
2D2N: A Dynamic Degenerative Neural Network for
Classification of Images of Live Network Data

Kieran Flanagan
Software Research Institute

Athlone Institute of Technology
Athlone, Ireland

k.flanagan@research.ait.ie

Enda Fallon
Software Research Institute

Athlone Institute of Technology
Athlone, Ireland
efallone@ait.ie

Paul Jacob
Department of Electronics, Computer

and Software
Athlone Institute of Technology

Athlone, Ireland
pjacob@ait.ie

Abir Awad
Faculty of Science and Technology

Bournemouth University
Dorset, UK

aawad@bournemouth.ac.uk

Paul Connolly
The NPD Group, Inc

Athlone, Ireland
paul.connolly@npd.com

Abstract—The detection of new, novel attacks on
organizational networks is a problem of ever-increasing relevance
in today’s society. Research in the area is focused on the detection
of “Zero-Day” and “Black Swan” events through the use of
machine learning technologies. Where previous technologies
needed a known example of malicious behavior to detect a similar
event, recent advances in anomaly detection on network activity
has shown promise of detecting novel attacks. In a real word
environment however, novel behavior occurs relatively frequently
as users utilize new software applications and new standards in
networking. Changes such as these, while of notable importance to
network security technicians, may not present themselves as an
imminent threat to a network. This paper proposes a novel method
for the detection and classification of changes in networking
behavior. Through the use of a Dynamic Degenerative Neural
Network (2D2N), changes in recognizable user activity are
dynamically classified and stored for future reference. Through
the use of a time-based entropy function, infrequent activity can
be analyzed and given precedence over frequent activity. This aids
in the classification of abnormal activity for fast, efficient
assessment by the relevant persons in an organization. The
proposed method enables the detection, classification and scoring
of any and all user activity on a network. Evaluation of the
proposed method is based upon live data gathered from a large,
multinational organization.

Keywords— Convolutional Neural Network, Network Security,
NetFlow Analysis, Image Change Detection.

I. INTRODUCTION
With increased publicity surrounding the possibility of

network intrusions, large organizations are focused, now more
than ever, in avoiding a seemingly unavoidable situation.
Traditionally, security applications focused on preventing
intrusion from external sources through monitoring for
previously identified threats. However, with the increase in
prominence of the “Insider Threat” and “Zero-Day”
vulnerabilities being exploited, both research and industry have
now focused on employing anomaly detection mechanisms.

The aim of which is to detect previously un-encountered,
possibly malicious activity, in real time.

 Within a real-world environment, this can become
challenging. In a global network, being utilized by both
automated services and end points (a human element), creating
a pattern of predictability can become challenging. While a
single employee may start to use a new online application for
streaming music, this change in behavior is not of concern to
network security technicians in a strict sense. However, if this
new application contains a possible vulnerability, the network
security team within the organization would need to be aware
of its use as soon as possible to ensure that all precautionary
measures are taken in a swift manner.

Anomalies, such as these, that do not pose an imminent
threat to the network, are still beneficial from a security
standpoint. Within any large organization, it is reasonable to
assume that compartmentalization occurs within certain
departments. Through the analysis of all network traffic,
additions to the network, that are not malicious in any way, may
be detected. This improves both the situational awareness of
what is happening within the organization and increase the
security posture of the company through the identification of
possible misconfigurations that, again, are not malicious, but
may impact other aspects, such as network performance.

While the analysis of the behavior of individual assets and
users on a network can be beneficial, the abstraction of the
resultant metrics can also be advantageous. Having the ability
to swiftly place context into a detected anomaly can lead to
different determinations about the anomaly detected. For
example, if a new user accesses a human resources database,
who the new user is becomes extremely relevant.

In this paper, we propose the use of a novel Dynamic
Degenerative Neural Network (2D2N) to give the ability to
detect new, possibly malicious activity on a network, and
classify it dynamically with relation to time. This enables the
quick assessment of deviations within previously classified
network activity. While the classification of activity is

��������	�
��

�!"#�#$%"�#$$$%#$&��&'%�(���)�����
���

abstracted, key metrics in identifying the asset involved are
maintained throughout, for example an IP address or a
hostname. This, when presented in context of an anomaly,
allows for the quick differentiation between new and abnormal
activity.

