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2p' 'P and 2p3p
' P States of the Helium Isoelectronic Sequencee

G. W. F. Draket
Department of Physics, University of R'indsox, 8'indsox, Ontario, Canada

and

A. Dalgarno
Harvard College Observatory, Cambridge, Massachusetts o2138

Smithsonian AstxoPhy srcal Observatory, Cambridge, Massachusetts 02138

(Received 19 December 1969)

Accurate eigenvalues and radiative lifetimes are obtained for the bound 2p 3P and 2p3p 'P
states of the heliumlike ions He r to Ne xx. A high-order Z-expansion perturbation procedure
is used that does not require the explicit solution of perturbation equations. The results are
compared with variational calculations. The predicted wavelengths of the ls2p 3P-2p P and

1s3p P-2p3p 'P transitions in helium are, respectively, 320.31 and 308.97 A. Lines have been

observed in helium at 320.39 and 309.04 A.

I. INTRODUCTION

Because of the conservation of angular momen-

tum and parity, the 2p 'P and 2p3p 'P states of he-

lium and heliumlike ions, although embedded in the
continuum, are stable againstautoionization within

the LS coupling approximation. Their lifetimes
depend on the probability of radiative transitions to
lower states and are much longer than the lifetimes
characteristic of autoionizing states. Becker and

Oahler' have pointed out the importance of such

highly energetic states as initiators of reactions
involved in radiation chemistry and in the chem-

istry of high-temperatur e gases.
The 2P 'P state of helium has been produced

through electron impact by Burrow and Schulz

and identified by the trapped-electron method.

This state should also be observable in the elec-
tron energy-loss spectrum, although it has not yet
been identified. The cross sections for the exci-
tation of the 2P P and 2p3p 'P states by electron

impact from the ground state have been calculated

by Becker and Dahler, ' along with several other

doubly excited states. The 2P3P 'P state will be

more difficult to observe in electron-impact ex-
periments because its excitation cross section is
much smaller than the 2p 'P cross section. A

radiative transition at 320. 39 A, observed by

Kruger and included in Martin's tables, has been

tentatively identified as the 2p P-1s2p P transi-
tion.

The helium 2p 'P eigenvalue has been calculated

by Holgien using a configuration-interaction wave

function. Several other less accurate calculations
are cited by Becker and Dahler. ' In this paper we

report precise variational upper bounds for the
2p"P and 2p3p 'P helium eigenvalues and oscil-
lator strengths for radiative transitions to the

1s2p, 1s3p, and 1s4p'P and 'P states, respective-
ly. The results are extended to the heliumlike

ions by a high-order Z-expansion technique. We

also calculate the sum of all oscillator strengths
from the 1s2p "P state to the ~pn'p "P states.

II. THEORY

The eigenvalue problem to be solved is (in
Z' a.u. )

8%', = (H, + Z '
V)0, = E,4, ,

where IIO is a sum of two hydrogen-atom Hamilto-

nians, V is equal to 1/r» and r» and is the inter-
electronic coordinate. A variational approximation
to E, and 4, is obtained from the stationary values
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of the functional

E, = (c,lHl4, )/(4, l@,)

for arbitrary variations of 4,. Because the 2p P23

and 2p3p 'P states are the lowest-lying triplet and

singlet P states of even parity, the application of

the variational method is straightforward.

If we expand 4, in a correlated orthonormal M-

dimensional basis set

M
(n)

y

and evaluate E„, demanding that its value be sta-
tionary with respect to arbitrary variations of the

a',.n&, then

n
i Ak

i4k p=1

E(4.- ~4;)(0;~
(i2)

and E, =Z Z "E„,
n=0

where, from Eq. (1),

(Ho -EoN'o=0
n

(H —E )g„+Vg„,= Q E,.g„
i =1

(8)

(7)

Substituting Eqs. (4) and (5) into Eq. (2), we ob-
tain the eth-order functional

and vary the coefficients a;, M roots are obtained,

of which one may be further optimized through the

choice of the P, to represent a particular state.
The remaining M —1 solutions satisfy oscillator-
strength sum rules if the P; are well chosen and

may be used to evaluate the summations occurring
in formal perturbation theory. ' The calculations
must be repeated for each value of the nuclear
charge.

