
2Gbit/s Hardware Realizations of RIJNDAEL
and SERPENT: A Comparative Analysis

A.K. Lutz1, J. Treichler1, F.K. Gürkaynak2, H. Kaeslin3,
G. Basler1, A. Erni1, S. Reichmuth1, P. Rommens1,

S. Oetiker2, and W. Fichtner2

1 Department of Information Technology and Electrical Engineering
ETH Zürich, CH-8092 Zürich Switzerland

{alutz, jtreichl, gbasler, aerni, sreichmu, prommens}@ee.ethz.ch
2 Integrated Systems Laboratory

Department of Information Technology and Electrical Engineering
ETH Zürich, CH-8092 Zürich Switzerland

{kgf,oes,fw}@iis.ee.ethz.ch
3 Microelectronics Design Center

ETH Zürich, CH-8092 Zürich Switzerland
kaeslin@ee.ethz.ch

Abstract. We present and evaluate efficient VLSI implementations of
both Rijndael and Serpent. The two cipher algorithms have been im-
plemented by two comparable design teams within the same timeframe
using the same fabrication process and EDA tools. We are thus in a po-
sition to compare to what degree the Rijndael and Serpent ciphers are
suitable for dedicated hardware architectures. Both ASICs support en-
cryption as well as decryption in ECB mode and include on-chip subkey
generation. The two designs have been fabricated in a 0.6µm 3LM CMOS
technology. Measurement results verified an encryption and decryption
throughput of 2.26Gbit/s and 1.96Gbit/s for Rijndael and Serpent re-
spectively. Circuit complexity is in the order of 300k transistors in either
case.

1 Introduction

While efficient hardware implementation was one of the evaluation criteria [3]
of the Advanced Encryption Standard (AES), relatively few hardware designs
with FPGAs have been presented [7,9,10] and even less so as ASICs [4,8]. There
have been very few reports on hardware implementations [6] even after Rijndael
was declared the AES standard. A detailed summary of the above mentioned
implementations can be found in [11].

While FPGA based crypto-system solutions offer significant performance,
especially for System-on-a-Chip (SoC) designs and large scale productions, cus-
tomized ASIC modules of crypto-systems are indispensable. Our study focuses
on actual ASIC implementations of the AES cipher Rijndael and the runner-up
algorithm Serpent on silicon.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 144–158, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2Gbit/s Hardware Realizations of RIJNDAEL and SERPENT 145

The hardware evaluation of the AES candidates by Weeks [4] and Ichikawa
[8] are based on synthesis results only and are very general in nature. Rather
than finding an optimum implementation for each of the implemeted algorithms,
they concentrate on comparing all algorithms using a similar architectural ap-
proach. Area and speed estimations based on synthesis results may be used to
compare different architectural choices, but not all architectures obtained by
logic synthesis will lend themselves to physical design with the same efficiency.

In our study we have set strict limits on the maximum area, usable clock fre-
quency range, number of parallel inputs and outputs and design time and formed
two separate design teams with identical ASIC design experience to optimize the
algorithms for maximum throughput. In section 2 we present an overview of the
architectural options and define the solution space. Details on the hardware op-
timizations for the Rijndael cipher are given in section 3 while those of Serpent
follow in section 4. Both circuits are then compared to each other in section 5
before section 6 presents our conclusions.

2 Common Design Issues

2.1 The Rijndael and Serpent Algorithms

Figure 1 shows the main algorithmic structure of Rijndael and Serpent for en-
crypting one block of data with 128bit keys. The names of the operations corre-
spond to those described in [1,2]. Both algorithms can be seen as a succession of
several transformation rounds which all data blocks have to undergo. Note that
the initial and final rounds may be, depending on the algorithm, slightly modi-
fied versions of the regular transformation rounds. Each round uses at least one
subkey derived from the user key. While Rijndael uses the same transformation
round throughout, each Serpent round makes use of one out of eight different
S-boxes.

