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2D transistors rapidly printed from the crystalline oxide skin of
molten indium
Andrew B. Hamlin 1, Youxiong Ye1, Julia E. Huddy1, Md Saifur Rahman1 and William J. Scheideler 1✉

Ultrathin single-nm channels of transparent metal oxides offer unparalleled opportunities for boosting the performance of low
power, multifunctional thin-film electronics. Here we report a scalable and low-temperature liquid metal printing (LMP) process for
unlocking the ultrahigh mobility of 2-dimensional (2D) InOx. These continuous nanosheets are rapidly (60 cm s−1) printed over large
areas (30 cm2) directly from the native oxide skin spontaneously formed on molten indium. These nanocrystalline LMP InOx films
exhibit unique 2D grain morphologies leading to exceptional conductivity as deposited. Quantum confinement and low-
temperature oxidative postannealing control the band structure and electronic density of states of the 2D InOx channels, yielding
thin-film transistors with ultrahigh mobility (μ0= 67 cm2 V−1s−1), excellent current saturation, and low hysteresis at temperatures
down to 165 °C. This work establishes LMP 2D InOx as an ideal low-temperature transistor technology for high-performance, large
area electronics such as flexible displays, active interposers, and thin-film sensors.
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INTRODUCTION
Transparent conducting oxides’ exceptional optoelectronic prop-
erties have traditionally made them critical electrode materials for
state-of-the-art displays, photovoltaics, and smart windows.
However, oxides such as InOx

1, SnOx
2, InGaZnO3 (IGZO), and

ZnO4 are also extremely promising as low-temperature processed
high mobility semiconductors for driving new thin-film electronics.
Emerging applications of conducting oxides to low power
switching5, neuromorphic computing6, and biosensing7 can be
unlocked by utilizing ultrathin, nm-scale two-dimensional (2D)
layers with favorable electrostatics. Among these 2D oxides,
ultrathin InOx displays a unique tendency towards strong surface
electron accumulation8, offering surprisingly high mobility trans-
port in films just one unit cell thick (~1 nm)9 with outstanding
short channel performance for GHz-range circuits7. Beyond
switching, this high conductivity in combination with high visible
range transmittance makes 2D InOx well suited, for example, as
charge selective contacts for an emerging class of heterostructure
photodetectors based on MXenes10, graphdiyne11 and transition
metal dichalcogenides (TMDs)12. The functional versatility and
low-temperature processing capability of 2D oxides are particu-
larly interesting for heterogeneous 3D integration with low power
CMOS circuits13.
2D conducting oxides could offer their greatest technological

advantages for large area flexible electronics due to their high
bending strain tolerance14, but there remains a technological
need for scalable deposition of these ultrathin films. Precision
vacuum-based methods such as ALD can control nm-scale
thickness, but are capital intensive, relatively low-throughput,
and challenging to scale to large areas for flexible devices15.
Large area printing technologies, on the other hand, could
enable low-cost flexible device fabrication, but it has proved
challenging to achieve both high uniformity and high mobility
for ultrathin films16. Additionally, although sol-gels and nano-
particles have been developed for printing metal oxides17,18,
there remains a barrier to processing high-performance oxides
(>10 cm2 V−1s−1) within the thermal limits of polymer substrates,

such as PET and PEN (~200 °C)19 as precursor decomposition is
incomplete below 225 °C17. New frontiers in high-performance
flexible electronics require advanced low-temperature fabrica-
tion strategies to take advantage of the potential of 2D oxides in
low-cost, wearable devices.
Liquid metal printing of a new class of van der Waals 2D oxides

could overcome these challenges to accelerate high-
performance flexible electronics. Liquid metal printing is a
vacuum-free route to depositing ultrathin (<5 nm) metal oxide
semiconductors generated by spontaneous surface oxidation20.
This method has been utilized for synthesis of various metal
oxides21 (SnO2, SbOx, InSnOx, GaOx, etc.) for applications to
transparent conductive films14, photodetectors22,23, as well as
switching devices24. A powerful feature of liquid metal synthesis
distinguishing it from contact-based adhesive 2D material
transfer is the liquid metal’s mechanical compliance which leads
to its ability to transfer continuous nanosheets at the cm2 scale25.
However, despite the promise of this method, further advances
are needed to allow careful tuning of the electronic properties of
2D oxides for new applications by replacing manual ‘touch’
printing methods14 and utilizing lower temperatures broadly
compatible with polymer substrates.
In this work, we address these challenges by developing 2D