Alternatively, we may expand 4, and E, in the
forms

Z-n
q

n=0

n -1
and E„=(g„, ) V[go) —Q E&(g„)(o)

p= 1

Exactly the same results are obtained from (7) by
writing the resolvent operator in the form

(E H) P ~4;)(0;~
i~k

(14)

III. CALCULATIONS

Variational basis sets were constructed from
sets of correlated functions of the form

Thus, (14) is the best variationa, l approximation to
the resolvent operator within a finite basis set. It
is not necessary to solve explicitly each of the per-
turbation equations. Once the two diagonalizations
(9) and (10) have been performed to determine the
basis set P„ the perturbed eigenfunctions and en-
ergies are easily generated from the recursion
relations (12) and (13). The results are compa-
rable in accuracy with the explicit solutions of
Sanders and Scherr using the same number of
basis functions.

E. =
&&.IHo-Eolt. &+2&(.l Vl(. &&

—~ E; & &(~l(. ; &&
. (8)

Mgx exp( +Ls+1 pI 2+2)'H~s, i, (&» &2)

(p; jHolp)) =e)6;), 2,j =1, 2, .~ ~, M, (9)

(1o)

and Ek =E0. If we expand the perturbed-trial wave
function in the basis set P,.

Scherr and Knight and Sanders and Scherr' have

obtained perturbed eigenvalues and eigenfunctions

directly from the extrema of (8) by substituting
trial forms P„ for the g„.

A simpler procedure, discussed by Dalgarno and

Drake, "is obtained by introducing a set of M func-
tions p&, one of which, say p2, is the exact hydro-

genic solution go with eigenvalue Eo. A unitary
transformation is then applied such that

where J~~.., (r„r2)

(fi~112m 2 l
&~.» f g

(+$) y [g
(+2)

m]2 fn2

in the conventional vector-coupling notation of
Edmonds, ' and P» indicates the interchange of
electrons 1 and 2, with the plus sign referring to
singlet states and the minus sign to triplet states.
For the variational calculations involving the com-
plete Hamiltonian H, a and P were chosen to min-
imize the lowest secular root, thus giving a vari-
ational bound to the 2p P and 2p3p P energies.
For the Z-expansion basis sets defined by Eqs. (9)
and (10), c2 and p are specified by their hydrogenic
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values. In both calculations, the y;,. ~ basis set
was first orthonormalized and then H (or Ho) diag-
onalized. Up to 50 terms were retained in the
basis sets with the powers i, j, and k chosen such

that i, j& 1, k ~ 0 and i+j+k ~N

IV. VARIATIONAL RESULTS

A. Eigenvalues

The optimum values of the scale factors
(nz~, Pzz), defined by Eq. (15), were found to be
(0. 475, 0.40) and (0. 45, 0. 25), respectively, for
the 2p"Pand 2p3p

'P states of neutral helium, with
the unit of length being Z 'ao. The nonrelativistic
eigenvalues obtained from various basis sets are
given in Table I. The 2p P eigenvalue —1.420999
Ry may be compared with —1.420 2]. Ry calculated
by Hol/ien' using a configuration-interaction wave
function. The present eigenvalue lies 59. 671 eV
above the ground state and predicts that the 1s2p'P
—2P P wavelength is 320. 31 A. Kruger and

Compton and Boyce observed a line at 320. 39 A.
The 2p3p1P eigenvalue is —1.160493 Ry and lies
63. 215 eV above the ground state. The predicted
1s3p'P —2p3p'P wavelength is 308. 97 A. Compton
and Boyce observed a line at 309.04 A.

TABLE II. Oscillator strengths obtained from varia-
tional wave functions.

No. of terms M

f~~(1s2p P- 2p P)
f~(1&2p P —2p3p P)

20

0.1778
0.0838

30

0.1779
0.0811

40

0.1810
0.0830

strengths are similarly

f.,('P -'D) =", f,('P, —'D.)

and f„(P —S) =
3f,( Po —So) . (20)

The values of f„(lsd P —2p P) and f~,(ls2p 'P
—2p3p 'P), calculated in the length formulation,

are given in Table II.
If we define oscillator-strength sums S, out

of the 23P state

S,(' ))$f (2'P, —=m'I', ), (21)

where S denotes summation over discrete states

and integration over continuum states, and sim-

ilarly for S,(SSO) and S,('Do), then it follows from

the Thomas-Reiche-Kuhn oscillator-strength sum

rule'3 that

B. Oscillator Strengths S, (SSO) + s,('Do) = 2 (22)

and in the velocity formulation by

f.(f -~) = (2)~;„) &f
I p,„+~2,.I~& I', (17)

where p, , is the z component of the momentum

operator. Et follows from the properties of the
Clebsch-Gordan coefficients that f,(~P, —3P,)
=f,('P, —'P, ) and f,('P, —'P, ) =0, where the sub-
scripts denote the values of M~. Thus, the aver-
aged absorption oscillator strength is

f„('P- 'P) = 3f,('Pg - 'Pi) ~

The P — D and P —S averaged oscillator

TABLE I. 2p P and 2p3p P eigenvalues.

