
2D2N: A Dynamic Degenerative Neural Network for 
Classification of Images of Live Network Data 

 

Kieran Flanagan  
Software Research Institute 

Athlone Institute of Technology 
Athlone, Ireland 

k.flanagan@research.ait.ie 

Enda Fallon 
Software Research Institute 

Athlone Institute of Technology 
Athlone, Ireland 
efallone@ait.ie 

Paul Jacob 
Department of Electronics, Computer 

and Software 
Athlone Institute of Technology 

Athlone, Ireland 
pjacob@ait.ie

Abir Awad 
Faculty of Science and Technology 

Bournemouth University 
Dorset, UK 

aawad@bournemouth.ac.uk

Paul Connolly 
The NPD Group, Inc 

Athlone, Ireland 
paul.connolly@npd.com 

Abstract—The detection of new, novel attacks on 
organizational networks is a problem of ever-increasing relevance 
in today’s society. Research in the area is focused on the detection 
of “Zero-Day” and “Black Swan” events through the use of 
machine learning technologies. Where previous technologies 
needed a known example of malicious behavior to detect a similar 
event, recent advances in anomaly detection on network activity 
has shown promise of detecting novel attacks. In a real word 
environment however, novel behavior occurs relatively frequently 
as users utilize new software applications and new standards in 
networking. Changes such as these, while of notable importance to 
network security technicians, may not present themselves as an 
imminent threat to a network. This paper proposes a novel method 
for the detection and classification of changes in networking 
behavior. Through the use of a Dynamic Degenerative Neural 
Network (2D2N), changes in recognizable user activity are 
dynamically classified and stored for future reference. Through 
the use of a time-based entropy function, infrequent activity can 
be analyzed and given precedence over frequent activity. This aids 
in the classification of abnormal activity for fast, efficient 
assessment by the relevant persons in an organization. The 
proposed method enables the detection, classification and scoring 
of any and all user activity on a network.  Evaluation of the 
proposed method is based upon live data gathered from a large, 
multinational organization. 

Keywords— Convolutional Neural Network, Network Security, 
NetFlow Analysis, Image Change Detection. 

I. INTRODUCTION  
With increased publicity surrounding the possibility of 

network intrusions, large organizations are focused, now more 
than ever, in avoiding a seemingly unavoidable situation. 
Traditionally, security applications focused on preventing 
intrusion from external sources through monitoring for 
previously identified threats. However, with the increase in 
prominence of the “Insider Threat” and “Zero-Day” 
vulnerabilities being exploited, both research and industry have 
now focused on employing anomaly detection mechanisms. 

The aim of which is to detect previously un-encountered, 
possibly malicious activity, in real time. 

 Within a real-world environment, this can become 
challenging. In a global network, being utilized by both 
automated services and end points (a human element), creating 
a pattern of predictability can become challenging. While a 
single employee may start to use a new online application for 
streaming music, this change in behavior is not of concern to 
network security technicians in a strict sense. However, if this 
new application contains a possible vulnerability, the network 
security team within the organization would need to be aware 
of its use as soon as possible to ensure that all precautionary 
measures are taken in a swift manner.  

Anomalies, such as these, that do not pose an imminent 
threat to the network, are still beneficial from a security 
standpoint. Within any large organization, it is reasonable to 
assume that compartmentalization occurs within certain 
departments. Through the analysis of all network traffic, 
additions to the network, that are not malicious in any way, may 
be detected. This improves both the situational awareness of 
what is happening within the organization and increase the 
security posture of the company through the identification of 
possible misconfigurations that, again, are not malicious, but 
may impact other aspects, such as network performance. 

While the analysis of the behavior of individual assets and 
users on a network can be beneficial, the abstraction of the 
resultant metrics can also be advantageous. Having the ability 
to swiftly place context into a detected anomaly can lead to 
different determinations about the anomaly detected. For 
example, if a new user accesses a human resources database, 
who the new user is becomes extremely relevant.  