InOx transistors with exceptional switching performance fabri-
cated via a rapid pneumatic liquid metal printing process at
unprecedented low temperatures (165 °C). We find that liquid
metal printing is a perfect match for an intrinsically conductive
oxide, such as InOx that requires forming ultrathin films to deliver
electrostatic control9. These devices illustrate the advantages of
liquid metal printing (LMP) for forming crystalline and highly
conducting films as deposited, avoiding insulating intermediate
phases and eliminating the thermodynamic barriers posed by
precursor decomposition. Leveraging this process, we reveal how
these distinctive nanocrystalline morphologies of 2D InOx lead to
its outstanding electronic transport characteristics and through
detailed characterization of the electronic density of states we
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precisely engineer the electronic structure for high-performance
thin-film transistors.

RESULTS & DISCUSSION
Liquid metal printed 2D InOx

Our liquid metal printing process delivers lower process tempera-
tures (165 °C) than previous work22 by leveraging a temperature-
controlled dual-sided thermomechanical transfer of liquid metal-
derived oxide nanosheets. This process (Fig. 1a) relies on the
spontaneous growth and subsequent high-speed transfer of a
nanoscale solid oxide skin on a spreading droplet of liquid indium
metal. We apply this process to generate large continuous sheets
of InOx at the 20 cm2 scale, which are rapidly deposited via the
spreading of the liquid metal meniscus (Fig. 1b) at a speed of
1–60 cm s−1, as estimated by slow-motion photography. Our
approach of controlling the donor and target substrate tempera-
tures allows for uniform deposition of arrays over large areas
(Fig. 1c), as well as process control to modulate the electronic
properties of the transferred 2D InOx films. The printing process
can be tuned to produce 2.2 ± 0.3 nm monolayer or 4.9 ± 0.6 nm
bilayer nanosheets (Fig. 1d) by utilizing variable donor surfaces,
with plastic donors transferring bilayers and smoother SiO2 donor
surfaces transferring monolayer films. Figure 1e illustrates a
nanoscale view of thin-film transistors incorporating these 2D
semiconducting channels composed of just two unit cells of InOx.
Cross-section of the bilayer specimen was also observed via
transmission electron microscopy (TEM), which reveals a thickness
of approximately 4.8 nm for the bilayer InOx films produced with
the liquid metal printing method (Fig. 1f).

These ultrathin InOx films exhibit both highly crystalline and
amorphous regions for both monolayer and bilayer depositions. A
top-down view of the nanosheets was characterized using high-
resolution TEM (HRTEM) to provide further insight into the
morphology and crystalline structure of the bilayer InOx films
produced via the liquid metal printing process with and without
postannealing (Supplementary Fig. 1). After annealing at 250 °C for
1 h, these films exhibit domains in varying orientations with lateral
dimensions of up to 20 nm (Fig. 1g). The Moiré fringes in these
TEM images also demonstrate that the overlay of two nanosheets
can be clearly deduced for both unannealed and postannealed
specimens. TEM-based grain size analysis of the postannealed
films (Supplementary Fig. 2), for example, shows a range from 5 to
15 nm, with an average of 8.1 ± 2.6 nm. These grains can be
considerably larger in their lateral dimension than the transferred
film thickness, a property typically associated with highly ordered
materials produced by methods such as pulsed laser deposition
(PLD)26. The enlarged view in the inset displays well-defined lattice
fringes, corresponding to the (400) lattice plane of cubic In2O3.
The nanocrystalline feature of the nanosheet can also be
confirmed by the selected area electron diffraction (SAED) pattern,
which exhibits diffraction rings typical of cubic In2O3 (Fig. 1h).
X-ray diffraction (XRD) spectra of these films are dominated by a