Initial
Transformation

Final
Transformation

Round
Transformation

Rijndael Serpent

AddRoundKey

SubBytes
ShiftRows
MixColumns
AddRoundKey

SubBytes
ShiftRows
AddRoundKey

Key Mixing
S-Boxes
Linear Transformation

Key Mixing
S-Boxes
Key Mixing

9 x 31 x

Fig. 1. Algorithmic operations of Rijndael and Serpent



146 A.K. Lutz et al.

2.2 A Fair Comparison

For either of the two algorithms, a team of three was assigned the task to develop
a VLSI circuit with the best throughput they could obtain from a die size of
50mm2 in a 0.6µm 3LM CMOS technology. While such a hard bound on the
circuit area limited the design space for both designs, it is typical for real-world
applications. A large chip not only costs more to manufacture, but also suffers
from a lower yield and higher parasitic interconnect capacitances.

Since a high throughput rate was desired, the work concentrated on designing
a 128bit core that supports a simple ECB mode. It can be shown that the general
architecture developed for the ECB mode (or simple derivations thereof) will
lend itself to optimal implementations supporting other modes of operations
such as CFB, CBC, OFB and CTR.

Both chips had to be designed to share the same pinout in a 144pin PGA
package to ease testing and system integration. Also note that the number and
rate of off-chip connections may account for a significant portion of the power
budget of the design. Both designs feature a cryptographic core that operates
on 128bit parallel data words internally. The external interface of both chips
consists of three separate 32bit I/O channels for plaintext, ciphertext and the
user key respectively. A separate I/O controller is used to schedule the data
transfers from the 32bit external interface to the 128bit internal core.

Both design teams were given 14 weeks to complete the project. All team
members were graduate students in EE and, hence, had very similar backgrounds
and levels of expertise in IC design. Also, the EDA tools, cell libraries, computing
resources and fabrication processes made available to them were the same. Inci-
dentally, front-end design was carried out with tools by ModelSim and Synopsys
while SiliconEnsemble by Cadence Design Systems was used for the back-end de-
sign. Cell library and chip fabrication on multi-project wafers were provided by
austriamicrosystems (AMS). This arrangement has made it possible to compare
the hardware realizations of the two cipher algorithms on a level ground.

2.3 Overall Architectural Choices

VLSI designers always strive to maximize hardware efficiency or, which is the
same, to minimize the area-time-product (AT ). Figure 2 illustrates the most
prominent architectural transforms for arithmetic/logic hardware along with
their impact on chip area and throughput.

Fairly small circuits are obtained from iteratively decomposing the compu-
tation such as to make it run on a single hardware round. Each data block must
then be recycled through that datapath as many times as the cipher algorithm
has transformation rounds. Extra control logic is required if one round compu-
tationally differs from the next such as in the occurrence of the Serpent cipher.
Conversely, fast but large architectures result from mapping all transformation
rounds into hardware directly followed by a generous addition of pipeline regis-
ters.



2Gbit/s Hardware Realizations of RIJNDAEL and SERPENT 147

ideal effect

actual
effect

pipelining

replication

time sharingdecom-
position

iterative

constantATtowards
throughput

hardware
towards

efficiency

hardware
towards

economy

area A

time per data item
T

Fig. 2. Architectural transforms along with their impact (after [5]).

Many more architectures are situated somewhere in between these extremes.
Their construction asks for a carefully balanced combination of pipelining, iter-
ative decomposition, and possibly also replication of hardware units.

Key choices include:
• the number of rounds to instantiate in hardware,
• the degree of pipelining, that is number of registers per round,
• the organization of the datapath hardware, e.g. deciding on the

optimum locations of [de]muxes and of pipeline registers, and
• the cycle-by-cycle schedule for the entire computation run.
The result of a simple analysis comparing the ECB throughput and datapath

area for different architectural choices of both Serpent and Rijndael using the
target 0.6µm technology can be seen in fig.3. The data for the graph has been
compiled by synthesizing a single hardware round for each algorithm and extrap-
olating the performance based on the performance of this round. Note that this
simplistic analysis only contains the hardware required for the rounds. Subkey
generation and/or storage units, controllers and I/O circuitry are not included in
this calculation. Additional effects like increased interconnection delay for larger
designs, and clock distribution problems related to high clock rates have also not
been considered. While the architectures selected for implementation are shown
to have datapath areas of only 12mm2 both implementations ended up being
50mm2 in total, a fourfold increase.