In this paper, a proposed architecture for the generation and
analysis of images generated from network data is proposed.
Though low-level analysis of granular key performance
metrics, this research aims to detect small anomalies in NetFlow
data that contribute to the clusters generated through typical
clustering mechanisms used in unsupervised anomaly detection
for network security [1]–[3]. Through image generation,
through self-organizing map techniques, it is possible to detect
malicious behavior within small scale networks [4]. However,
within a large network, granular metrics on a minute to minute
basis can have incredible volume. In the context of this research
within the NPD Group, Inc, a given minute may produce a total
of between 50000 and 160000 network flow samples.
Producing a SOM image that successfully captures the range of
traffic that can occur is incredibly difficult. Given the
magnitude of the records produced in a given time.

In the proposed architecture, a divide and conquer method is
used to reduce the scope of the data to be captured within a self-
organizing map. This is done through the pre-processing of the
NetFlow samples collected by a clustering mechanism. By
utilizing a novel convolutional neural network, it is possible to
abstract the granular detection into a single class representation
of a divergence from normality. While this divergence from
normality may not be malicious in nature, results demonstrate
that the detection of non-malicious deviations can provide
insight into the behavior of applications used on the network,
increasing the situational awareness and security posture of the
network.

In Section II, the related work is discussed. Section III
introduces the 2D2N architecture and the context in which this
research was conducted in. Section IV describes the evaluation
of the proposed neural network in a real-world environment and
the results therein. Finally, Section V discusses the conclusions
of the live experiment and the results gained from it.

II. RELATED WORK
Network anomaly detection has typically consists of

comparative analysis of known threats against current activity
on a network [5], [6]. However, while highly accurate and
effective, it is possible for such mechanisms to fail in the case
of a “Black Swan” or “Zero-Day” attack. In such instances, it is
not possible to have a previous, known example that is required
by signature-based mechanisms. It is this limitation that has led
to the rise in anomaly-based detection mechanisms being used
for network intrusion detection.

Anomaly detection mechanisms, in general, work off of the
principle of detecting new, never before seen activity [7]. More
recently, methods in monitoring deviations from normality, as
well as new activity, have been gathering momentum [8]–[10].
As a side-effect of such methods, false positives are expected
when using such mechanisms, particularly when used within a
live environment. While a deviation from normality might not

be indicative of malicious behavior, it still may be of concern to
network security personnel within a company however. For
example, if a new asset appears on the network and generates
some quite normal HTTPS traffic, the network activity cannot
be considered as malicious. However, the addition of a new
asset on the network is significant [11].

To capture this dogma, behavioral analysis of assets on a
network was a natural evolution of standard network anomaly
detection. In these instances, behavioral patterns describing the
assets on the network are generated in order to detect deviations
from such traffic [12], [13]. On a live network however,
behavior patterns change rapidly, as new software is deployed
and new employees are introduced. The balancing of these,
technically false-positive results, with the increase in situational
awareness they provide, is non-trivial. In a real-world situation,
network-based assets, employees and software are continually
evolving and ever changing. Generating and relying on
behavioral pattern analysis for assets or users can become
extremely challenging [8]. This results in a quid pro quo
situation.

Through the generalization of granular predictive analytics,
such as a per user metrics, false positives are generally reduced
at the cost of context regarding specific users being lost. For
example, it is common that malware predicative mechanisms do
not consider an I.P address or a hostname when classifying
network traffic. The representation of this data is also vital to
the understanding of it [9]. This is a non-trivial task, as the high
level of granularity needed for effective detection of possible
misconfigurations and malware acting on the network. To easily
represent possibly thousands of records, effective “at a glance”
analysis is vital to decide if an immediate response is required.

III. PROPOSED ARCHITECTURE
In this section, a proposed architecture for the generation

and analysis of images generated from network data is
proposed. This multi-stage process is designed to enable the
detection of abnormal network activity. Figure 1 outlines the
three stages used in this experiment. The objective of each stage
is to process the previous stages output, while abstracting the
granular information gained from NetFlow data gathered from
within the NPD Group’s network. This abstraction is designed
to ensure that quick, at-a-glance analysis can be conducted on
the detected abnormalities to determine if any action is needed.