single (222) peak of cubic InOx for both the monolayer and bilayer
films (Supplementary Fig. 3). The average crystallite size predicted
by Scherrer analysis of the (222) peak of monolayer films is similar
to that of bilayer films, yielding 6.6 nm and 5.9 nm, respectively,
with no significant change in crystallite size upon postannealing.
This lack of recrystallization of nanosheets separated by a van der
Waals gap matches recent reports of liquid metal printed 2D

Fig. 1 Liquid metal printing schematic, TEM, and X-ray diffraction studies. a Schematic for liquid metal 2D oxide deposition and
b photograph of liquid metal droplet during pneumatic pressing process. c Large area (30 cm2) array of 2D InOx semiconductors (top) with
height map (bottom) showing line scan for a monolayer film. d Histogram of measured thicknesses for monolayer and bilayer InOx films.
e Atomic-scale illustration of monolayer InOx channel transistor two unit cells thick. f Cross-sectional TEM image of 2D InOx film. g HRTEM
image of the 250 °C annealed InOx nanosheet. The inset shows a magnified view of the lattice pattern within a nanograin. Red arrows
highlight Moiré fringes. h SAED pattern for postannealed bilayer InOx nanosheet. i XRD scans of the (222) peak for bilayer InOx films
postannealed at various temperatures.
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indium tin oxide (ITO)14. With subsequent annealing, the InOx

(222) peak increases in intensity (Fig. 1i), reaching its highest
integrated intensity after approximately 225 °C (Supplementary
Fig. 4). For comparison, a control sample of sol-gel synthesized
InOx produced by spin coating was measured by XRD, showing
only the amorphous phase even with thermal annealing up to
275 °C (Supplementary Fig. 5). The cubic phase observed in these
studies also stands in contrast to recent reports of rhombohedral
In2O3 formed by liquid metal printing at higher temperatures and
in inert environments25.
These results indicate that a principle advantage of liquid metal

printed 2D oxides relative to predominate sol-gel formulations is
the ability to achieve crystalline films as deposited and avoid
hydroxide formation, a known acceptor type defect limiting the
conductivity of InOx

27. The lack of carbonaceous solvents or metal
salt precursors in our liquid metal printing method eliminates the
requisite formation of intermediate phases dominated by metal
hydroxide bonding. This can be seen in the XPS O1s peaks for
spin-coated sol-gel films (Supplementary Fig. 6) which consist of
79% M-OH bonding compared with liquid metal printed films,

which show minimal hydroxide content (18% M-OH) (Supplemen-
tary Table 1). Our liquid metal printing method provides a method
to deposit these ultrathin 2D oxide semiconductors while
controlling their electronic properties to achieve high mobility.

2D InOx thin-film transistors
The liquid metal synthesized 2D InOx films were integrated into
thin-film transistors with exceptional switching performance
exceeding those of competing low-temperature solution-pro-
cessed metal oxide semiconductors. Figure 2a shows the
transfer characteristics of the champion InOx transistor, which
exhibits extremely high electron mobility, as well as minimal
hysteresis for forward and reverse sweeps after 250 °C post-
annealing in air. The linear regime transfer curve exhibits a peak
linear mobility reaching a stable value of approximately 67.1 cm2

V−1s−1 (Supplementary Fig. 7) with a threshold voltage (Vt) of
approximately 10 V. This remarkable on-state performance is
complemented by ideal current saturation as shown in the
output curve in Fig. 2b, indicating the absence of back-channel
conduction or instability in these high mobility materials.