In fig.3, a 14-round Rijndael cipher capable of running with a 256bit user
key is considered. This architecture can be realized by instantiating 1, 2, 7 or
all 14 rounds in hardware. Similarly for Serpent, realizations instantiating 1, 2,
4, 8, 16 or all 32 rounds have been considered. The lower part of the graph has
been magnified in the inset. The inset roughly covers the solution space that was
actually available in the context of our ASIC design project.



148 A.K. Lutz et al.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t [

G
bi

t/s
]

Datapath Area [sqmm]

Datapath Area vs Throughput Estimates

Rijndael Serpent

14/28

14/14

14/7

14/2

14/1

32/32

32/16

32/17/1

7/7

7/14

16/16

16/8

16/1

8/8

8/4

8/2
8/1

1/1

2/2

4/4

1/2

1/1
2/1

4/1

0

0.5

1

1.5

2

6 8 10 12

2/2
4/2

2/1

2/4

Hardware Rounds / Pipeline RegistersHardware Rounds / Pipeline Registers
Implemented ArchitectureImplemented Architecture

Fig. 3. Architectural choices for Rijndael and Serpent, throughput and datapath area
estimations as a function of instantiated hardware rounds and pipeline stages for Ri-
jndael and Serpent. The throughput estimations are for 128bit keys.

Subkey generation is another issue as both algorithms require several subkeys
that must be derived from the user key. These subkeys are then applied to a
data block while it moves through the individual rounds. One has the choice
to compute the subkeys on the fly for each round or to generate all of them in
advance before any data processing takes place, storing them in registers until
needed. Depending on the number of subkeys, the chip area to be set aside for
storage may be substantial.

The decryption operation places additional constraints on hardware. In its
most basic form, both the ordering and function of the rounds must be reversed,
so that the last encryption round is undone first during decryption. For a realiza-
tion that does not store all the subkeys, the last subkey must thus be computed
prior to the decryption operation.

Some cipher algorithms use reversible round structures where the same hard-
ware can be used for encryption and decryption. As opposed to this, both Ri-
jndael and Serpent rely on certain computational operations within their trans-
formation rounds that require separate datapath elements for encryption and
decryption, thereby increasing hardware complexity.



2Gbit/s Hardware Realizations of RIJNDAEL and SERPENT 149

3 The Rijndael Implementation

3.1 Sharing Look-Up Tables between En- and Decryption

As illustrated by fig.1, each encryption round consists of four consecutive opera-
tions named SubBytes, ShiftRows, MixColumns and AddRoundKey. ShiftRows
is a fixed permutation of the byte order and needs no extra circuitry. MixColumns
can be implemented as a sequence of a few Xor gates while AddRoundKey is
a simple Xor operation on all 128bits. The only operation that is onerous to
implement in hardware is SubBytes.

E
nc

ry
pt

io
n 

P
at

h
D

ec
ry

pt
io

n 
P

at
h

In
v 

M
ix

C
ol

um
ns

M
U

X

In
v 

S
hi

ft
R

ow
s

M
U

X

M
U

X

S
hi

ft
R

ow
s

M
ix

C
ol

um
ns

A
dd

 
R

ou
nd

K
ey

P
ip

el
in

e
R

eg
is

te
r

128

128

128 128

Subkey

128

4 ns 0.5 ns 0 ns 1.5 ns

0.5 ns 4 ns

2.5 ns 0 ns 2.5 ns 0.5 ns

0.5 ns 1 ns

16 x 8

16 x 8

16 x 8

InvSubBytes

SubBytes

In
v 

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

In
v 

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

In
v 

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

M
ul

tip
lic

at
iv

e
In

ve
rs

es

M
ul

tip
lic

at
iv

e
In

ve
rs

es

M
ul

tip
lic

at
iv

e
In

ve
rs

es

16x

16x

16x

M
U

X
M

U
X

M
U

X

Fig. 4. A Rijndael round that shares Luts and AddRoundKey function.

SubBytes consists of 16 concurrent S-box operations for which no more effi-
cient solution than using 8bit×8bit look-up tables (Lut) seems to exist. The 16
Lut’s account for about 85% of a round’s combinational logic, so this was where
to look for area reductions. Our idea was to find out whether the Lut’s could
somehow be shared between encryption and decryption in spite of the fact that
the two operations are computationally different.

