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Abstract

The two-phase commit (2PC) protocol is a key technique for achieving distributed transactions in storage systems

such as relational databases and distributed databases. 2PC is a strongly consistent and centralized atomic commit

protocol that ensures the serialization of the transaction execution order. However, it does not scale well to large

and high-throughput systems, especially for applications with many transactional conflicts, such as microservices

and cloud computing. Therefore, 2PC has a performance bottleneck for distributed transaction control across

multiple microservices. In this paper, we propose 2PC*, a novel concurrency control protocol for distributed

transactions that outperforms 2PC, allowing greater concurrency across multiple microservices. 2PC* can greatly

reduce overhead because locks are held throughout the transaction process. Moreover, we improve the fault-

tolerance mechanism of 2PC* using transaction compensation. We also implement a middleware solution for

transactions in microservice support using 2PC*. We compare 2PC* to 2PC by applying both to Ctrip MSECP, and

2PC* outperforms 2PC in workloads with varying degrees of contention. When the contention becomes high, the

experimental results show that 2PC* achieves at most a 3.3x improvement in throughput and a 67% reduction in

latency, which proves that our scheme can easily support distributed transactions with multi-microservice modules.

Finally, we embed our middleware scheme in the PaaS cloud platform and demonstrate its strong applicability to

cloud computing through long-term analysis of the monitoring results in the cloud platform.
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Introduction

With the rapid and iterative development of Internet

products, the traditional monolithic-service architec-

ture is not suitable for the current large-scale data

business scenarios. Therefore, microservice architec-

ture has gradually replaced the traditio-nal approach

and has become an important topic in industrial and

academic circles. Microservice architecture [1] is

widely used in large-scale cloud computing platforms

and applica-tion development. The key to microser-

vice architecture is to provide flexibility for program

development and the reuse of fine-grained services.

Microservices can be developed by different-domain

teams to support business applications, and they can

be implemented in various languages and access mul-

tiple underlying databases. In a distributed system, we

usually deploy various microservice modules, which

are homogeneous or heterogeneous systems composed

of service clusters. Meanwhile, most microservices are

used in cross-service and cross-resource scenarios. In

other words, they need to access multiple databases

in different environments when processing business.

When an application invokes multiple microservices,

distributed transactions are needed to support the

consistent updating of these underlying databases and

to ensure data consistency throughout the system. In

recent years, academia and industry have carried out
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conside-rable amounts of research on the data

consistency of certain distributed databases, such as

Spanner [2] and OceanBase (https://oceanbase.alipay.

com/). Fortunately, microservices are closely related

to these distri-buted databases in transactions, al-

though supporting data-consistent distributed transac-

tions across multi-microservice modules is even more

challenging research [3].

The traditional technique is to implement a distributed

transaction using the two-phase commit (2PC) protocol

[4]. Unfortunately, this does not work well in large-scale

and high-throughput systems, especially for applications

with a large number of transaction conflicts [5]. The rea-

son is that locks are held throughout the 2PC process.

However, the number of modules across microservices is

large, and it is necessary to support users with extremely

high numbers of concurrent requests. For this reason,

due to the limitations of the 2PC protocol, the perform-

ance of the original business will be seriously reduced,

possibly rendering it unusable. Other approaches include

persistent message queue patterns for loosely coupled

distributed transactions [6, 7], which require additional

application logic to compensate for failed transaction

steps, thus increasing the cost of the system and possibly

affecting the experience of users. In many business sce-

narios, such as e-commerce and e-finance, to ensure that

the entire system always has strong data consistency, it

must be controlled with the strictest consistency proto-

cols, e.g., 2PC. Although systems such as YugaByte [8]

and Found-ationDB [9] can support distributed transac-

tions for a single database, this is not yet scalable in dis-

tributed systems with multi-microservice modules.

In view of the above problems, we aim to find a solu-

tion suitable for consistently distributed transactions in

the micro-service architecture. On the one hand, it is

strictly required to meet the basic principles of data

consistency in the hetero-geneous distributed system of

the microservice architecture. On the other hand, the so-

lution must achieve the same level of throughput as the

original microservice business. In other words, it is ex-

pected to obtain a high processing performance under

the scenario of an extremely high number of concurrent

user requests.

In the paper, we propose 2PC*, which is a novel dis-

tributed transaction control protocol that can extract

more concurrent processing capabilities under high-

intensity competitive wor-kloads than previous ap-

proaches for a multi-microservice. 2PC* is an optimized

protocol based on the traditional 2PC. It utilizes a two-

level asynchronous lock to reduce the over-head of syn-

chronous blocking caused by a surge in the num-ber of

transactions, thereby avoiding deadlocks. To achieve

this, we propose a novel optimistic lock, i.e., the SAOL.