Fig. 2 2D InOx transistor characteristics and 2D material benchmarking. a Linear and saturation transfer curves for champion bilayer 2D
InOx printed transistor postannealed at 250 °C. b Output curves for champion device with Vgs = −10 V to 40 V in 10 V steps. c Schematic of
device architecture with overlapped 2D bilayer grain structure leading to efficient interlayer electronic transport and high electron mobility.
d. Mobility comparison between 2D channel materials as a function of device area reported in literature.
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The current saturation and low hysteresis in these InOx devices
differentiate them from reports of highly conductive channels
formed in recent reports of liquid metal 2D oxide TFTs25. The low
hysteresis and steep subthreshold slope additionally suggest the
potential for our liquid metal printed 2D InOx to serve as a
building block for high-performance thin-film circuits in a variety
of large area electronics.
The exceptionally high electron mobility in these liquid metal

printed transistors exceeds even that of In2O3 transistors
fabricated by ALD28–31 or DC sputtering32, illustrating an
advantage of the unique 2D grain morphology shown by HRTEM
(Fig. 2c). A highly overlapped grain morphology has previously
been observed to enhance percolative transport in highly
conductive 2D nanosheet networks, such as CVD-grown gra-
phene films33. The overlapping grain morphology is a unique 2D
material feature of the InOx channels presented here, since
vacuum-deposited In2O3 otherwise tends towards microstruc-
tures with through-thickness grains with transport limited by
grain boundary scattering34. Highly vertically overlapping grain
morphologies can resolve this limitation, providing more
efficient, inter-grain transport.
Importantly, unlike other printable 2D semiconductors such

as MoS2, WS2, and WSe2 that consist of ~ 1 – 10 μm scale
nanosheets, 2D oxides offer the benefit of allowing large-scale
continuous films (1 mm2 – 1 cm2) suitable for flexible device
integration. This is essential because nanosheet networks of
traditional TMD 2D materials can be limited by sheet-to-sheet
charge transport, resulting in measured electronic mobility
10 – 100X lower than the single crystal mobility35 as the area is
scaled above the area of individual nanosheets. Figure 2d

illustrates this trend of mobility vs. device area for reports of
transistors with 2D semiconductor channels36–51. This shows
the favorable large area scaling of 2D oxides that maintain high
mobility while allowing for printing-based-integration. We
expect that liquid metal printing can become an attractive
low capital expenditure manufacturing technology for com-
mercialization of these oxide devices, particularly if selective
deposition processes can be applied to eliminate the need for
subtractive etching processes52.
Liquid metal printed 2D InOx transistors deposited in a single

printing step over large area substrates (>30 cm2) achieve high
mobility for both monolayer and bilayer channels. Figure 3a
illustrates a comparison between postannealed (250 °C) bilayer
and monolayer devices from multiple batches, which exhibit
average low-field linear mobility of 17 cm2 V−1s−1 and 2.3 cm2

V−1s−1, respectively. Supplementary Table 2 reports the perfor-
mance statistics for a single sample (N= 13), showing μlin of
19.6 ± 13.1 cm2 V−1s−1, a μsat of 14.4 ± 11.7 cm2 V−1s−1, and a Vth
of −12.8 ± 4.8 V. Multiple subsequent device batches demon-
strated similar performance, with average linear mobility of 15 –
19 cm2 V−1s−1 and champion devices above 35 cm2 V−1s−1

(Supplementary Fig. 8). Low-temperature processed bilayer
devices exhibit peak mobility up to 37 cm2 V−1s−1 (Table 1) as
well as high on-currents (Supplementary Fig. 9) and excellent
current saturation (Supplementary Fig. 10), even with ≤ 175 °C
annealing. These processing conditions are comfortably within the
limits of flexible substrates such as polyethylene. Compared with
the highest performing bilayers, monolayers exhibit lower peak
mobility (μ0 ~ 3.0 cm2 V−1s−1) but have more positive turn-on
voltages. The enhanced transport in bilayer films can also be
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justified as a result of the nanocrystalline grain structure observed
by TEM, which produces significant overlap area between the
vertically overlaid nanosheets.