A Rijndael S-box is composed of two transformations [1]:
1. Take the multiplicative inverse in the finite field GF(28)

with the element {00} being mapped onto itself.
2. Apply an affine transformation.
As opposed to the expensive Lut needed to implement the multiplicative

inverse, the affine transformation is easily obtained from a few Xor gates.
The inverse S-box operation consists of the inverse affine transformation fol-

lowed by the multiplicative inverse. Instead of using two separate Lut’s, it is
thus possible to compute both the S-box and the inverse S-box operation from a
single Lut used in conjunction with either the affine or the inverse affine trans-
formation, see the framed part of fig.4. The savings in the order of 30% to 50%
of area so obtained eventually made it possible to instantiate two such hardware
rounds on the chip, see fig.7, thereby almost doubling overall throughput.



150 A.K. Lutz et al.

3.2 Reorganizing a Cipher Round for Pipelining

As can be seen in fig.4, which also includes the propagation delays in the data-
path, the longest path in this configuration is about 12ns. The next goal was to
maximize throughput by recurring to intraround pipelining, that is by inserting
pipeline registers into the datapath hardware of one round. The architecture of
fig.4 is unsuitable for doing so because no location can be found for an extra
register that would significantly cut down the longest path for both encryption
and decryption.

Encryption

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

MixColumns

SubBytes

ShiftRows

AddRoundKey

AddRoundKey

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns

InvSubBytes

InvShiftRows

AddRoundKey

AddRoundKey

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns

InvSubBytes

InvShiftRows

AddRoundKey

AddRoundKey

Decryption Organization1 Decryption Organization2

1st

Round

9th

Round

10th

Round
(short)

1st

Round
(short)

2nd

Round

10th

Round
10th

Round
(short)

1st

Round

9th

Round

2nd

Round

9th

Fig. 5. The two options for delimiting one Rijndael decryption round.

E
nc

ry
pt

io
n 

P
at

h
D

ec
ry

pt
io

n 
P

at
h

In
vS

hi
ft

R
ow

s

M
U

X

M
U

X

S
hi

ft
R

ow
s

M
ix

C
ol

um
ns

P
ip

el
in

e
R

eg
is

te
r

128

128 128

0 ns 1.5 ns

0.5 ns 4 ns

2.5 ns 0 ns 2.5 ns 0.5 ns

0.5 ns

M
U

X

In
vM

ix
C

ol
um

ns

4 ns 0.5 ns

A
dd

 
R

ou
nd

K
ey

Subkey
128

1 ns

A
dd

 
R

ou
nd

K
ey

Subkey

128

1 ns

12816 x 8

16 x 8

16 x 8

InvSubBytes

SubBytes

In
v 

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

In
v 

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

In
v 

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

16x

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

A
ffi

ne
T

ra
ns

fo
rm

at
io

ns

16x

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

M
ul

tip
lic

at
iv

e
In

ve
rs

es

M
ul

tip
lic

at
iv

e
In

ve
rs

es

M
ul

tip
lic

at
iv

e
In

ve
rs

es

16x

M
U

X
M

U
X

M
U

X

Fig. 6. A reorganized Rijndael round amenable to intraround pipelining.

Therefore, the hardware architecture of one round was reorganized without
altering the circuit’s functionality. Figure 5 displays two options for delimiting
decryption rounds. The first option corresponds to fig.4 whereas the second
option is shown in fig.6. This second option is amenable to pipelining while the



2Gbit/s Hardware Realizations of RIJNDAEL and SERPENT 151

first is not. By inserting pipeline registers after the multiplicative inverse, the
longest path is cut down from 12ns to 7ns thereby greatly improving throughput
once more at little extra cost.

3.3 Precomputing Subkeys

The chosen architecture with two pipelined hardware rounds implies that a total
of four 128bit data blocks are being processed concurrently at any given time.
Computing the subkeys on the fly seemed no desirable option in this case because
four subkey computation units would be required to provide the four different
subkeys. Therefore all eleven subkeys are precomputed and stored in registers.