The proposed architecture is divided into three distinct
layers, each processing the output of the previous layer. The
first layer deals with clustering the raw NetFlow data gathered
from within NPD. The second layer focuses on the generation
of images from data pre-clustered within layer one. The aim of
this step is to, after training, map the contributing NetFlow’s of
a cluster to an organized image. And finally, the third layer
consists of 2D2N, a novel convolutional neural network
designed to detect changes in the images generated from the

��������	�
��

Figure 1: Testing architecture.

previous step. If an anomaly is detected, a new class output is
created, and new convolutional layers are added referencing this
change in distribution or consistency.

A. Clustering
For the experiment, MCODT [14], Micro-Clustering Outlier
Detection in Time Series, was used. This algorithm was used to
cluster relative NetFlow together. This enabled the quick
correlation of similar NetFlow together into a single cluster. In
this experiment, NetFlow data over the course of six weeks was
analyzed. Over 6 billion NetFlow records were analyzed by the
clustering mechanism. This data contained all network records
for all devices on the NPD global network. All data was
unlabeled, and no previous assertions were made.

TABLE I: Variables used for Clustering Solutions
Variable Description
Source IP The source IP address of the network

communication. Represented as the integer value for
clustering.

Destination IP The source IP addressed of the network
communication. Represented as the integer value for
clustering.

Source Port The source port of the communication.
Destination Port The destination Port of the communication.
Source Bytes The number of bytes sent from the source to the

destination.
Destination Bytes The number of bytes sent from the destination to the

source in response.
Protocol ID The protocol used for the communication.
Timestamp The time at which the NetFlow was detected.

For analysis, Table 2 outlines the NetFlow attributes used

for analysis within the clustering system. While source and
destination IP of network traffic was monitored, only those
pertaining to internal devices were used for the distance-based
calculations within the system. Timestamps were also gathered
for informative use only, and not used during the distance
based calculations. Processing steps taken during the variable
normalization process are described below.

1) Axial Scaling.
Typically, variables used during clustering are normalized

within the scale of 0 to 1. However, processing steps were taken
during this normalization process in this instance to ensure that
the relative metrics were of importance. For example, when
processing the port values within the NetFlow, the first 1024
registered ports are more valuable than dynamic ports in terms
of information gain. Generally, dynamic ports provide little to
no information gain on the type of activity being conducted,
with a few notable exceptions. Port 80 specifically describes
http traffic for example, while port 50000 does not describe any
traffic type in particular. To represent this within the clustering
mechanism, the port variables were not scaled from 0 to 1 in a
linear fashion. The first 1024 ports were scaled between 0 and
0.5, ports 1025 – 12000 were scaled between 0.51 to 0.9, and
ports 12000 plus were scaled between 0.91 to 1.

These scaling values were used to ensure that any port
between 0 and 1024 would carry enough distance within the
clustering configurations in order to “break out”, ensuring that
a unique cluster would be created between adjacent values, such
as 80 and 81, where the difference of 1 interval carries a much
greater meaning than that between 50000 and 50001, where no
additional information can be gained.

2) IP Address Processing
While performing distance-based calculations against all IP

addresses would be invaluable, to perform the clustering task in
a real time application, this research limited specific analysis of
IP address to those internal to NPD. These IP addresses were
similarly scaled to the ports mentioned in section 1. The aim is
to again increase the distance from each adjacent IP address to
ensure that each internal IP would generate a new cluster on its
own merits.

All external IP addresses (those not on the 10.0.0.0 network
in this case) were limited to the space between 0.9 and 1 of
normalized space. This compression of feature space ensures
that a unique external IP address will not generate a new cluster
if the only change in activity is the external IP address involved.
This performance saving measure does however come with
degradations in the monitoring capability of the clustering
algorithm, as all activity from internal devices to external
services through port 80 are now considered equal.

B. Image Generation
As described in [14],deviations in monitored clusters may

be indicative of an anomaly occurring. For example, an increase
in login attempts made between two devices may be indicative
of a possible attack. While the clustering mechanism can detect
new assets attempting to login though the generation of a new
cluster, a device that commonly logs in will create no new

��������	�
��

cluster and will therefore be considered as normal behavior
regardless of how many attempts are made. For this paper, we
propose that the generation of images based upon the NetFlow
previously classified by the clustering mechanism.