Controlling electronic transport in 2D InOx

Postannealing processes after the initial 2D oxide film transfer
control electronic transport for the InOx films of varying thickness.
Bilayer and multilayer 2D InOx transistors exhibit high on-current
after deposition, but postannealing processes can be used read
the free-carrier concentration and allow effective gating. Figure
3b, c illustrate transfer curves for bilayer and monolayer InOx

transistors with various postannealing temperatures, reaching
optimal characteristics with high Ion/Ioff near 200 °C postannealing.
Sufficient thermal postannealing was observed to shift the turn-on
voltage (Von) from a depletion mode operation to enhancement
mode operation and yield a steeper subthreshold slope. Thermal
postannealing also enhances the low-field electronic mobility of
the InOx transistors (Fig. 3d), which is consistent with the higher
crystalline fraction of annealed samples compared with the as-
deposited thin films. Similar to the crystallinity, the mobility begins
to reach its peak at 200–225 °C. We note that for predominant
circuit applications, enhancement mode operation with Von near
0 V is desirable. Recent work has shown that the free-carrier
concentration of InOx channels can also be controlled through
back-channel passivation layers53 and doping54 to form ternary
channel materials with improved bias-stress stability and uni-
formity. These dopants and passivation materials have been
printed with liquid metals20, offering an opportunity for multi-
layered architectures that can leverage interfacial polarization
effects known to induce 2D electron gases (2DEGs) in In2O3

55. We
expect that these material design strategies, in combination with
improvements to the liquid metal printing process, can reduce
device-to-device variability and enable greater commercial
applicability of this technology.
Measurements of the optical properties of these InOx films

demonstrates the relationship between their 2D nature and
resultant quantum confinement for modulating their electronic
structure, as well as their ultra-transparency. InOx naturally has
lower optical absorption than would be predicted from its
fundamental bandgap of approximately 2.92 eV due to the
presence of dipole-forbidden optical transitions, which can
effectively raise the bandgap by more than 0.8 eV by forcing
direct transitions from well below the valence band maximum
(VBM)56. Optical transmittance measurements revealed an average
transmittance of 99.2% and 98.9% for monolayer and bilayer InOx

for the visible wavelength range of 400–800 nm. Tauc analysis of
our 2D InOx films suggests a significant widening in the optical
bandgap (ΔEg) for the thinnest 2D InOx films, with an offset of
approximately 90 - 150 meV between monolayer (2.2 nm) and
bilayer (4.9 nm) InOx (Supplementary Fig. 11). The Bohr radius of
In2O3 is estimated to be approximately 2.35 nm (assuming ε= 8.9,
me

* = 0.3 m0, and mh* = 0.6 m)57, suggesting that the blue-shifted
absorption of monolayer films can be attributed to significant
quantum confinement effects. Figure 3e illustrates the trend of Eg

vs. postannealing, as extracted from direct bandgap57 fits of the
Tauc plots of absorption, showing a significant redshift after
postannealing for both monolayers and bilayers. This is consistent
with a lower free-carrier concentration and a diminishing Burstein-
Moss effect. Indeed, the Burstein-Moss shift may also explain why
these 2D InOx films exhibit a smaller ΔEg than would be expected
based on the theory for 1-dimensional infinite quantum wells
(QW)58, which would predict ΔEg ~ 250 – 300meV based on our
thickness measurements:

ΔEG ¼ h2

8L2
1
m�

e
þ 1
m�

h

� �
(1)