Also, working from precomputed subkeys avoids any key setup time when
changing from encryption to decryption or vice versa. Each 128bit data block
can thus either be encrypted or decrypted independently of the precedent block.

M
U

X
M

U
X

A
dd

R
ou

nd
K

ey

D
at

a 
In

pu
t

R
eg

is
te

r 
U

se
r 

K
ey

R
eg

is
te

r

M
U

X

D
at

a 
O

ut
pu

t 
R

eg
is

te
r

R
ou

nd
C

on
tr

ol
le

r

Parallel
Round 1

Subkey
Register

Array

Parallel
Round 2

Key
Generator

Key
Controller

128 32

 32

 32

128

128

128

128

128

128

128

128

Fig. 7. Final architecture of the Rijndael chip.

4 The Serpent Implementation

4.1 Separating Decryption from Encryption

All of the 32 Serpent encryption rounds follow the same pattern, see fig.1. A key
mixing operation where a 128bit subkey is Xored with the data block comes
first, followed by an array of 32 parallel 4bit×4bit S-boxes. A subsequent linear
transformation concludes the transformation round. Only in the final round is
the linear transformation replaced by an extra key mixing operation with a 33rd
subkey.

During decryption, both the S-boxes and the linear transformation need to
be inverted. As opposed to the Rijndael algorithm, no method was found to
reuse the same S-boxes for both encryption and decryption. This is no real



152 A.K. Lutz et al.

handicap because the much smaller size of the Serpent Lut’s would hardly justify
introducing multiplexers and other control hardware anyway. Only the relatively
small key mixer might be reused. In this situation, it seemed more efficient to
implement separate datapaths for encryption and decryption with no elements
shared. The result is shown in fig.8.

128

128

P
ip

el
in

e
R

eg
is

te
r

K
ey

 M
ix

in
g

O
pe

ra
tio

n

S-Box Array

S-Box Array

M
U

X

Li
ne

ar
T

ra
ns

fo
rm

at
io

n

P
ip

el
in

e
R

eg
is

te
r

K
ey

 M
ix

in
g

O
pe

ra
tio

n

Inv-S-Box Array

Inv-S-Box Array

M
U

X

In
ve

rs
e 

Li
ne

ar
T

ra
ns

fo
rm

at
io

n

S
ub

ke
y 

M
em

or
y E
nc

ry
pt

io
n 

P
at

h
D

ec
ry

pt
io

n 
P

at
h

E
N

128

128 128

128

128

128

128

Fig. 8. A Serpent round with two separate datapaths.

4.2 Systematic Allocation of Hardware Resources

The basic solution space for the realization of the Serpent algorithm has been
presented in fig.3. The computed figures suggested that a solution that includes
a total of four hardware rounds followed by a pipeline register after each round
was the best choice, considering that the maximum chip area of 50mm2 was a
hard limit.

As the Serpent algorithm makes use of eight different types of S-boxes, there
is no way to avoid implementing all of them in hardware. Unless one can afford to
instantiate eight or more hardware rounds, multiplexers and control logic must
be included to switch look-up tables in and out depending on the cipher round
currently being processed. This adds to the cumulative area occupied by one
round and introduces extra data delay. The four hardware rounds are clearly
visible in fig.9 which shows the chip’s overall architecture.

4.3 Generating Subkeys on the Fly

Precomputing the full set of Serpent subkeys and storing them would require
more than 4Kbit of memory which corresponds to an area of more than 3.6mm2.
This seeming impractical, it was decided to compute all subkeys on the fly con-
currently with data processing.