Eigenvalue (Ry)

No. of terms 2p P 2p3p P

20

30
40

50

—1.420 995
—1.420 999
—1.420 999

—1.160492
—1.160 493
—1.160493
—1.160493

The oscillator strength connecting two M& mag-
netic sublevels through the z component of the ra-
diation field is defined in the length formulation
by13

f.(f-i) = », , , l&flz, +..Iz) I',

from the z component of the radiation field and

—,'s, ('s, ) + ps, ('D, )+ -', s,('p, ) =2

from the average of all three components. Thus,

only one of the three S, summations is indepen-

dent, the other two being determined by Eqs. (22)
and (23). An analogous set of equations may be

written for the singlet states.
The oscillator strength sums S, were evaluated

by replacing the infinite sets of excited state S, P,
and D wave functions (including the continuum) by

the variationally determined discrete sets de-

scribed at the beginning of Sec. II. The results

are given in Table III. There is some uncertainty

in the final figures quoted due to incomplete con-

vergence of the variational sets. The oscillator
strength sum rules given by (21) and (22) are well

satisfied.

V. Z-EXPANSION RESULTS
A. Eigenvalue s

The leading several terms in the Z expansions

of the wave functions were calculated by the re-
cursion procedure described at the end of Sec. II.
The coefficients in the eigenvalue expansions of

the 2p 3P and 2p3p 'P states are given in Table IV.
The eigenvalues summed through ninth order for
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TABLE III. Oscillator-strength sums from the 1,2&

~P and 3P states.

s,{s,)
s,{a,)
s {p()

Sum, Eq. {22)

Sum, Eq. {23)

Singlet

—0.043

2.040

0.472
1.997

1.997

Triplet

0. 086

1.909
0. 560

1.995
1.993

B. Oscillator Strengths

The Z expansions of the velocity-matrix ele-
ments (i)p, ,+$2, )j) were calculated directlyfrom
the wave function expansions and the coefficients
in the length-matrix elements (i )z, +zzI j) were
calculated using the Z expansion of +, &

and the

relationship

(i z, +z, j) =(1/(u, ,,)(i pg, , +pg, , j), (24)

Z= 2 are —1.420999 and —l. 160490 Ry for the

2P P and 2P3P P states, respectively, while the
variational eigenvalues from Table I are
—1.420 999 and —1.160 493 Ry. The good agree-
ment indicates that the individual perturbation co-
efficients are accurate and that satisfactory con-

vergence is achieved by summing through ninth

order, even for Z = 2.
The 2p P and 2p3p P eigenvalues summed through

ninth order for B" a,re —0. 2496 and —0.2471 Ry,

respectively, while a graphical extrapolation to
infinite order of the partial eigenvalue sums

yielded —0. 2510 Ry for both states. The extrapo-
lated eigenvalue for the 2p~3P state is in agreement
with —0. 2507 Ry calculated variationally by Drake~4

and indicates that the state is bound below the n= 2

threshold of H, as suggested by Holgien. ' The

2p3p 'P state is not known to be bound and one

would expect the extrapolated eigenvalue to be
—0. 2500 Ry. The above sums provide a sensitive
check on the accuracy of the calculations.

TABLE IV. Eigenvalue expansions {Hy).~

Order 2p2 3p

—0.500 000 0

0.328 125 0
—0.078 789

0.003 677
—0.000 676
—0.000 688
—0.000 454
—0.000 336
—0.000 245
—0.000 189

—0.361 1111
0.162 477 6

—0.038 436
—0.002 314
—0.002 484
—0.001 684
—0.001 184
—0.000 886
—0.000 686
—0.000 542

E=Z E +ZE +'' +Z E Hy

a procedure that is apparently more accurate than

calculating the coefficients directly in the length

formulation. The coefficients in the Z expansions
of (i Iz, +z, Ij) are given in Table IV for several
transitions involving the 2p P a,nd 2p3p 'P states.
The leading terms vanish for those transitions in-
volving two-electron jumps. The transition ener-
gies, absorption oscillator strengths, and emis-
sion Einstein A. coefficients are given in Tables V,
VI, and VII for the ions through Ne xx. In each
case, the results obtained from the length and

velocity formulations agree to at least the number
of figures given. The Z-expansion oscillator
strengths for the 1s2P P —2P P and 1s2P P
—2p3p 'P transitions of neutral helium are in ex-
cellent agreement with the direct variational cal-
culations of Table II. Transitions to lower states
not included in Tables VI and VII are relatively
improbable