The aim is to represent the clusters density (number of
NetFlow instances classified) and the consistency (the attributes
of the contributing NetFlow to a cluster) of each cluster within
time intervals used during configuration. For example, a
Windows end-point may send between 1 and 5 DNS requests to
a server in a 5-minute interval. If the user changes the DNS
server it uses for lookups, the clustering mechanism will detect
this and create a new cluster. However, if the DNS request rate
increases dramatically, it will not. The SOM generated image
will change to reflect this increase in activity. It is this change
that this research aims to detect in the final step of the proposed
framework.

This process is inherently costly in terms of performance
impact. For a single image to be generated, for a particular
cluster, NetFlow inputs on a minute to minute biases range from
1 input to over 7000. This image generation performance
problem is discussed further in Section IV, B.

C. Image Classification
For this paper, a novel convolutional neural network is

proposed. The aim of this network, which is the final step of
analysis, is to detect and classify changes within individual
clusters. With a SOM image as input, 2D2N is streamlined for
improved performance. For example, convolutional layers may
be streamlined as to avoid searching the entire image for a
match. A single NetFlow will always be represented in the same
position on the image; therefore, a search through the image is
not necessary. Figure 2 outlines 2D2N. The aim of this step is
to:

1. Detect a change in a clusters composition.
2. Classify this change dynamically as a numerical state.
3. Rate this numerical state with respect to time, enabling

the measurement of how common a deviation in
activity within a cluster occurs.

This dynamic classification of the cluster is key to the
approach taken in this paper. The aim is to generically classify
shifts in cluster composition with relation to time. For example,
DNS systems use port 53 as a destination port when indexing
assets on a network. However, the source port for that
communications can be anywhere between 1041 and 65535,
observed during testing. So, while areas of the image may shift
in density (color) in this regard, the destination port will always
remain 53. If the destination port is not 53 however, then, this
shift will be treated differently (assigned a different numerical
class) than a shift in source port.

An input image, , consisting of , the rgb
values of a pixel within the image, obtain the pixel wise
distance, between the image and the
relevant convolutional layer of the 2D2N network () gained
from training. If the total pixel wise distance from the test
image and the convolutional layer is great enough to generate a
new output class, the layers with the greatest distance are stored

and added to the convolutional pool. This enables the future
detection of similar instances.

By using an entropy function correlated with the class output
of 2D2N, the result is occurred then put into context of the
commonality of the incident. For example, a change in cluster
composition that happens relatively frequently, the resulting
output will reflect this through a lower anomaly score.
However, if a new shift is detected, a larger anomaly score is
given. Section V demonstrates this on a live network.

Figure 2: Dynamic Degenerative Neural Network

IV. FRAMEWORK CONFIGURATION AND TRAINING
This section describes the configuration of all the steps

outlined in Section III. For testing, a total of 6 weeks’ worth of
live data, gathered from within the NPD Groups Inc. network,
was processed. In total, over six billion NetFlow samples were
analyzed, covering 17797 unique hosts detected on the network
over that time. This resulted in a total of 2018094 clusters
generated by the clustering algorithm using the parameters and
methodology set out in this section.

Figure 3: Training Workflow

A. Clustering Parameters
Table 1 outlines the parameters used for this step of NetFlow

processing. Point anomalies and clusters generated form the
clustering process were stored. Initial training of the clustering
mechanism was undertaken over a 2-week period (Table II).

F-18 F-18 F-18 M-18 M-18

SOM and
Clustering
Training

2D2N
Training

Anomaly
Detection

��������	�
��

TABLE II Clustering Configurations
Variable Value
Minimum Density Required 2
Maximum range for Sample .0025
Size of Window 60s

As outlined in Section III, an axial scaling technique was
applied to ensure specific attributes would ensure that a new
cluster would be generated when observed.

1) IP Addresses
If the IP address is internal (on the 10.0.0.0/8 network in this

case) the IP was converted from its IPv4 representation to its
integer format. Then it was scaled between 0 and 9 instead of 0
and 1.

2) Ports
For analysis, ports were not normalized in a linear fashion.

If a port, , table III outlines the scales used for various port
values.

Table III: Axial Scaling of Port Values
Port Value Scaling

These values were chosen due to the relative information

gain they provide about a specific application causing the
network activity.