Each round has a single associated subkey register, that stores the subkey
to be applied to a data block at a certain time. Four consecutive data blocks



2Gbit/s Hardware Realizations of RIJNDAEL and SERPENT 153

Instantiated
Round 4

Instantiated
Round 2

In
st

an
tia

te
d

R
ou

nd
 1

Instantiated
R

ound 3

In
pu

t R
eg

is
te

r
St

ac
k

O
ut

pu
t R

eg
is

te
r

St
ac

k

Encryption Path

Decryption Path

128

128

32

C
on

tr
ol

 S
ig

na
l

In
pu

t

C
on

tr
ol

le
r

FS
M

SF
SM

M
od

eC
on

tr
ol

U
se

r 
K

ey
B

uf
fe

r

K
ey

 G
en

er
at

or

Pr
ek

ey
G

en
er

at
or

S-
B

ox
-

A
rr

ay
s

B
uf

fe
r 

fo
r 

33
rd

 S
ub

ke
y

25632

M
U

X

M
U

X

32

M
U

X

32

128
Key

K
ey

Key

K
ey

Fig. 9. Final architecture of the Serpent chip.

are processed one after the other in the same hardware round using the same
subkey. Thus, the content of a subkey register can be applied four times in a
row. As a consequence, three of the four existing rounds can always reuse the
subkey stored within the local subkey register. One round, however, requires
that a new subkey be delivered. This new subkey is supplied by a key generator
that is capable of computing one new subkey during each clock cycle. After the
last subkey has been prepared, the user key gets reloaded from an internal buffer
to serve as starting point for computing the first round key again.

The last round of the Serpent algorithm presents a small problem as it uses an
additional round key instead of the linear transformation. Since the key generator
is not able to supply more than a single subkey per clock cycle, this 33rd subkey is
computed ahead of time and stored in a register. Consequently, the key generator
has to complete one full run to obtain the last round key prior to data processing,
which results in a relatively long key setup time.

As the subkeys are not stored, the key generator also needs to be able to
calculate the subkeys in reverse order. To accomplish this, once the encryption
mode has generated the last two subkeys, a second, parallel, key generation unit
is used to generate the subkeys in reverse order.

5 The Two Integrated Circuits Compared

Figure 10 shows the floorplans of the two VLSI chips while table 1 compares
their key technical characteristics. Recurring to a multiproject wafer (MPW)
service, both the Rijndael and the Serpent designs have been fabricated in pro-
totype quantities. All measured figures in table 1 refer to the physical circuits
so obtained. In either case, throughput figures in the order of 2Gbit/s have been
obtained in a mature 0.6µm technology.



154 A.K. Lutz et al.

Fig. 10. The photomicrographs of a) Rijndael and b) Serpent with their main compo-
nents highlighted.

While the Serpent circuits were quickly found to work correctly, the Rijn-
dael chips exhibited a systematic malfunction. The problem has eventually been
traced back to a mistake in the postprocessing of layout data for MPW assembly.
A couple of lines running on the topmost metal have inadvertently been shorted
together.

Coincidentally, only one of the two hardware encryption/decryption rounds
of fig.6 has been afflicted. This made it possible to work around the defect and to
verify the correct operation of the second round. The throughput figure presented
for Rijndael is the throughput figure for the design with both parallel rounds
working at the clock rate at which the second round was shown to be working.

The various functional blocks have been identified in the physical layouts
of the two chips. In either design, the round controller occupies a relatively
small area and is not particularly marked. Also note that approximately half
of the large I/O queue region shown on the Serpent floorplan (fig.10b) includes
subcircuits from other functional blocks.

The Serpent key generator can be seen to occupy a larger area than its Rijn-
dael counterpart. This is mainly because all eight separate 4-bit S-box variants
of the Serpent cipher need to be instantiated 32 times in order to calculate the
subkeys on the fly.

In either floorplan, a significant proportion of the core area is lost to routing
overhead. Also observe that Synopsys area estimations are off by a factor of
two. In our opinion, the reasons for this poor area utilization are very wide data
words in conjunction with a target technology that provides just three layers of
metal, and standard cells with overly many routing blockages.

In theory, a more aggressive pipelining strategy should result in still higher
throughput rates. Yet, we felt that clock frequencies much beyond 100MHz in



2Gbit/s Hardware Realizations of RIJNDAEL and SERPENT 155

Table 1. Our Rijndael and Serpent implementations compared.