Additionally, 2PC* uses a runtime protocol for

transaction concurrency control to reduce the probabil-

ity of conflicts between transactions.

In a distributed system environment where microser-

vices are located, especially in cloud computing plat-

forms, there are uncontrollable factors in service, e.g.,

service loss and network delays. Moreover, microservices

are often called remotely through a gateway, such as

XML-RPC or SOAP (simple object access protocol),

which increases the proba-bility of these conditions oc-

curring. Therefore, we improve the transaction compen-

sation mechanism to achieve the ulti-mate consistency

of distributed transactions across micro-services.

Finally, we implement a middleware solution for

transa-ctions distributed across microservices based on

2PC* and deploy it on a specific PaaS cloud platform.

Specifically, we use the Netty framework [10] to

complete RPCs (remote procedure calls) [11] between

transaction roles. Netty is based on Java NIO (non-

blocking input and output), so its I/O operation is asyn-

chronous and non-blocking. Therefore, the throughput

and stability of RPCs can be greatly improved. We adapt

our middleware to two popular microservice frame-

works, Spring Cloud and Dubbo [12, 13]. We implement

2PC* and evaluate its performance using a case of the

MSECP platform. 2PC* outperforms the original 2PC in

workloads with varying degrees of contention. When the

contention is high, 2PC*‘s throughput is nearly 10 times

that of 2PC. As the system scales across microservices

and cont-ention increases, the throughput of 2PC* con-

tinues to grow, while the 2PC throughput drops to al-

most zero with no capacity to scale.

The rest of this paper is organized as follows. Section

“Overview” elaborates on the overview of our scheme

and the classic approach. In Section “Design”, we intro-

duce the design details of the 2PC*, including the design

of SAOL and a runtime protocol. The implementation

of the middleware solution based on 2PC* will be intro-

duced in Section “Implementation”. In Section “Evalu-

ation”, we will give the experimental data of the

middleware solution implemented with 2PC* and com-

pare it with 2PC. Section “Related Work” discusses some

related work. Finally, Section “Conclusion” concludes

this paper.

Overview

Low performance traditional approaches

2PC and OCC

In consistent transactional processing for traditional dis-

tributed databases, developers prefer the trans-action’s

strongest isolation level, such as serializability [14], to

simplify the correctness criteria for concurrent transac-

tions. Therefore, to ensure strict serializability, trad-

itional distrib-uted storage systems usually run standard

transactional concurrency control schemes, such as the
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OCC (optimistic concurrency control) [15] combines

with 2PC.

Unfortunately, 2PC and OCC perform poorly under

com-petitive workloads in large-scale conflict transac-

tions. We introduce a case that simulates the process of

a customer buying two items from a store (Table 1). The

process contains two fragments, F1 and F2, each of

which reduces the stock quantity of different items. Each

fragment can be executed atomically on the server where

it is located. However, in the entire distributed system,

an additional distributed transac-tion control protocol is

needed to prevent fragmented transa-ctions across

servers from being non-serializable and interla-ced. For

example, suppose the store keeps the stock quantities of

item1 and item2 unchanged and always sells the two

items in a bundle. In the absence of a distributed trans-

action control protocol, the user can purchase item1 but

not item2, while another user can purchase item2 but

not item1.

We evaluate the performance of 2PC combined with

OCC with two transactions, T1 and T2. Both purchase

the same item1 and item2 stored on different services.

When OCC detection is performed during the execution

of 2PC, any interleaving of T1 and T2 will cause the

process to abort. For example, if T2 reads the stock

number after T1 reads it but before T1 commits its up-

date to item1, T2 will not be able to verify the process

and abort later. We introduce another example where

both T1 and T2 are aborted during 2PC because their

corresponding 2PC precommit instructions are proc-

essed by the service in different orders.

However, the performance of 2PC combined with

OCC under high-intensity workloads is far from satisfac-

tory, especially across high-concurrency microservices.

2PC acqu-ires locks on data access for each transaction.

When threads perform a conflicting operation, they

serialize the transac-tions’ execution order. In the ex-

ample described above, once T1 modifies the stock

quantity of item1, T2 must be blocked until T1 completes

its entire process and commits successfully. In addition

to blocking, 2PC also prevents deadlock by pass-ive

thread abort [2]. However, as the number of competing

threads increases, so does the probability of deadlocks.

In addition, effective deadlock prevention mechanisms

[16] (e.g., wound-wait) have many false positives. As a

result, even without a real deadlock, most threads will

still be abort-ed unexpectedly.

New distributed Transaction’s characteristics in

microservice architecture

ACID [17] is a design concept for transactions in trad-

itional databases to ensure the correctness of data and

avoid errors such as Read-Committed and Repeatable-

Read. However, in distributed systems, especially at the

application level, it is more important to meet business

requirements than to pursue strict system characteris-

tics. According to the CAP principle, strong consistency

(C), availability (A), and partition tolera-nce (P) [18] can-

not be met simultaneously. However, BASE theory

adopts a completely different design idea than ACID.