B. Image Generation Perameters
Image generation for the reference SOM images outline in

Section III occurred after the first 2 weeks of training on the
clustering mechanism. This was done to find established
clusters within the network that represent activity that is
relatively common on the network. While the clustering layer
of the proposed architecture is conducted in real time on the
network, the self-organizing maps were trained in an offline
capacity. Training was established immediately after the
clusters were generated and continued until a stopping measure
(Table IV) was successfully reached. Following this training, all
NetFlow samples that were classified by the targeted cluster
were “binned” into the SOM, ensuring that all traffic was
successfully represented in the image. A total of 500 maps were
trained, selected at random out of the 2 million clusters
generated over the course of testing. Details of the maps are
given in Section V.

TABLE IV: SOM Image Training Parameters
Variable Value
Initial Weights Random Values between variable limits.
Learning Rate Windrow-Hoff Method

Iterations 2880
Distance Measure Euclidean
Stopping Measure Learning Rate < 0.0001

Image Size 50*50 Pixels

C. 2D2N Configuration
For the training of 2D2N, the SOM was used to organize the

data from the middle 2-week section of out 6-week testing
period (Table II). NetFlow Data contained within the previously
identified clusters were used as input into the SOM generated
for that specific cluster. Using this, 2D2N was initially trained
as a binary neural network, where all input images were equal

to the same class. This step was taken to establish the weights
of the initial convolutional layer so that all images would equal
the first output class of 2D2N, which will be taken as “normal
activity”.

TABLE V: 2D2N Configuration

Variable Value
Input Layer 5*5*4
Hidden Layer 200
Entropy 0.0025
Output Layers 2 during training,

 during classification testing.
Following this, all activity for the remaining 2 week period

was classified autonomously by the 2D2N network. Any and all
deviations in the SOM detected that were above the pixel-wise
distance observed during training were classified as a new
output. Section V demonstrates the results of this test.
Following classification, the output class weighting was then
modified through the entropy function. This demonstrates that
an activity is either new or repeating consistently. For the
purposes of testing, focus was placed on the clusters that
presented the maximum values of deviation from the training
period in Section V.

V. EXPERIMENTAL RESULTS
Through the 6 week testing period, over 6 billion individual

NetFlow samples were analyzed. In total, over 2021786 clusters
were generated, and 2134098 point anomalies detected.

A. Clustering
1) Point Anomalies
Point anomalies, or NetFlow samples that do not meet the

minimum density requirements, were monitored over the course
of testing. Figure 4 outlines the total point anomalies found
within a 1-minute window over time. Initially, as expected,
point anomalies were expectedly high during initial training.
However, after week 3, it began to normalize.

Both durations of high point anomalies, outlined above,
pertain to two particular assets on the network. They were not
malicious, however were notable. The two assets in question are
responsible for scanning the internal network to detect
vulnerabilities located on the assets within the company [15].
When a scan is scheduled, the asset scans all other assets on the
targeted network for vulnerabilities. The two areas noted above
are responsible for the scanning of two independent networks.
As an anomaly, they fall into the category of not malicious, but
of note. Spikes in point anomalies not attributable to these two
assets are discussed in the next section.

2) Clusters Generated
Spikes generated from point anomalies are commonly
associated with spikes in the number of clusters generated
during the associated time interval. Figure 5 outlines the rise in
number of clusters generated over the course of the 6-week
testing period. Sudden rises in the number of clusters are also
contributable to the spikes seen in Figure 4. These sudden rises,
again, are correlated with the activity of the two assets
responsible for conducting vulnerability scanning within NPD.
It is worth noting, of the 2021786 clusters generated through
testing, 1205948 clusters are attributable to these two assets.

��������	�
��

This is expected, as when scanning an asset, all ports are
scanned on the target asset. When conducted on a regional
network, where hundreds of assets, including end-points and
servers, are located, large amounts of clusters are expected to
be generated.

Figure 4: Outlier Count over Testing Period

Figure 5: Count of Clusters Generated During Testing

Of note however, are the spikes in point anomalies and
cluster generation that are not attributable to these assets. Table
VI outlines such cases. In all cases, no previous assumptions
were known about the data analyzed.