Electrical characterization shows bilayer films exhibit a higher free-
carrier concentration (n0) than monolayer films, which should
effectively increase their measured optical bandgap, mitigating
the ΔEg otherwise induced by quantum confinement. These
observations also match the characteristics of InOx transistors,
suggesting a lower activation energy (Ea) for transport in bilayer
films that exhibit less quantum confinement induced bandgap
widening compared with monolayer films (Fig. 3f). For both cases
of monolayer and bilayer InOx, however, the activation energy can
be effectively modulated to tune the turn-on voltage for various
applications requiring enhancement mode operation for circuit-
level integration.
Variable temperature Hall measurements were performed to

characterize the electronic transport in large area 2D InOx films of
approximately 7 × 7 mm (Fig. 4a). Measurements of temperature-
dependent resistivity illustrate the low activation energy of the
highly conductive bilayer InOx films, consistent with a trap-neutral
level in proximity to the conduction band energy and the
observed carrier concentration of approximately 1 · 1019 cm−3.
Hall measurements of these films show room-temperature
mobility of approximately 12.9 cm2 V−1s−1. To fully understand
the impact of postannealing and quantum confinement on
transport in the liquid metal printed 2D InOx, the electronic
density of states (eDOS) was extracted using temperature-
dependent transfer measurements of monolayer and bilayer
thin-film transistors from 20 to 100 °C. The temperature-
dependent measurements allowed for an extraction of the eDOS
(Fig. 4b) through the method described elsewhere, based on the
thermally activated low-field drain conductance59. Monolayer and
bilayer films show distinct differences, with bilayer films exhibit-
ing higher band tail slope but lower band edge concentration
(4 · 1019 cm−3 for bilayers vs. 1.4 · 1020 cm−3 for monolayers).
These characteristics and the lower deep state concentration for
bilayers are consistent with their higher mobility and improved
subthreshold slope. A comparison of the printed 2D InOx eDOS
also shows a higher band edge concentration 5 · 1020 cm−3 after
250 °C annealing, compared with 4 · 1019 cm−3 for the sample
annealed at 175 °C. Similarly, the InOx channels annealed at
250 °C exhibit a steeper band tail slope consistent with their
transition to a phase with higher crystalline fraction.
This method also allows comparison of the activation energy

as a function of gate voltage for monolayer and bilayer
films. This thermal activation energy EA computed from the

Table 1. Transistor performance summary.

Channel Thickness
(nm)

Anneal Temperature
(˚C)

Linear Mobility,
μ0 (cm2V−1s−1)

Ion / Ioff Turn on Voltage,
Von (V)

Saturation Mobility,
μsat (cm2V−1s−1)

Monolayer InOx 2.2 175 3.0 105 −13 1.6

Monolayer InOx 2.2 250 2.6 105 −9 2.0

Bilayer InOx 4.9 175 37.3 106 −24 21.3

Bilayer InOx 4.9 250 67.1 5 × 106 −12 44.6

Summary of device statistics shown for monolayer and bilayer liquid metal printed InOx transistors.
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temperature-dependent measurements effectively describes the
energy difference between the Fermi level and the delocalized
states in the conduction band (EA = EC – EF), as depicted in
Fig. 3f. Figure 4c shows the lower activation energy for transport
in bilayer films compared to monolayer films, which is consistent
with the higher free-carrier concentration and the overlapping
grain morphology discussed above. This behavior also corre-
sponds well with the expected impact of quantum confinement,
which would tend to raise the conduction band edge, as shown
in Fig. 3f and force otherwise degenerate conductors into a
semiconducting state.

CONCLUSION
The liquid metal printed 2D oxide transistors reported here
demonstrate ultrahigh performance leveraging control of the
electronic structure of nanoscale InOx films as seen through
the extracted eDOS. The 2D InOx channels exhibit unprecedented
performance for low-temperature, vacuum-free processed materi-
als suitable for flexible electronics applications as well as high-
performance circuits in active interposers. Combined with the
transparency and known mechanical flexibility of these ultrathin
films, the ultrahigh mobility electronic performance can drive
potential commercial applications to wearable sensors, neuro-
morphic computing, and lightweight display technology. Future
integration of this process into high-speed continuous printing
technologies could unlock a new generation of high-performance
flexible electronics.