VI. DISCUSSION

In addition to obtaining accurate eigenva, lues and
radiative lifetimes of the 2p 'Pand 2p3p 'P states
of-the heliumlike ions, we have shown that the re-
sults are obtainable for the entire isoelectronic
sequence in a single calculation. The application
of the perturbation recursion relations (12) and

TABLE V. Transition-integral expansions {a.u. ) .~

Order 1s2p 'p-2p "p 1s3p 'p-2p"p 1s4p 'p-2p"p 1s2p 'p-2p3p 'p 1s3p 'p-2p3p 'p 1s4p 'p-2p3p 'p

0.7449
—0.1187
—0.1469
—0.1283
—0.1315
—0.1385
—0.1348
—0.1165
—0.0843
—0.0423

0
—0.253
—0.091
—0.032

0.020
0.079
0.140
0.136
0.094
0.073

0

0.117
0.057
0.054
0.041
0.010
0.054

—0.2109
—0.3171
—0.1570

0.0394
0.0561

—0.0348
—0.0512

0.0660

0.5267
—0.1804
—0.3822
—0.1565

0.0253
0.0263

—0.0927
—0.0712
—0.0799

0

0.337
0.137
0.261
0.072
0.076

(S IZ(+g2 [j)=BpZ +QUIZ
+' + p)Z go.
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TABLE VI. Z-Expansion transition energies, oscillator strengths, and Einstein A. coefficients. Superscripts in-

dicate the powers of 10 by which the entries are to be multiplied.

Ion ~E (Ry)

1s2p P —2p P

f(i —j)
A(j —i)
sec AE (Ry)

1s3p 3p- 2p23p

f(i- j)
A(j —i)

sec SE (Ry) f(i -j)

ls4p P —2p 3P

A(j- i)

sec

He

Ll

Be
B3+

C4+

N

F+
Nes+

2.845 36
6.462 13

11.584 52

18.208 81
26.333 96

35.959 60

47.085 50
59.71158

73.837 80

0.1804
0.2225

0.2388

0.2476

0.2530

0.2568

0.2596

0.2617

0.2634

1 173'0

v.465"
2.5V4"

6.593
1.410
2.668

4 623

7 495
1.153

2.695 17
5.867 63

10.263 77

15.882 65

22.724 00

30.787 68

40.073 68

50.581 94

62.31246

9.54

3.90

2.05

1.25

8.44-4

6.07

4.5v-4

3.56

2.86

5 57s

1.08
1, 73'

2.54

3.5O'

4.62'

5.89
V.33'
8.91'

2.6435

5.6635
9.8092

15.0801
21.4761
28.9972
37.6434

47.4146
58.3109

2.88

9.55 4

4.66 4

2.V5 4

1.81
1.28

9.5V '

7.40

5.90

1,62'

2.46'

3.6O'

5.O3'

6.72s

8 67s

1.O9'

1.34

1.61

TABLE VII. Z-Expansion transition energies, oscillator strengths, and Einstein A. coefficients. Superscripts
indicate the powers of 10 by which the entries are to be multiplied.

Ion AE (By) f(i- j)

1s2p ~P —2p3p ~p

A(j- i)

sec f(i- j))ATE (Ry)

1s3p P-2p3p P
A(j- i)
sec f(i- j)AE (By)

ls4p P —2p3p P
A(j —i)

sec '

He
Li'
Be++

B3'

C"

O6.

Fv+

Nes'

3.087 18
7.183 88

13.053 55

20.699 00

30.12124

41.320 68

54.297 56

69.051 96

85.584 00

0.0830

0.0587
0.0487
0.0434
0.0400

0.0378
0.0362
0.0350
0.0340

6.35'

6 6v"
1.49"
2.92

5.18"
8.57

1.34
2.OO"

2.949 82

6.637 58

11.823 91
18.509 81
26.695 54

36.381 20

47.566 80

60.25240
74.437 96

0.0508

0.0862
0.1022
0.1110
0.1165
0.1202
0.1228

0.1249
0.1264

3.55'

3 05
1.15"
3.O5"

6.67

2 2312

3.62

5 63

2.9018
6.4455

11.3911
17.7393
25.4902
34.6438
44.0014
57.1593
70.5212

5.1
3.62

2.42

1.69
1.23

9.34 4

V.32 4

5.88
4.83 4

3.5'

4.26

6.43'
9.01'
1 20'0

1.e3"

(13) requires a negligible addition of computer
time to that already required for the matrix diag-
onalizations occurring in a standard variational
calculation. The perturbation results are com-

parable in accuracy with the variationa1 results
for neutral helium and improve with increasing ~.
For the ions with Z & 3, the Z-expansion perturba-
tion procedure is recommended.
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