BASE sacrifices strong consistency for high availability

and eventual consistency [19], which can be achieved

through appropriate methods and is consistent with the

characteristics of distributed systems in reality. On this

basis, distributed transactions are mostly focused on the

application layer for microservices. Therefore, it is ne-

cessary to not only ensure the data’s eventual

consistency but also obtain high availab-ility in the

system.

2PC* optimize lock in two-phase commit

According to the details described below, our optimized

transmission control protocol 2PC* avoids lock-blocking

du-ring the two-phase commit between transactions, es-

pecially under scenarios with high-level contention.

2PC* optimizes the inefficient synchronization-

blocking lock in 2PC and replaces it with a novel sec-

ondary asyn-chronous optimistic lock (SAOL). Bor-

rowing from the design of the MVCC (multi-version

concurrency control) [20], the SAOL allocates an

ever-growing sequence of ver-sions to each transac-

tion step, which is similar to the snapshot. The fine

granularity of locks can be broken down into two

levels of optimistic locks, borrowing from OCC (opti-

mistic concurrency control) [15]. The SAOL allows

multiple transactions to perform updates to the same

transaction frag-ment concurrently, with two specific

snapshots controlling the order in which transactions

are executed, i.e., begin-Version and commitVersion.

Meanwhile, the SAOL adopts a two-level optimistic

lock (i.e., one composed of a firstLock and second-

Lock) to control the transaction commit. Using the

Table 1 A fragment of new-order transaction containing two

pieces

transaction new_order_fragment:

#simplified new-order “buys” one of item1, item2

input: item1 and item2

begin

F1: # reduce stock level of item1

Read(tab = “Stock”, key = item1)→ stock if (stock > 1):

Write(tab = “Stock”, key = item1)← stock - 1 ...

F2: # reduce stock level of item2

Read (tab = “Stock”, key = item2)→ stock if (stock > 1):

Write (tab = “Stock”, key = item2)← stock - 1 ...

end
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BASE mechanism, the firstLock is responsible for con-

trolling the resources in the main process between

multiple transactions; thus, the secondLock can separ-

ate from it and compensate for the unfinished process

in the firstLock.

2PC* simplifies conflicts to commit

2PC* is able to change and optimize the order of execu-

tion for transactions because it uses two phases of indi-

cators to commit. In the beginning phase, when multi-

microservice modules participate in the same distributed

transaction, 2PC* does not immediately execute the sub-

sequent process but instead adds the order relations (i.e.,

conflicts) between trans-actions to the neighbourList of

the directed graph, which can be denoted as GraphNode.

We conduct a preliminary merge and de-duplication of

conflicts for the neighbourList. In the commit phase,

GraphNode then combines all the conflict information

and distributes it to all the microservices. 2PC* then

further simplifies the transaction conflicts for the neigh-

bourList so that it performs better under high-

competition transaction scenarios, such as those

involving microservice architecture.

A middleware based on cloud platform for distributed

transaction control with 2PC*

Based on 2PC*, we implement a middleware scheme that

supports consistent distributed transactions for micro-

services. Our prototype contains over 23,000 lines of

Java code, 17000 of which are for transaction concur-

rency control, and is based on the Spring-Boot frame-

work. In particular, we adopt the Netty framework to

complete the underlying communication between trans-

action roles. We deploy it in a specific PaaS cloud plat-

form. Experimental data prove that our scheme has very

good performance for multi-microservice scenarios with

high concurrent requests from users, including higher

throu-ghput and lower latency.

Design

The design of the 2PC* protocol includes a novel opti-

mistic lock mechanism (i.e., the SAOL), a concurrency

control prot-ocol for transactions and a compensation

measure.

In this section, we first explain the design of the

SAOL. Then, we introduce a concurrency control proto-

col in 2PC*, an optimizing strategy, and a verification of

its correctness. Finally, we provide a fault-tolerant

mechanism.

Secondary asynchronous optimistic-lock

The novel 2PC*’s SAOL replaces the synchronous block-

ing lock with a high-performance secondary asynchron-

ous lock. The process in each transaction fragment is

identified by a unique version number, i.e., snapshot. We

adopt Twitter’s distributed identification number gener-

ation algorithm Snow-flake [21], which contains a time-

stamp to identify the execu-tion order of the transaction

fragment. The specific design of the SAOL is described

below.

Transaction property initialization

In the SAOL, we first define four key attribute fields in

the transaction object, which are represented as follows.

� value: This indicates the current actual value of the

transaction object.
� beginVersion: That is the version sequence number

at the beginning of the process.

� commitVersion: That is the version at the time the
transaction was committed.