Rijndael Serpent
rounds in the algorithm 10 32
rounds instantiated in hardware 2 4
key length 128bit 256bit
subkey computation stored on the fly
core key agility [clock cycles (ns)]

new encryption key 3 (34) 21 (171)
new decryption key 23 (260) 21 (171)
switch between encryption and decryption 0 (0) 21 (171)

number of flip-flops 2’607 3’274
number of transistors 300k 300k
technology 0.6µm 3LM 0.6µm 3LM
process name AMS CUA AMS CUA
area per hardware round 6.3mm2 3.1mm2

area for subkey generation 4.5mm2 3.8mm2

estimated chip area (after synthesis) 22.5mm2 21.6mm2

actual chip area (after physical layout) 49.0mm2 49.0mm2

data throughput in ECB mode (encr or decr) 2.26Gbit/s 1.96Gbit/s
@ clock frequency 88.5MHz 122.9MHz
latency [clock cycles (ns)] 28 (316) 56 (455)

our target technology would give rise to significant difficulties with off-chip data
transfer and with clock distribution.

Both designs have been balanced for encryption and decryption and indeed
achieve similar throughput rates for either operation. The Rijndael implementa-
tion sports remarkably short key setup times and, most notably, does not require
any additional setup time when switching between encryption and decryption
with the same user key. The Serpent circuit’s key setup time, on the other hand,
suffers from the necessity to calculate the last subkey in advance.

The core circuits have been designed to run with 128bit data but practical
considerations have limited input and output width to 32bit. Nevertheless, no
performance is lost thanks to careful scheduling of I/O operations.

The original AES specification calls for three key lengths of 128, 192 and
256bit respectively. To simplify design, only 128bit implementations have been
considered in this study. The Serpent design is capable of using key lengths of
up to 256bit without any modification, whereas the Rijndael circuit would need
to be adapted to accommodate multiple key lengths.

The throughput figures presented refer to the ECB mode of operation. Of
the various feedback modes proposed for AES use [12], only the CTR mode will
achieve similar data throughput. For CFB, OFB and CBC modes of operation
without interleaving the highest throughput per area can be obtained if and only
if an iterative architecture with only a single hardware round is implemented
without any pipelining. This solution is on the bottom left corner of the solution



156 A.K. Lutz et al.

space presented in fig.3 and is expected to have resulted in a throughput in the
order of 500Mbit/s for both algorithms.

6 Conclusions

To begin with, note that the two ciphers have many traits in common, both lend
themselves fairly well for hardware implementation. Most importantly, there
are no feedback loops whatsoever in ECB and CTR mode that would present
unsurmountable bottlenecks when in search of maximum throughput. A number
of tricks are instrumental in turning a purely algorithmic prescription into a
highly efficient architecture, but this is common practice in VLSI design.

We have made valuable contributions towards designing optimum hardware
for Rijndael by relocating the boundary between two consecutive rounds and
by restating table look-up operations. Both designs benefit from the evaluation
of distinct subkey generation schemes and from the systematic exploration of
architectural trade-offs.

Table 2 compares the two cipher algorithms from the perspective of a VLSI
architect. The fact that the same S-box Lut can be reused for encryption and
decryption throughout all rounds probably is the most important advantage of
Rijndael. Conversely, the fact that the number of rounds and subkey generation
are dependent on the width of the user key are less desirable features.

Table 2. The two ciphers compared from a VLSI architect’s point of view.

Rijndael Serpent
+Small number of rounds (10...14). −Large number of rounds (32).
+Small number of subkeys (11...15). −Large number of subkeys (33).
−No. of rounds depends on key length. +Fixed number of rounds.
+No complex mathematical operations. +No complex mathematical operations.
+All rounds are identical

(same S-box type throughout).
−Eight different S-box types.

−Large S-box (8bit×8bit). +Small S-boxes (4bit×4bit).
−Cipher is not involutory. −Cipher is not involutory.
+Look-up tables can be made to share

between en- and decryption.
−All S-boxes and their inverses

must be implemented in hardware.
◦ Not all hardware components can be

shared between en- and decryption.
−Almost no hardware components can be

shared between en- and decryption.
−Key generation varies with key width. +Wider key entails no extra complexity.

−No efficient way to compute the 33rd sub-
key from the user key directly.

To our knowledge this is the only published study where the actual ASIC
implementations of two AES candidates have been compared. In this respect
this study differs from previous comparisons [4,8] and realizations [6], as it also
takes into account real-life problems of ASIC integration such as placement and
routing, interconnection parasitics, clock distribution and I/O limitations.