Clusters A, B and C referenced in Table VI pertain to the
same incident. In this case, a windows device located in one
remote site started communicating with three other windows-
based assets located in a different remote site for the first time.
From a security perspective, this is typical of malicious activity
propagating through a network. In this case however, after
investigation, it was established that the windows machine in
question was requesting an update to the McAfee antivirus
software located on the device. Up until this point, the device
was updated from a known server that pushes McAfee updates
to all assets on a local network. However, in this case, McAfee
attempted to update through the use of a new peer-to-peer
update service that was enabled on the McAfee license. While
not malicious activity, this detection was of importance as it
immediately made aware the fact that this feature was now in
use in some areas of the organization.

Sample E pertained to an asset performing new http activity
to external IP addresses. While this kind of activity is extremely

common in any organization, what generated this cluster was
the source of the communications, Source B. Source B was a
server within the organization that, until detected, never
performed http activity. In this instance, it was discovered that,
during maintenance, a technician briefly opened an internet
browser whose homepage was MSN. No other activity
occurred, and the browser was closed immediately after
opening. Detections such as these, while again, not malicious,
provide great insight into activity on the network. Internet
access on the server was blocked to prevent further incidents.

Table VI: Sample Clusters Generated Throughout Testing
ID Source Destination Source

Port
Dest.
Port

Protocol

A Source
A

Destination A Dynamic 8081 TCP

B Source
A

Destination B Dynamic 8081 TCP

C Source
A

Destination C Dynamic 8081 TCP

D Source
B

Destination D Dynamic Dynamic TCP

E Source
C

External
Destination A

Dynamic 80 TCP

F Source
D

External
Destination B

Dynamic 53 TCP

Within Sample F, a source connected to a wireless network

within NPD changed his DNS settings on the device. This
bypassed the internal DNS used within the company. Such
actions are against security policy, and the owner was made
aware as soon as this cluster was detected.

B. 2D2N Classificaion
Sample D was a cluster created during the first hour of

training within the clustering mechanism. It pertained to a
windows-based asset connecting to a domain server, using
Kerberos based authentication. This type of activity is
incredibly common among organizational assets, as Kerberos
authentication attempts may be made many times per minute.
No discernable deviations in activity were detected through
either the clustering mechanism, through point anomaly
detection or cluster generation, during testing.

However, during the final two weeks of testing, 2D2N
classification of the cluster changed. Table VII describes the
classification of the cluster over a 15 minute interval where the
class of the image changes. The classification changed from a
class 1, which is the class that the original SOM image was
trained on, to a class 2, a never before seen change in cluster
composition. Upon investigation, it was discovered that Source
B was the source of a relay attack to the authentication server
over a fifteen-minute period. This was corroborated through the
detection of a dictionary based attack from rules-based systems
currently in place within NPD. However, what is interesting is
that during the attack, no noticeable increase in Kerberos
activity (commonly associated with port 88) took place. The
rules based system detected this incident though log process,
which is outside the scope of this investigation.

0 k

100 k

200 k

300 k

400 k

500 k

600 k

700 k

O
ut

lie
r

C
ou

nt

Time

Outliers Detected

0.0 m

0.5 m

1.0 m

1.5 m

2.0 m

2.5 m

C
lu

st
er

 C
ou

nt

Time

��������	�
��

Figure 7: Both images classified as normal for Erratic Cluster

Table VII: 2D2N Classification of Cluster over Multiple Time Intervals
Output
Variable

Intervals (I minute)

Output
Class

1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

Output
Strength

0.91 0.93 0.73 0.61 0.76 0.87 0.96 0.95 0.98 0.96 0.92 0.91 0.84 0.76 0.79 0.91 0.92 .0.94

Figure 6: Class1 image (left) vs class 2 image detected (right)

The change in this image is a result of abnormal traffic over

port 49159. As noted in section IV, dynamic ports contain
relatively little information about the activity taking place. In
this case, the shift from relatively little dynamic port activity
between two assets to a high amount was indicative of an attack.
Figure 6 shows the images of each class for the cluster involved.
A clear difference can be seen. Where as in figure 7, a similar
change had taken place in another cluster over the same period
of time. However, no new class was created, as the variation in
this cluster was expected.

