MPEG-7 Database



proposed a shape matching scheme that combines the effectiveness

of both local and global features. Our experiments on three

benchmark data sets show that our method performs better than

the state-of-the-art methods for shape matching.

It should be mentioned that our matching scheme does not

consider significant occlusions between objects. When we need to

design methods to handle occlusions, however, the flexibility can

help in two ways: 1) to determine the decompositions of

boundaries and 2) to be used for boundary segment matching.

When the flexibility along the boundary of an object varies

insignificantly, it does not help very much for object matching.

These objects can be classified into two categories: 1) objects

without protruding parts (such as a disk) and 2) ribbon-like objects

(such as handwriting numerals). For the first case, the global

matching in our scheme plays the main role and the sampling from

the flexibility is close to a uniform one, making the global matching

reduce to a Procrustean distance matching, which can manage the

matching of these objects well. For the second case, other features

and matching schemes should be employed because the flexibility

extracts little information from the contours.

Future work may include the design of a more sophisticated

matching scheme, instead of the linear combination of the two

distances in (14). As an intrinsic property of contours, the contour

flexibility may be useful for other tasks in computer vision, such as

finding the skeleton of a binary shape.
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