2Gbit/s Hardware Realizations of RIJNDAEL and SERPENT 157

In [4] two extreme cases are considered: for an iterative architecture Rijndael
was shown to have three times the throughput of Serpent with an estimated
area 1.5 times larger. For a fully pipelined architecture, with almost identical
area requirements the throughput of Serpent was thirty percent higher than
Rijndael. In another study that concentrated on finding the critical path for
feedback modes [8] Rijndael was found to be more than twice as fast as Serpent
with an estimated area approximately twenty percent larger.

A direct comparison of our Rijndael implementation to the one presented
in [6] is difficult as that implementation uses a much more advanced 0.18µm
technology, estimated to be almost 10 times smaller and faster than the 0.6µm
technology used in this study. Also the implementation in [6] does not support
decryption and the stated throughput of 1.82Gbit/s is for 256bit data blocks. In
this respect our implementation with a measured 2.26Gbit/s throughput using
128bit data blocks compares fairly well.

Considering that the two algorithms are rather different in nature, their re-
spective performances in hardware come remarkably close. From our experience
with designing circuits for a fixed key length of 128bit and for throughputs in the
order of a few Gbit/s, we consider Rijndael to be more favorable than Serpent,
although only slightly.

References

1. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. Submission to the First Advanced
Encryption Standard Candidate Conference. Ventura CA, August 1998.

2. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced En-
cryption Standard. Submission to the First Advanced Encryption Standard Can-
didate Conference. Ventura CA, August 1998.

3. Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., Roback, E.:
Report on the Development of the Advanced Encryption Standard (AES). NIST,
Computer Security Division, Information Technology Laboratory, October 2000.

4. Weeks, B., Bean, M., Rozylowicz, T., Ficke, C.: Hardware Performance Simulations
of Round 2 Advanced Encryption Standard Algorithms. National Security Agency
(NSA).

5. Kaeslin, H.: From Algorithms to Architectures. Lecture Notes in VLSI Design,
Microelectronics Design Center, ETH Zürich.

6. Kuo, H., Verbauwhede, I.: Architectural Optimization for a 1.82Gbits/sec VLSI
Implementation of the Rijndael Algorithm. Proceedings of the Third International
Workshop of Cryptographic Hardware and Embedded Systems CHES 2001, Paris,
May 2001.

7. Elbirt, A., Yip, W., Chetwynd, B., Paar, C.: An FPGA-Based Performance Evalu-
ation of the AES Block Cipher Candidate Algorithm Finalists. IEEE Transactions
on VLSI, August 2001, vol. 9, no. 4, 545–557.

8. Ichikawa, T., Kasuya, T., Matsui, M.: Hardware Evaluation of the AES Finalists.
Proceedings of the Third Advanced Encryption Standard Candidate Conference,
New York, April 2000, 279–285.

9. Gaj, K., Chodowiec, P.: Comparison of the hardware performance of the AES
candidates using reconfigurable hardware. Proceedings of the Third Advanced En-
cryption Standard Candidate Conference, New York, April 2000, 40–54.



158 A.K. Lutz et al.

10. Weaver, N., Wawrzynek, J.: A Comparison of the AES Candidates Amenability to
FPGA Implementation. Proceedings of the Third Advanced Encryption Standard
Candidate Conference, New York, April 2000, 28–39.

11. Gaj, K., Chodowiec, P.: Hardware performance of the AES finalists – survey and
analysis of results. Technical Report, George Mason University, September 2000.

12. Dworkin, M.: Recommendation for Block Cipher Modes of Operation – Methods
and Techniques. NIST Special Publication 800-38A, 2001.


	Introduction
	Common Design Issues
	The Rijndael and Serpent Algorithms
	A Fair Comparison
	Overall Architectural Choices

	The Rijndael Implementation
	Sharing Look-Up Tables between En- and Decryption
	Reorganizing a Cipher Round for Pipelining
	Precomputing Subkeys

	The Serpent Implementation
	Separating Decryption from Encryption
	Systematic Allocation of Hardware Resources
	Generating Subkeys on the Fly

	The Two Integrated Circuits Compared
	Conclusions