METHODS
Dual-sided liquid metal printing process for InOx

A silicon die with 100 nm of thermally grown SiO2 was attached via
thermal tape to each platen of a pneumatic thermal press preheated to
165 °C. A 0.5 g quantity of 99.995% purity indium metal (Luciteria) was
placed in the center of the upward-facing die. The distance between the
platens was decreased until the indium droplet contacted both dies.
The pressure on the dies was then ramped up to 400 psi in 2 s. After 5 s,
the pressure was released at the same rate. The dies were removed from
the hot press within one minute. To remove any metal from the sample
surface, each die was placed on a hot plate at 165 °C and a heat resistant
silicone squeegee was scraped over the surface. The samples were then

cleaned with an ethanol-wetted lint-free cloth. Monolayer films were
deposited using SiO2 wafers as both the donor and target substrates.
Both the donor and target substrates had resulting monolayer films
adhered after the liquid metal printing process. Bilayer films were
deposited in a single step using low adhesion, plastic surfaces as the
donor substrates to transfer both the front and back oxide films to the
target SiO2 substrate.

2D InOx transistor fabrication
2D InOx transistors were fabricated in a top contact, bottom gate
architecture. A 10min wet etch in 18% HCl was used to pattern the InOx

semiconductors (1000 × 500 µm). An adhesive Kapton shadow mask was
used to define 1 × 1.5 mm source-drain electrodes with channel lengths
from 50 – 500 μm. An Anatech LTD Hummer 6.2 sputtering system was
utilized to deposit 80 nm thick gold electrodes.

Electrical characterization
A semiconductor parameter analyzer (Agilent E5260A) was utilized for all
transistor characterization. The electronic density of states (eDOS) was
extracted from temperature-dependent measurements of low-field drain
conductance from 23 °C to 120 °C. All other transfer and output
characteristics shown here were captured at room temperature, in air.
We observed that the yield of liquid metal printed InOx semiconductor
regions that were active and modulated by an applied gate voltage was
approximately 88% across multiple batches. Incremental linear and
saturation mobility were computed using the gradual channel approxima-
tion. Variable temperature Hall measurements (150 K–350 K) were per-
formed with a 2D InOx film deposited onto SiO2 wafers and patterned into
a Van der Pauw geometry with Au contacts. These samples were measured
under vacuum (MMR Technologies) using a Joule Thomson stage and a
7200 gauss permanent magnet.

Materials characterization of 2D InOx

X-ray diffraction (XRD) analysis was performed on 2D InOx films deposited
on Si wafers with 100 nm of thermally grown SiO2 using a Rigaku D/MAX
2000 diffractometer with Cu Kα radiation at scanning rates of either 1° or
0.1° per min. The InOx nanosheets were characterized using a FEI Tecnai
F20 transmission electron microscope (TEM) at an accelerating voltage of
200 kV. The 2D InOx films were directly printed onto TEM grids (carbon
type-B 200-mesh Cu grids, Ted Pella). The printing process for the TEM
samples entailed briefly and gently touching the liquid metal interface.
Additionally, the cross-section of the nanosheets, prepared by the focused
ion beam (FIB) lift-out technique using a scanning electron microscope
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(SEM) dual-beam system (Thermo Scientific Helios 5CX Dual Beam SEM/FIB),
was observed via TEM. A carbon layer with a thickness of ~20 nm was
coated on the sample surface before Pt deposition in order to enhance the
contrast and visibility of the InOx films. XPS spectra were collected using a
Kratos Axis Supra XPS at 10−9 Torr. A UV-Vis spectrophotometer (DeNovix
DS-11 FX+) was used to observe the absorbance spectrum of the 2D InOx

films from 190 nm to 840 nm on glass and quartz substrates. InOx bilayer
film thicknesses were also measured with a high precision stylus
profilometer (Tencor D500) with 0.4 Å vertical resolution and 5.0 Å
repeatability, using the 40–60 nm combined step heights available after
Au electrode deposition.
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