VI. CONCLUSIONS
In this paper, we proposed the use of 2D2N, a novel

convolutional neural network designed to detect divergences in
normal patterns of network activity. Through the generation of
images on pre-clustered data, normality of intra-cluster activity
can be processed and represented as an image. 2D2N has proven
capable of detecting deviations in this granular data that was
indicative of an attack.

A big repercussion of using such a system is performance.
While the clustering mechanism can be used in real time,
processing over 60000 samples in under 20 seconds, the image
generation portion is computationally expensive, particularly
when considering the amount of clustered needed to be mapped.
While this was done in an offline manner for the purpose of this
test, results have proven that the optimization of image
generation techniques, possibly though the use of specialized
hardware, it may become more efficient.

REFERENCES
[1] J. Asmuss and G. Lauks, “Network traffic classification for anomaly
detection fuzzy clustering based approach,” in 2015 12th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2015, pp.
313–318.
[2] M. Bailey, C. Collins, M. Sinda, and G. Hu, “Intrusion detection
using clustering of network traffic flows,” in 2017 18th IEEE/ACIS
International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD), 2017, pp. 615–620.

[3] K. Nalavade and B. B. Meshram, “Evaluation of K-Means
Clustering for Effective Intrusion Detection and Prevention in Massive Network
Traffic Data,” Int. J. Comput. Appl., vol. 96, no. 7, pp. 9–14, Jun. 2014.
[4] Haviluddin et al., “Modelling of network traffic usage using self-
organizing maps techniques,” in 2016 2nd International Conference on Science
in Information Technology (ICSITech), 2016, pp. 334–338.
[5] A. H. Almutairi and N. T. Abdelmajeed, “Innovative signature based
intrusion detection system: Parallel processing and minimized database,” in
2017 International Conference on the Frontiers and Advances in Data Science
(FADS), 2017, pp. 114–119.
[6] B. I. Santoso, M. R. S. Idrus, and I. P. Gunawan, “Designing
Network Intrusion and Detection System using signature-based method for
protecting OpenStack private cloud,” in 2016 6th International Annual
Engineering Seminar (InAES), 2016, pp. 61–66.
[7] W. Zhao, G. Chen, and X. Xu, “AnySCAN: An Efficient Anytime
Framework with Active Learning for Large-Scale Network Clustering,” in 2017
IEEE International Conference on Data Mining (ICDM), 2017, pp. 665–674.
[8] T. Sun, Y. Liu, and J. Chen, “A dynamic network anomaly detection
method based on trend analysis,” in 2017 3rd IEEE International Conference
on Computer and Communications (ICCC), 2017, pp. 405–411.
[9] C. Callegari, M. Pagano, S. Giordano, and F. Berizzi, “CUSUM-
based and entropy-based network anomaly detection: An experimental
comparison,” in 2017 8th International Conference on the Network of the
Future (NOF), 2017, pp. 132–134.
[10] G. Kathareios, A. Anghel, A. Mate, R. Clauberg, and M. Gusat,
“Catch It If You Can: Real-Time Network Anomaly Detection with Low False
Alarm Rates,” in 2017 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), 2017, pp. 924–929.
[11] F. Azzedin, H. Suwad, and Z. Alyafeai, “Countermeasureing Zero
Day Attacks: Asset-Based Approach,” in 2017 International Conference on
High Performance Computing Simulation (HPCS), 2017, pp. 854–857.
[12] C. Schon, N. Adams, and M. Evangelou, “Clustering and monitoring
edge behaviour in enterprise network traffic,” in 2017 IEEE International
Conference on Intelligence and Security Informatics (ISI), 2017, pp. 31–36.
[13] J. Ekberg, J. Ylinen, and P. Loula, “Network behaviour anomaly
detection using Holt-Winters algorithm,” in 2011 International Conference for
Internet Technology and Secured Transactions, 2011, pp. 627–631.
[14] K. Flanagan, E. Fallon, A. Awad, and P. Connolly, “Self-
configuring NetFlow anomaly detection using cluster density analysis,” in 2017
19th International Conference on Advanced Communication Technology
(ICACT), 2017, pp. 421–427.
[15] “Top Rated Vulnerability Management Software | Rapid7.”
[Online]. Available: https://www.rapid7.com/products/nexpose/. [Accessed:
24-Apr-2018].

��������	�
��

