Structure Reports

Online
ISSN 1600-5368
H. S. Yathirajan, ${ }^{\text {a }}$ B. Narayana, ${ }^{\text {b }}$
B. V. Ashalatha, ${ }^{\text {b }}$ B. K. Sarojini ${ }^{\text {c }}$ and Michael Bolte ${ }^{d_{*}}$
${ }^{\text {a }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ${ }^{\text {b }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, India, ${ }^{\text {c }}$ Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and ${ }^{\mathbf{d}}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.141$
Data-to-parameter ratio $=18.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(2E)-1-(3-Bromo-2-thienyl)-3-(4-methoxy-2,3,6-trimethylphenyl)prop-2-en-1-one

In the title molecule, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \mathrm{~S}$, the central $\mathrm{C}=\mathrm{C}$ double bond is trans configured and geometric parameters are in the normal ranges.

Comment

Chalcones and the corresponding heterocyclic analogues are valuable intermediates in organic synthesis (Dhar, 1981) and show numerous biological effects (Opletalova \& Sedivy, 1999; Dimmock et al., 1999). In addition, with appropriate subsitutuents, chalcones are a class of non-linear optical (NLO) materials (Fichou et al.,1988; Butcher et al., 2006; Harrison, Yathirajan, Sarojini et al., 2006). Among several organic compounds reported to have NLO properties, chalcone derivatives are important materials because of their excellent blue-light transmittance and good crystallization ability. They provide a configuration necessary to show NLO properties, with two planar rings connected through a conjugated double bond (Goto et al., 1991; Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002). Thiophene analogues of antiviral chalcones have been studied (Binder et al., 1985) and the crystal structures of 3-hydroxy-1,3-bis(2-thienyl)prop-2-en-1-one (Baxter et al., 1990) and 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1one (Ng et al., 2006) have been reported. We have recently reported the crystal structures of (2E)-1-(3-bromo-2-thienyl)-3-(4,5-dimethoxy-2-nitrophenyl)prop-2-en-1-one (Yathirajan et al., 2006) and (2E)-1-(3-bromo-2-thienyl)-3-(2,5-dimethoxyphenyl)prop-2-en-1-one (Yathirajan et al., $2006 a$). The crystal structure of (2E)-1-(3-bromo-2-thienyl)-3-(4-methoxyphenyl)prop-2-en-1-one has been reported by Harrison, Yathirajan, Ashalatha et al. (2006). In continuation of our work on the crystal structures of chalcones (Yathirajan et al., 2006b, c), the present paper reports the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Allen et al., 1987). The central double bond is trans configured. The carbonyl group is almost coplanar with the thienyl ring, but

Received 2 October 2006 Accepted 2 October 2006

Figure 1
The molecular structure of (I), with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
the mean plane composed of the double bond and atoms attached to it is slightly twisted out of the thienyl ring plane (Table 1). The angle between the ring planes is 51.11 (11) ${ }^{\circ}$.

Experimental

2-Acetyl-3-bromothiophene ($10 \mathrm{~g}, 0.048 \mathrm{~mol}$) in methanol (50 ml) was mixed with 4-methoxy-2,3,6-trimethylbenzaldehyde (8.6 g , 0.048 mol) and the mixture was treated with 30% potassium hydroxide solution $(10 \mathrm{ml})$ at 278 K . The reaction mixture was then brought to room temperature and stirred for 4 h . The solid which precipitated was filtered off and washed with water, dried and recrystallized from acetone (yield 81%; m.p. 402-404 K). Analysis for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \mathrm{~S}$, found (calculated): C:55.82 (55.90\%), H: 4.58 (4.69\%).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \mathrm{~S}$

$M_{r}=365.28$
Monoclinic, $P 2_{1} / c$
$a=8.1973$ (7) \AA
$b=12.3023$ (11) \AA
$c=16.0999$ (13) \AA
$\beta=103.953$ (6) ${ }^{\circ}$
$V=1575.7$ (2) \AA^{3}

Data collection

> Stoe IPDS II two-circle diffractometer
> ω scans
> Absorption correction: multi-scan
> $\quad[M U L A B S$ (Spek, 2003; Blessing,
> $1995)]$
> $T_{\min }=0.474, T_{\max }=0.548$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.540 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.74 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.29 \times 0.26 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

> 11689 measured reflections 3630 independent reflections 3007 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.093$
> $\theta_{\max }=27.6^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.071 P)^{2}\right. \\
& +1.4331 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.80 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-1.24 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0095 \text { (16) }
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.141$
$S=1.05$
3630 reflections
195 parameters
H -atom parameters constrained

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$-3.7(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-161.8(3)$

H atoms were found in a difference map but they were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, or $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. The methyl groups were allowed to rotate but not to tip. The deepest hole is located $0.80 \AA$ from atom Br 1 .

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

BKS thanks AICTE, Government of India, New Delhi, for financial assistance under the Career Award for Young Teachers (CAYT) scheme. BVA thanks Mangalore University for permission to carry out this research work.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Baxter, L. A. M., Blake, A. J., Heath, G. A. \& Stephenson, T. A. (1990). Acta Cryst. C46, 508-510.
Binder, D., Neo, C. R., Holzer, W. \& Resen, W. B. (1985). Arch. Pharm. (Weinheim), 318, 48-59.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. \& Narayana, B. (2006). Acta Cryst. E62, o1659-o1661.

Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: Wiley-Interscience.
Dimmock, J. R., Elias, D. W., Beazely, M. A. \& Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.
Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. \& Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429-L430.

Goto, Y., Hayashi, A., Kimura, Y. \& Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.
Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Bindya, S. \& Narayana, B. (2006). Acta Cryst. E62, o4164-o4165.

Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. \& Indira, J. (2006). Acta Cryst. E62, o1647-o1649.

Indira, J., Karat, P. P. \& Sarojini, B. K. (2002). J. Cryst. Growth, 242, $209-214$.
Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3200-o3202.
Opletalova, V. \& Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

organic papers

Tam, W., Guerin, B., Calabrese, J. C. \& Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93-96
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. \& Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.
Yathirajan, H. S., Sarojini, B. K., Narayana, B., Ashalatha, B. V. \& Bolte, M. (2006). Acta Cryst. E62, o3964-o3965.

Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. \& Bolte, M. (2006a). Acta Cryst. E62, o4048-04049.
Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. \& Bolte, M. (2006b) Acta Cryst. E62, o3629-o3630.
Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. \& Bolte, M. (2006c). Acta Cryst. E62, o3631-o3632.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