In this paper, we propose the use of a novel Dynamic 
Degenerative Neural Network (2D2N) to give the ability to 
detect new, possibly malicious activity on a network, and 
classify it dynamically with relation to time. This enables the 
quick assessment of deviations within previously classified 
network activity. While the classification of activity is 
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abstracted, key metrics in identifying the asset involved are 
maintained throughout, for example an IP address or a 
hostname. This, when presented in context of an anomaly, 
allows for the quick differentiation between new and abnormal 
activity. 

In this paper, a proposed architecture for the generation and 
analysis of images generated from network data is proposed. 
Though low-level analysis of granular key performance 
metrics, this research aims to detect small anomalies in NetFlow 
data that contribute to the clusters generated through typical 
clustering mechanisms used in unsupervised anomaly detection 
for network security [1]–[3]. Through image generation, 
through self-organizing map techniques, it is possible to detect 
malicious behavior within small scale networks [4]. However, 
within a large network, granular metrics on a minute to minute 
basis can have incredible volume. In the context of this research 
within the NPD Group, Inc, a given minute may produce a total 
of between 50000 and 160000 network flow samples. 
Producing a SOM image that successfully captures the range of 
traffic that can occur is incredibly difficult. Given the 
magnitude of the records produced in a given time.  

In the proposed architecture, a divide and conquer method is 
used to reduce the scope of the data to be captured within a self-
organizing map. This is done through the pre-processing of the 
NetFlow samples collected by a clustering mechanism. By 
utilizing a novel convolutional neural network, it is possible to 
abstract the granular detection into a single class representation 
of a divergence from normality. While this divergence from 
normality may not be malicious in nature, results demonstrate 
that the detection of non-malicious deviations can provide 
insight into the behavior of applications used on the network, 
increasing the situational awareness and security posture of the 
network.    

In Section II, the related work is discussed. Section III 
introduces the 2D2N architecture and the context in which this 
research was conducted in. Section IV describes the evaluation 
of the proposed neural network in a real-world environment and 
the results therein. Finally, Section V discusses the conclusions 
of the live experiment and the results gained from it.  

II. RELATED WORK 
Network anomaly detection has typically consists of 

comparative analysis of known threats against current activity 
on a network [5], [6]. However, while highly accurate and 
effective, it is possible for such mechanisms to fail in the case 
of a “Black Swan” or “Zero-Day” attack. In such instances, it is 
not possible to have a previous, known example that is required 
by signature-based mechanisms. It is this limitation that has led 
to the rise in anomaly-based detection mechanisms being used 
for network intrusion detection.  

Anomaly detection mechanisms, in general, work off of the 
principle of detecting new, never before seen activity [7]. More 
recently, methods in monitoring deviations from normality, as 
well as new activity, have been gathering momentum [8]–[10]. 
As a side-effect of such methods, false positives are expected 
when using such mechanisms, particularly when used within a 
live environment. While a deviation from normality might not 

be indicative of malicious behavior, it still may be of concern to 
network security personnel within a company however. For 
example, if a new asset appears on the network and generates 
some quite normal HTTPS traffic, the network activity cannot 
be considered as malicious. However, the addition of a new 
asset on the network is significant [11].  

To capture this dogma, behavioral analysis of assets on a 
network was a natural evolution of standard network anomaly 
detection. In these instances, behavioral patterns describing the 
assets on the network are generated in order to detect deviations 
from such traffic [12], [13]. On a live network however, 
behavior patterns change rapidly, as new software is deployed 
and new employees are introduced. The balancing of these, 
technically false-positive results, with the increase in situational 
awareness they provide, is non-trivial. In a real-world situation, 
network-based assets, employees and software are continually 
evolving and ever changing. Generating and relying on 
behavioral pattern analysis for assets or users can become 
extremely challenging [8]. This results in a quid pro quo 
situation.  

Through the generalization of granular predictive analytics, 
such as a per user metrics, false positives are generally reduced 
at the cost of context regarding specific users being lost. For 
example, it is common that malware predicative mechanisms do 
not consider an I.P address or a hostname when classifying 
network traffic. The representation of this data is also vital to 
the understanding of it [9]. This is a non-trivial task, as the high 
level of granularity needed for effective detection of possible 
misconfigurations and malware acting on the network. To easily 
represent possibly thousands of records, effective “at a glance” 
analysis is vital to decide if an immediate response is required.  

III. PROPOSED ARCHITECTURE 
In this section, a proposed architecture for the generation 

and analysis of images generated from network data is 
proposed. This multi-stage process is designed to enable the 
detection of abnormal network activity. Figure 1 outlines the 
three stages used in this experiment. The objective of each stage 
is to process the previous stages output, while abstracting the 
granular information gained from NetFlow data gathered from 
within the NPD Group’s network. This abstraction is designed 
to ensure that quick, at-a-glance analysis can be conducted on 
the detected abnormalities to determine if any action is needed.  

The proposed architecture is divided into three distinct 
layers, each processing the output of the previous layer. The 
first layer deals with clustering the raw NetFlow data gathered 
from within NPD. The second layer focuses on the generation 
of images from data pre-clustered within layer one. The aim of 
this step is to, after training, map the contributing NetFlow’s of 
a cluster to an organized image. And finally, the third layer 
consists of 2D2N, a novel convolutional neural network 
designed to detect changes in the images generated from the  

��������	�
�������������������������������������������������������� 



 
Figure 1: Testing architecture. 

previous step. If an anomaly is detected, a new class output is 
created, and new convolutional layers are added referencing this 
change in distribution or consistency. 

A. Clustering 
For the experiment, MCODT [14], Micro-Clustering Outlier 
Detection in Time Series, was used. This algorithm was used to 
cluster relative NetFlow together. This enabled the quick 
correlation of similar NetFlow together into a single cluster. In 
this experiment, NetFlow data over the course of six weeks was 
analyzed. Over 6 billion NetFlow records were analyzed by the 
clustering mechanism. This data contained all network records 
for all devices on the NPD global network. All data was 
unlabeled, and no previous assertions were made. 

TABLE I: Variables used for Clustering Solutions 
Variable Description 
Source IP The source IP address of the network 

communication. Represented as the integer value for 
clustering. 

Destination IP The source IP addressed of the network 
communication. Represented as the integer value for 
clustering. 

Source Port The source port of the communication. 
Destination Port The destination Port of the communication. 
Source Bytes The number of bytes sent from the source to the 

destination. 
Destination Bytes The number of bytes sent from the destination to the 

source in response. 
Protocol ID The protocol used for the communication. 
Timestamp The time at which the NetFlow was detected. 

 
For analysis, Table 2 outlines the NetFlow attributes used 

for analysis within the clustering system. While source and 
destination IP of network traffic was monitored, only those 
pertaining to internal devices were used for the distance-based 
calculations within the system. Timestamps were also gathered 
for informative use only, and not used during the distance 
based calculations. Processing steps taken during the variable 
normalization process are described below.  

1) Axial Scaling. 
Typically, variables used during clustering are normalized 

within the scale of 0 to 1. However, processing steps were taken 
during this normalization process in this instance to ensure that 
the relative metrics were of importance. For example, when 
processing the port values within the NetFlow, the first 1024 
registered ports are more valuable than dynamic ports in terms 
of information gain. Generally, dynamic ports provide little to 
no information gain on the type of activity being conducted, 
with a few notable exceptions. Port 80 specifically describes 
http traffic for example, while port 50000 does not describe any 
traffic type in particular. To represent this within the clustering 
mechanism, the port variables were not scaled from 0 to 1 in a 
linear fashion. The first 1024 ports were scaled between 0 and 
0.5, ports 1025 – 12000 were scaled between 0.51 to 0.9, and 
ports 12000 plus were scaled between 0.91 to 1.  

These scaling values were used to ensure that any port 
between 0 and 1024 would carry enough distance within the 
clustering configurations in order to “break out”, ensuring that 
a unique cluster would be created between adjacent values, such 
as 80 and 81, where the difference of 1 interval carries a much 
greater meaning than that between 50000 and 50001, where no 
additional information can be gained.  

2) IP Address Processing 
While performing distance-based calculations against all IP 

addresses would be invaluable, to perform the clustering task in 
a real time application, this research limited specific analysis of 
IP address to those internal to NPD. These IP addresses were 
similarly scaled to the ports mentioned in section 1. The aim is 
to again increase the distance from each adjacent IP address to 
ensure that each internal IP would generate a new cluster on its 
own merits. 

All external IP addresses (those not on the 10.0.0.0 network 
in this case) were limited to the space between 0.9 and 1 of 
normalized space. This compression of feature space ensures 
that a unique external IP address will not generate a new cluster 
if the only change in activity is the external IP address involved. 
This performance saving measure does however come with 
degradations in the monitoring capability of the clustering 
algorithm, as all activity from internal devices to external 
services through port 80 are now considered equal.  

B. Image Generation  
As described in [14],deviations in monitored clusters may 

be indicative of an anomaly occurring. For example, an increase 
in login attempts made between two devices may be indicative 
of a possible attack. While the clustering mechanism can detect 
new assets attempting to login though the generation of a new 
cluster, a device that commonly logs in will create no new 
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cluster and will therefore be considered as normal behavior 
regardless of how many attempts are made. For this paper, we 
propose that the generation of images based upon the NetFlow 
previously classified by the clustering mechanism. 

The aim is to represent the clusters density (number of 
NetFlow instances classified) and the consistency (the attributes 
of the contributing NetFlow to a cluster) of each cluster within 
time intervals used during configuration. For example, a 
Windows end-point may send between 1 and 5 DNS requests to 
a server in a 5-minute interval. If the user changes the DNS 
server it uses for lookups, the clustering mechanism will detect 
this and create a new cluster. However, if the DNS request rate 
increases dramatically, it will not. The SOM generated image 
will change to reflect this increase in activity. It is this change 
that this research aims to detect in the final step of the proposed 
framework.  

This process is inherently costly in terms of performance 
impact. For a single image to be generated, for a particular 
cluster, NetFlow inputs on a minute to minute biases range from 
1 input to over 7000. This image generation performance 
problem is discussed further in Section IV, B. 

C. Image Classification 
For this paper, a novel convolutional neural network is 

proposed. The aim of this network, which is the final step of 
analysis, is to detect and classify changes within individual 
clusters. With a SOM image as input, 2D2N is streamlined for 
improved performance. For example, convolutional layers may 
be streamlined as to avoid searching the entire image for a 
match. A single NetFlow will always be represented in the same 
position on the image; therefore, a search through the image is 
not necessary. Figure 2 outlines 2D2N. The aim of this step is 
to: 

1. Detect a change in a clusters composition. 
2. Classify this change dynamically as a numerical state. 
3. Rate this numerical state with respect to time, enabling 

the measurement of how common a deviation in 
activity within a cluster occurs. 

This dynamic classification of the cluster is key to the 
approach taken in this paper. The aim is to generically classify 
shifts in cluster composition with relation to time. For example, 
DNS systems use port 53 as a destination port when indexing 
assets on a network. However, the source port for that 
communications can be anywhere between 1041 and 65535, 
observed during testing. So, while areas of the image may shift 
in density (color) in this regard, the destination port will always 
remain 53. If the destination port is not 53 however, then, this 
shift will be treated differently (assigned a different numerical 
class) than a shift in source port. 

An input image, , consisting of , the rgb 
values of a pixel within the image, obtain the pixel wise 
distance,  between the image and the 
relevant convolutional layer of the 2D2N network ( ) gained 
from training.  If the total pixel wise distance from the test 
image and the convolutional layer is great enough to generate a 
new output class, the layers with the greatest distance are stored 

and added to the convolutional pool. This enables the future 
detection of similar instances. 

By using an entropy function correlated with the class output 
of 2D2N, the result is occurred then put into context of the 
commonality of the incident. For example, a change in cluster 
composition that happens relatively frequently, the resulting 
output will reflect this through a lower anomaly score.  
However, if a new shift is detected, a larger anomaly score is 
given. Section V demonstrates this on a live network.  

 
Figure 2: Dynamic Degenerative Neural Network 

IV. FRAMEWORK CONFIGURATION AND TRAINING 
This section describes the configuration of all the steps 

outlined in Section III. For testing, a total of 6 weeks’ worth of 
live data, gathered from within the NPD Groups Inc. network, 
was processed. In total, over six billion NetFlow samples were 
analyzed, covering 17797 unique hosts detected on the network 
over that time. This resulted in a total of 2018094 clusters 
generated by the clustering algorithm using the parameters and 
methodology set out in this section.  

 
Figure 3: Training Workflow 

A. Clustering Parameters 
Table 1 outlines the parameters used for this step of NetFlow 

processing. Point anomalies and clusters generated form the 
clustering process were stored. Initial training of the clustering 
mechanism was undertaken over a 2-week period (Table II). 
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TABLE II Clustering Configurations 
Variable Value 
Minimum Density Required 2 
Maximum range for Sample .0025 
Size of Window 60s 

As outlined in Section III, an axial scaling technique was 
applied to ensure specific attributes would ensure that a new 
cluster would be generated when observed.  

1) IP Addresses 
If the IP address is internal (on the 10.0.0.0/8 network in this 

case) the IP was converted from its IPv4 representation to its 
integer format. Then it was scaled between 0 and 9 instead of 0 
and 1.  

2) Ports 
For analysis, ports were not normalized in a linear fashion. 

If a port, , table III outlines the scales used for various port 
values.  

Table III: Axial Scaling of Port Values 
Port Value  Scaling 

  
  

  
These values were chosen due to the relative information 

gain they provide about a specific application causing the 
network activity.  

B. Image Generation Perameters 
Image generation for the reference SOM images outline in 

Section III occurred after the first 2 weeks of training on the 
clustering mechanism. This was done to find established 
clusters within the network that represent activity that is 
relatively common on the network. While the clustering layer 
of the proposed architecture is conducted in real time on the 
network, the self-organizing maps were trained in an offline 
capacity. Training was established immediately after the 
clusters were generated and continued until a stopping measure 
(Table IV) was successfully reached. Following this training, all 
NetFlow samples that were classified by the targeted cluster 
were “binned” into the SOM, ensuring that all traffic was 
successfully represented in the image.  A total of 500 maps were 
trained, selected at random out of the 2 million clusters 
generated over the course of testing. Details of the maps are 
given in Section V. 

TABLE IV: SOM Image Training Parameters 
Variable Value 
Initial Weights Random Values between variable limits. 
Learning Rate Windrow-Hoff Method  

Iterations 2880 
Distance Measure Euclidean  
Stopping Measure Learning Rate < 0.0001 

Image Size 50*50 Pixels 

C. 2D2N Configuration 
For the training of 2D2N, the SOM was used to organize the 

data from the middle 2-week section of out 6-week testing 
period (Table II). NetFlow Data contained within the previously 
identified clusters were used as input into the SOM generated 
for that specific cluster. Using this, 2D2N was initially trained 
as a binary neural network, where all input images were equal 

to the same class. This step was taken to establish the weights 
of the initial convolutional layer so that all images would equal 
the first output class of 2D2N, which will be taken as “normal 
activity”.  

 
TABLE V: 2D2N Configuration 

Variable Value 
Input Layer 5*5*4 
Hidden Layer 200 
Entropy 0.0025 
Output Layers 2 during training, 

 during classification testing. 
Following this, all activity for the remaining 2 week period 

was classified autonomously by the 2D2N network. Any and all 
deviations in the SOM detected that were above the pixel-wise 
distance observed during training were classified as a new 
output. Section V demonstrates the results of this test. 
Following classification, the output class weighting was then 
modified through the entropy function. This demonstrates that 
an activity is either new or repeating consistently. For the 
purposes of testing, focus was placed on the clusters that 
presented the maximum values of deviation from the training 
period in Section V. 

V. EXPERIMENTAL RESULTS 
Through the 6 week testing period, over 6 billion individual 

NetFlow samples were analyzed. In total, over 2021786 clusters 
were generated, and 2134098 point anomalies detected.  

A. Clustering 
1) Point Anomalies 
Point anomalies, or NetFlow samples that do not meet the 

minimum density requirements, were monitored over the course 
of testing. Figure 4 outlines the total point anomalies found 
within a 1-minute window over time. Initially, as expected, 
point anomalies were expectedly high during initial training. 
However, after week 3, it began to normalize.  

Both durations of high point anomalies, outlined above, 
pertain to two particular assets on the network. They were not 
malicious, however were notable. The two assets in question are 
responsible for scanning the internal network to detect 
vulnerabilities located on the assets within the company [15]. 
When a scan is scheduled, the asset scans all other assets on the 
targeted network for vulnerabilities. The two areas noted above 
are responsible for the scanning of two independent networks. 
As an anomaly, they fall into the category of not malicious, but 
of note. Spikes in point anomalies not attributable to these two 
assets are discussed in the next section. 

2) Clusters Generated 
Spikes generated from point anomalies are commonly 
associated with spikes in the number of clusters generated 
during the associated time interval. Figure 5 outlines the rise in 
number of clusters generated over the course of the 6-week 
testing period. Sudden rises in the number of clusters are also 
contributable to the spikes seen in Figure 4. These sudden rises, 
again, are correlated with the activity of the two assets 
responsible for conducting vulnerability scanning within NPD. 
It is worth noting, of the 2021786 clusters generated through 
testing, 1205948 clusters are attributable to these two assets. 
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This is expected, as when scanning an asset, all ports are 
scanned on the target asset. When conducted on a regional 
network, where hundreds of assets, including end-points and 
servers, are located, large amounts of clusters are expected to 
be generated.  

 
Figure 4: Outlier Count over Testing Period 

 
Figure 5: Count of Clusters Generated During Testing 

Of note however, are the spikes in point anomalies and 
cluster generation that are not attributable to these assets. Table 
VI outlines such cases. In all cases, no previous assumptions 
were known about the data analyzed.  

Clusters A, B and C referenced in Table VI pertain to the 
same incident. In this case, a windows device located in one 
remote site started communicating with three other windows-
based assets located in a different remote site for the first time. 
From a security perspective, this is typical of malicious activity 
propagating through a network. In this case however, after 
investigation, it was established that the windows machine in 
question was requesting an update to the McAfee antivirus 
software located on the device. Up until this point, the device 
was updated from a known server that pushes McAfee updates 
to all assets on a local network. However, in this case, McAfee 
attempted to update through the use of a new peer-to-peer 
update service that was enabled on the McAfee license. While 
not malicious activity, this detection was of importance as it 
immediately made aware the fact that this feature was now in 
use in some areas of the organization.  

Sample E pertained to an asset performing new http activity 
to external IP addresses. While this kind of activity is extremely 

common in any organization, what generated this cluster was 
the source of the communications, Source B. Source B was a 
server within the organization that, until detected, never 
performed http activity. In this instance, it was discovered that, 
during maintenance, a technician briefly opened an internet 
browser whose homepage was MSN. No other activity 
occurred, and the browser was closed immediately after 
opening. Detections such as these, while again, not malicious, 
provide great insight into activity on the network. Internet 
access on the server was blocked to prevent further incidents.  

Table VI: Sample Clusters Generated Throughout Testing 
ID Source Destination Source  

Port 
Dest.  
Port 

Protocol 

A Source 
A 

Destination A Dynamic 8081 TCP 

B Source 
A 

Destination B Dynamic 8081 TCP 

C Source 
A 

Destination C Dynamic 8081 TCP 

D Source 
B 

Destination D Dynamic Dynamic TCP 

E Source 
C 

External 
Destination A 

Dynamic 80 TCP 

F Source 
D 

External 
Destination B 

Dynamic 53 TCP 

 
Within Sample F, a source connected to a wireless network 

within NPD changed his DNS settings on the device. This 
bypassed the internal DNS used within the company. Such 
actions are against security policy, and the owner was made 
aware as soon as this cluster was detected. 

B. 2D2N Classificaion 
Sample D was a cluster created during the first hour of 

training within the clustering mechanism. It pertained to a 
windows-based asset connecting to a domain server, using 
Kerberos based authentication. This type of activity is 
incredibly common among organizational assets, as Kerberos 
authentication attempts may be made many times per minute. 
No discernable deviations in activity were detected through 
either the clustering mechanism, through point anomaly 
detection or cluster generation, during testing. 

However, during the final two weeks of testing, 2D2N 
classification of the cluster changed. Table VII describes the 
classification of the cluster over a 15 minute interval where the 
class of the image changes. The classification changed from a 
class 1, which is the class that the original SOM image was 
trained on, to a class 2, a never before seen change in cluster 
composition. Upon investigation, it was discovered that Source 
B was the source of a relay attack to the authentication server 
over a fifteen-minute period. This was corroborated through the 
detection of a dictionary based attack from rules-based systems 
currently in place within NPD. However, what is interesting is 
that during the attack, no noticeable increase in Kerberos 
activity (commonly associated with port 88) took place. The 
rules based system detected this incident though log process, 
which is outside the scope of this investigation. 
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Figure 7: Both images classified as normal for Erratic Cluster 

Table VII: 2D2N Classification of Cluster over Multiple Time Intervals 
Output 
Variable 

Intervals (I minute) 

Output 
Class 

1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 

Output 
Strength 

0.91 0.93 0.73 0.61 0.76 0.87 0.96 0.95 0.98 0.96 0.92 0.91 0.84 0.76 0.79 0.91 0.92 .0.94 

 

 
Figure 6: Class1 image (left) vs class 2 image detected (right)    

 
The change in this image is a result of abnormal traffic over 

port 49159. As noted in section IV, dynamic ports contain 
relatively little information about the activity taking place. In 
this case, the shift from relatively little dynamic port activity 
between two assets to a high amount was indicative of an attack.  
Figure 6 shows the images of each class for the cluster involved. 
A clear difference can be seen. Where as in figure 7, a similar 
change had taken place in another cluster over the same period 
of time. However, no new class was created, as the variation in 
this cluster was expected.  

VI. CONCLUSIONS 
In this paper, we proposed the use of 2D2N, a novel 

convolutional neural network designed to detect divergences in 
normal patterns of network activity. Through the generation of 
images on pre-clustered data, normality of intra-cluster activity 
can be processed and represented as an image. 2D2N has proven 
capable of detecting deviations in this granular data that was 
indicative of an attack. 

A big repercussion of using such a system is performance. 
While the clustering mechanism can be used in real time, 
processing over 60000 samples in under 20 seconds, the image 
generation portion is computationally expensive, particularly 
when considering the amount of clustered needed to be mapped. 
While this was done in an offline manner for the purpose of this 
test, results have proven that the optimization of image 
generation techniques, possibly though the use of specialized 
hardware, it may become more efficient.  
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