� lock: This is responsible for locking up the resources

of uncommitted transactions. The lock is divided
into two different levels, namely the firstLock and

the secondLock, which represent the two phases of

lock respectively. And we specify that in the
secondLock, it needs to contain firstLock information.

Begin transaction process

First, we need obtain the begin-Version in the transac-

tion object T1, denoted b_v, and then determine whether

there is a lock in T1. If no lock exists, we try to obtain

the latest committed transaction object directly from the

version number interval [0, b_v] and obtain the current

latest value through its beginVersion. Otherwise, the

subsequent process is executed according to the follow-

ing three branches.

� Case 1. If there is another transaction object T2

committing a transaction, then the value of T2 is

locked. At this point, we need to wait for T2 to
finish committing transactions, then poll and retry

to obtain the current latest value.

� Case 2. In case 1, if the waiting time of T1 has
passed a certain threshold, denoted

WAIT_TIME_OUT, but T2’s value is still locked, it

can be determined that T2 is facing some
unexpected exceptions, e.g., a network delay or

downtime. We can simply assume that T2 has been

interrupted and it can release lock directly.
� Case 3. T2’s lock may have been remained because it

has not been released properly. In this case, T2’s

transaction was committed and its firstLock released
successfully, but some unforeseen exceptions

occurred in the secondLock, so the transaction could

not be committed, thus causing the lock to remain.
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Transaction pre-commit process

At this point, T1 has completely obtained its latest value,

so we can perform the T1 first-phase commit, denoted

preCommit. This process can be divided into three

branches as follows.

� Case 1. For any two transaction objects T1 and T2,
in the version sequence interval (b_v, + ∞)

corresponding to their values, we determine

whether another transaction object Tx is updating
the data. If this condition matches, it means that Tx

might have changed the value. At this point, both

T1 and T2 need to roll back their transactions
directly, and then we can complete the process.

� Case 2. Determine whether a lock exists in both T1

and T2, that is, whether their transaction resources
are locked. If so, T1 and T2 need to directly roll

back transactions and we can terminate the process

directly.
� Case 3. If neither of the above two cases matches,

we set the firstLock of T1 and T2 to locked, write the

latest data to value at this time and commit the
transaction.

Transaction second-commit process

First, we determine whether the firstLock of T1 or T2 is

locked; if so, we commit the transaction directly. The

secondLock that belongs to T1 and T2, it can be com-

pletely separated from the main process, and we can

then use an asynchronous mode of the thread to release

the secondLock and commit transactions in the second

phase. Therefore, even if an exception has been occurred

throughout T1 or T2, as the subsequent transaction ob-

ject, denoted Tnext, it observes that the firstLock belong-

ing to T1 or T2 has been released, but the secondLock

still unexpectedly remains, thus Tnext will automatically

release the lock in their secondLocks and commit the

transactions.

Concurrency control protocol

Under the microservice architecture, business modules

are often deployed on multiple machines in a distributed

cluster to achieve scalability and high availability. When

multiple microservices act as participants and concur-

rently execute the same group of distributed transac-

tions, conflicts are inevitable, and they greatly affect the

performance between concurrent transactions. To re-

duce the probability of conflict between concurrent

transactions, a novel concurrency control protocol is

proposed based on the 2PC in this subsection. Our

scheme is able to avoid the additional performance over-

head caused by conflicts between frequent transactions.

Similar to 2PC, the design of the basic protocol is di-

vided into two phases, i.e., the begin phase and the com-

mit phase, which are summarized below.

Begin phase

When the distributed transaction process offici-ally be-

gins, the TCM (transaction coordination manager) gen-

erates a globally unique transaction number TID for the

transaction group. Then, this transaction group does not

imm-ediately perform the subsequent process but in-

stead caches it in a temporary area (such as Redis). Fi-

nally, we determine whether the transaction group

matches a specific condition (which will be described in

detail later); if so, the next step is performed. The key to

the protocol is to maintain a graph data structure in the

appropriate microservice module MS, which is used to

record all conflict dependencies from the transact-tion

group and is denoted as GraphNode. Its implementation

code is shown in Table 2, in which data is the generic

Java type corresponding to vertex E in the Graph, and it

records the key information for transaction object T, in-

cluding the status of the transaction, which can be sum-

marized as the three kinds of situations below.

� BEGUN. This indicates that the transaction has
started execution.

� COMMITTING. This indicates that the transaction

is performing the committing process.
� FINISHED. This indicates that the workflow of each

transaction has been determined.

The execution order of these statuses needs to be

strictly guaranteed to be serial. Thus, we restrict BEGUN

to be earlier than COMMITTING and COMMITTING

to be earlier than FINISHED; i.e., BEGUN < COMMIT-

TING < FINISHED.

The field visited of GraphNode is set to the Boolean

type, and it indicates whether transaction object T is fin-

ished with the corresponding MS. It is TRUE if done,

FALSE otherwise.

The neighbourList of GraphNode corresponds to the

subset of V*V in the direct graph, denoted E, which is

represented by the ArrayList type in Java. The sequence

of all concurrent transactions in the neighbourList is re-

corded. For example, the MS may receive a transaction

request initially from transaction T1 and then accept an-

other request from T2. Therefore, T1 and T2 are pre-

vented from participating in the same group; they

conflict and need to be added to the neighbourList.

Finally, when T prepares to participate in the transac-

tion, MS does not immediately perform subsequent lo-

gical operat-ions but first enumerates all other

transaction objects T’ that collide in parallel with T and

adds them to the neighbourList. The neighbourList is
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then loaded into the TCM to perform initial processing

of these conflicting transactions, including aggregation

and deduplication (Table 3). Finally, we save the neigh-

bourList to the corresponding GraphNode.

Commit phase

After the begin phase, the conflicts of all transaction ob-

jects have been saved in the TCM and recorded in the

corresponding GraphNode. The vertex data and the edge

neighbourList belonging to the GraphNode have exe-

cuted preliminary data aggregation processing. The

TCM further aggregates the status of all transaction ob-

jects to preserve the latest version. As shown in the

pseudo-code (Table 4), we first determine whether the

status of the local T is BEGUN. If so, the status can be

updated to COMMITTING and synchronized to the

local GraphNode.

We now describe the judgement condition mentioned

in the begin phase, that is, whether the transaction object

T needs to be reordered. We first calculate the ancestor

Troot of T, and then wait for the status of Troot to be set

to COMMITTING or FINISHED. This is summarized in

the following two situati-ons:

� Troot is in the MS where T is located. The MS will

eventually receive the transaction request of Troot

through the TCM, and no additional operations are
required to wait for the request.

� Troot is not in the MS where T is located. At this

point, the MS needs to initiate an inquiry request to

the MS’ where Troot is located. When the MS’

observes that the status of T’ is COMMITTING or

FINISHED, it responds to MS and returns the

GraphNode to the MS.

The while operation is performed in both cases until

all ancestors’ statuses of the transaction object T in the

MS are set to COMMITTING or FINISHED to jump

out of the loop. We calculate the MS’s strongly connected

component (SCC) through the GraphNode. According to

the definition of the SCC, in a directed graph Graph-

Node, for each pair of vertices Vi and Vj (Vi and Vj do

not belong to the same vertex), it is guaranteed that

there are paths from Vi to Vj and Vj to Vi.

We utilize the classic Tarjan algorithm [22] to calcu-

late the SCC of the GraphNode. The core design is to

maintains the graph based on the depth-first search

(DFS) algorithm, and each SCC is a subtree in the

search-tree. The nodes belonging to the DFS that are not

traversed are added to a stack. When backtracking, we

determine whether the top-to-middle node is a strongly

connected component. In the best case, only the vertices

of the SCC belonging to the GraphNode are traversed,

thus the time complexity is no more than O(V). In the

worst case, all the vertices and edges in the GraphNode

need to be traversed in turn, with time complexity is

O(V + E).

Table 2 GraphNode data structure

Table 3 Algorithm implementation of Begin phase
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The SCC of T is simply referred to as TSCC. If there

are no conflicts with the MS, the TSCC contains only T

individual nodes. Otherwise, the following three condi-

tions must be met.

� The MS sets the status update in all transaction

objects belonging to TSCC to FINISHED.

� The MS waits for the status of other ancestors in
GraphNode to be FINISHED.

� The MS waits for the visited in its associated

ancestor Troot to be TRUE.

When all of the above conditions are met, the MS de-

termines the eventual order based on the global transac-

tion number TID in each T.

The MS sets the field visited in each T belonging to

TSCC to TRUE; this is executed sequentially in the order

in which they are arranged. Finally, the output is sent to

the TCM, and the TCM then notifies the transaction ini-

tiators of the final execution result. We can determine

the time complexity of algorithm 3 as O(n*(V + E)) in

the worst case and O(n*V) in the best case (where n

stands for the number of MSs).

Correctness

In this subsection, we present the correctness verifica-

tion of 2PC*. We utilize the formal specification lan-

guage TLA+ [23] to validate the transaction’s locks

through the protocol, ensuring that 2PC* is strictly seri-

alized. We only show the core TLA+ of the protocol, a

Table 4 Algorithm implementation of Commit phase

Table 5 Algorithm implementation of SimplifyConflicts
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more rigorous version of the TLA+ language is available

at [24].

Constant

We set the two invariants in the transaction to con-

stants, i.e., the data of all transaction participants, de-

noted as value, and the participant transaction object,

denoted as RM.

Variable

We represent all transaction status in RM as the variable

rm_status. The current version sequence number is rep-

resented by the variable rm_v, which includes a collec-

tion of all the states of the transaction, i.e., {“beginning”,

“preparing”, “precommit”, “committed”, “cancel”}. We

define the global version sequence ascend_v, which is a

snapshot and is always increasing. The information

about two locks in RM that control the version, firstLock

and secondLock, is represented by the variable rm_lock.

Begin

At this point, the transaction status rm_status is at “be-

ginning” and its next state is expected to be “preparing”.

The data rm_value in the transaction object is obtained

by the getVal method.

Loading

At this stage, rm_status is in the “preparing” state and

its next state is bound to be “precommit”. We determine

whether the condition of resetting lock is met. If so, we

then perform the resetLock process. Otherwise, the next

state of rm_status is set to “cancel”.

PreCommit

We present the TLA+ language for the pre-commit

phase of the transaction. At this point, rm_status is “pre-

commit”, and we determine whether the second-commit

of the transaction is performed, if so, ascend_v needs to

be incremented, and next state of rm_v is restricted to

be the latest value of ascend_v, and rm_status’s next

state is limited to “committing”. Otherwise, we need de-

termine whether these transaction’s values are all locked,

if so, we perform the allLock method to lock all values.

Otherwise, we set rm_status to “cancel”.

SecondCommit

Finally, we present the TLA+ language for the second-

commit of the transaction. We determine whether the

first value of the transaction can be committed, i.e.,

isCommitFirstVal, if so, we can commit the transaction

and then set rm_status to “committed”. Otherwise, the

transact-tion aborts and we set rm_status to “cancel”.

Next

The entire validation process follows the four steps

above.

Consistent

Finally, we present the consistency constraint for the

transaction. These two constraints are met: the version

sequence number committed_v for all committed trans-

actions satisfies the ascending ordering rule, and the lock

of first_v in RM can be released when the transaction

committed succe-ssfully.

We run the complete TLA+ language in the TLC [25]

tool and analyze the result as shown in Fig. 1. It gener-

ates 1296 states, of which 324 is distinct. More import-

antly, based on the results, i.e., “No error has been

found”, which can prove that the 2PC* protocol will not

occur deadlock and ensure the strict serialization during

the transaction process.

Simplifing NeighborList of GraphNode

As the number of transaction participant increases, the

amo-unt of data stored in the GraphNode becomes in-

creasingly cumbersome, which significantly affects the

subsequent wor-kflow and potentially makes it unavail-

able. For example, the Trajan algorithm is used to calcu-

late the SCC steps. However, much useless information
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has been recorded in the Graph-Node, mainly related to

the concurrent conflict dependencies of transaction ob-

jects, i.e., the neighbourList, which is irrel-evant for the

subsequent process. Moreover, it is unnecessary to

transfer the entire GraphNode between micro-services.

To solve these problems, we optimize the runtime

protocol further.

LRCD design

To simplify the neighbourList belonging to the Graph-

Node, only the least recent conflict dependence (LRCD)

between transactions needs to be recorded Table 5. The

LRCD is defined as follows: for any conflicting relation-

ship path T’ → T in GraphNode, if the path T’ ⇒ T does

not exist in GraphNode, the number of paths T’ ⇒ T is

not less than two, and T’ → T is called an LRCD in

GraphNode. According to the explanation in Fig. 2

below, T1→ T2, T2→ T3 is an LRCD, while T1⇒ T3 is

not an LRCD; thus, T1⇒ T3 can be removed. The loca-

tion of Table 5 Algorithm implementation of

SimplifyConflicts

In the original protocol, the following three locations

need to be simplified in the neighbourList and saved

only as LRCDs:

In the original protocol, the following three locations

need to be simplified in the neighbourList and saved only

as LRCDs:

� In the begin phase, the TCM received a response

from the MS and then simplified the neighbourList

that belonged to the response message.
� During the commit phase, the MS received a request

from the TSM. The MS simplified the neighbourList

in the request body with its local value.
� During the commit phase, the MS received an

inquiry response from the other MS’. The MS’

simplified the neighbourList in the request body with
its local value.

Simplify MS swaps with GraphNode steps

For the MS and TCM corresponding to T, we only need

to obtain the GraphNode of T’. Therefore, the MS and

TCM only need to obtain the SCC whose status is FIN-

ISHED and whose GraphNode contains all transaction

objects.

Similarly, when the MS receives the query request

from MS’, the MS first detects the status of the Graph-

Node under the local environment. If the status is not

FINISHED, we calcu-late the SCC for all the transactions

contained in GraphNode belonging to the MS. Other-

wise, if status becomes FINISHED, this means that T

and its SCC have been obtained by the MS and its re-

sponse is returned directly to MS’. The process is shown

in pseudo-code in Table 6 below.

Fault tolerance

To achieve fault tolerance, we persisted the transaction

logs in each coordination and transaction participant

service to the disk. Moreover, we used the Paxos-based

Fig. 1 TLA+ result with running in TLC

Fig. 2 A LRCD demo
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replication protocol [26] to synchronize the log data

across multiple machines.

First, we execute a scheduled thread-pool task, de-

noted as STPT. STPT polls the logs in the disk at inter-

vals. It filters out the key information in the failed

transactions, including the TID that identifies the trans-

action, and the list of participating transactions. Then,

we push the information into a circle message queue

(CMQ). Finally, the CMQ repeats the request to the cor-

responding business method through the asynchronous

polling until the response returns successfully.

The CMQ design is shown above (Fig. 3), it is a circu-

lar message queue with a high latency and has 2000

slots. Each transaction compensation can be regarded as

a task that is added to the Set without repetition, i.e.,

Set<Task>. We then push the Set<Task> into the tail of

the CMQ. There are two key pieces of information

stored in Set, i.e., layer_num and Function < Task>. The

layer_num represents the number of CMQ layers in

which the task resides, and the Function < Task > indi-

cates the target function of the task. The CMQ uses a

pointer to specify the index of the currently running

task, denoted cur_index.

Reliability and idempotency

We use a local message table to record the relevant data

of the transaction compensation task, which includes the

TID for the transaction, and the current state of execu-

tion (i.e., status). To ensure reliability, The TCM returns

the result of the asynchronous message with the field

status record and sets it to TRUE if successful and

FALSE if not. Then, the failed transaction steps need to

be pushed to the next task queue until it is compensated

for successfully. To ensure idempotency, the TCM deter-

mines whether the message is duplicated by the TID. If

the TID already exists and its status is TRUE, this step is

skipped. Moreover, the TCM provides a remote message

record query interface, thus the transaction participant

can invoke this interface to determine whether the

current message has been consumed. If so, this compen-

sation process is skipped.

Implementation

We implemented a middleware solution with transac-

tional in distributed microservices support using 2PC*.

We design the annotation @TxTransactional to inject

distributed transactio-nal functionality into specified

microservices business with spring’s AOP (aspect ori-

ented programming), which achiev-es decoupling from

the original business module. Obviously, our prototype

consists of three functional modules, i.e., transaction ini-

tiator, transaction actor, and transaction coordinator. In

particular, their network communication is implemented

through high-performance Netty framework.

Table 6 Algorithm implementation of SimplifySwapGraphNode

Fig. 3 The design of CMQ
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Transaction initiator

The role of the transaction initiator is an active part of

the process. In addition to creating transaction group in-

formation and executing the local transaction, it also no-

tifies the coordi-nator to perform commit or rollback

operations on the trans-action group (Fig. 4). The imple-

mentation process can be summarized as follows.

1) Generating the transaction group identifier TX_ID

through the snowflake algorithm to ensure that it is
unique in the entire distributed system, and then

creating a new transaction group. If this step is

successful, we can execute step 2. Otherwise, we
just throw the runtime-exception and end the

process.

2) We determine the transaction propagation
mechanism type of the initiator. If it is

PROPAGATION_NEVER, which means that there

is no transaction requirement from the initiator. If
it succeeds, we perform step 3. Otherwise, end the

process. If the type of propagation is

PROPAGATION_REQUIRES_NEW, it means that
the new transaction was initiated. We similarly

execute the transaction group’s pre-commit process,

and if successful, we perform step 4, otherwise,
jump to step 5.

3) Following step 2 above, there is no transaction

request in this initiator, and after performing the
pre-commit, the coordinator is asynchronously

notified to complete the second-commit. We adopt

the CompletableFuture interface [27] provided by
the JDK1.8. When these multiple threads attempt

to complete or cancel it at the same time, only one
thread is guaranteed to succeed. In practice, we use

the runAsync, a method without a return value, to

construct the initiator and coordinator as Netty
transmission object in the asynchronous mode,

then complete the second-commit’s notification step

between the initiator and coordinator.
4) Similar to step 3, we also use the

CompletableFuture to asynchronously notify the

coordinator to execute the second-commit after the
transaction group pre-commit succeeds. Because the

transactional requirement of the initiator is newly

opened, it must first commit the local transaction,
thus we can adopt the

PlatformTransactionManager (PTM) interface [28]

provided by Spring to execute it.
5) In this situation, the transaction group failed during

the pre-commit phase and the initiator’s transaction

is newly opened. Then, we perform the local
transaction rollback, executing the PTM’s rollback

function and closing the process.

6) If some unexpected exceptions occurred in steps 4
or 5, as shown in the dotted box of Fig. 4. First, we

use the PTM’s rollback function to complete the

local transaction rollback. The coordinator is then
asynchronously notified by CompletableFuture to

complete the rollback of the transaction group.

Transaction actor

The transaction actor is a passive role in distributed

transacti-on processing. Its main functions include adding

the micro-service’s business module to the distributed

Fig. 4 The process of transaction initiator
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transaction group and completing local transactions

through the coordinator’s instruction (Fig. 5). The process

of the transaction actor can be summarized as follows.

1) The actor joins the corresponding transaction group

according to TX_ID. If the execution fails, the local
transaction needs to rollback and then the process

should be terminated. Otherwise, it initiates an add-

to-transaction request to the coordinator. It’s similar
to the initiator, the communication between actors

and coordinators is also based on Netty.

2) At this point, the initiator’s thread is blocked. We
use the interface provided in JDK called

ReentrantLock [29] to lock the main thread and

wake it up in combination with Condition’s signal
method. The initiator then waits for the

coordinator’s response within the specified time

threshold, denoted WAIT_TIME_OUT. If the
response time is no more than WAIT_TIME_OUT,

step 3 is executed directly. Otherwise, we need to
perform step 6.

3) We then create a scheduled task to wake up the

main thread at specified intervals within the time
threshold denoted TASK_TIME_OUT. If this

process is successful, the task can be closed and

step 4 is executed. Otherwise, we need to skip to
step 5.

4) Following step 3, the subsequent process is based

on the coordinator’s response, which is obtained
from the thread’s asynchronous callback function. If

the response is second-commit, we first commit the

local transaction, and then the output is

asynchronously notified to the coordinator via

Netty. Otherwise, the local transaction needs to

rollback, and then also asynchronously notify the
coordinator of the result through Netty.

5) Continuing with step 3, we repeat the scheduling

task for the specified time TASK_TIME_OUT until
it succeeds. Otherwise, a timeout occurs and the

process can be terminated.

6) Next, following step 2, the coordinator’s response is
timed out. The initiator needs to proactively obtain

the transaction group’s status through Netty. If the

status is either pre-commit or second-commit, the
transaction group has successfully committed and

then the actor sends the commit notification asyn-

chronously to the coordinator. Otherwise, there are
some exceptions have occurred in the execution,

and actor can asynchronously send the timeout ex-

ception notification to the coordinator. Finally, we
need to wake up the main thread that is blocked by

the Condition’s signal.
7) If some exceptions occurred to the initiator during

the process of the local transaction’s commit, as

shown in the dotted box in Fig. 5, we should
rollback this transaction and notify the coordinator

asynchronously through Netty.

Transaction coordinator

The transaction coordinator is at the core of the hub in

the distributed transaction processing. On the one hand, it

deals with the corresponding business according to the

notification requested by the initiator and the actor. On

the other hand, it sends the instruction response to the

Fig. 5 The process of transaction actor
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initiator and the actor at a specified time. We first design

the transaction management interface TransactionMa-

nangerService, denoted TMS. TMS provides basic func-

tionality related to the persistence of the transaction, i.e.,

CRUD (Create, Retrieve, Update and Delete). We then de-

scribe the transaction coordinator’s two core functions,

i.e., precommit and rollback.

PreCommit

The process can be divided into the following steps.

1) With the updateItemStatus method of TMS, we

update the current transaction’s status to
COMMIT.

2) Through the listByGroupId method in TMS, we

obtain the list of all transaction objects under the
current transaction group number TX_ID, denoted

items. Determine whether the items are empty. If

so, it can terminate the process. Otherwise, we
execute the next step.

3) Following the above steps, we now perform specific

preliminary filtering of items. The filtering principle is
that we remove the transaction objects that have

been committed by the initiator from the items, that

is, avoiding duplicate the communication between
these transactions. By the filter function, we divide

items into a list of transactions under the local

domain environment, denoted currentItems, and
another list under other domains, denoted elseItems.

4) Detecting whether Netty’s channels of currentItems

are activated. If so, we run the excuteCommit

method to commit the transaction, otherwise, run

the specific excuteRollBack method to complete the

transaction rollback. The excuteCommit and
excuteRollBack will be described later.

Rollback

Similarly, its process can be divided into the following

steps.

1) We update the current transaction’s status to

ROLLBACK through the updateItemStatus method

in TMS.
2) It is the same as described in step 2 of the

PreCommit.

3) Similarly, it is the same as described in PreCommit’s
step 3.

4) Finally, we execute the excuteRollBack method to

complete the transaction rollback.

In the process of PreCommit and Rollback, they both

need to run two specified methods, i.e., excuteCommit

and excute-Rollback. Next, we describe the implementa-

tion details for each.

ExcuteCommit

This method applies to the distributed tran-saction’s

commit process that is divided into the following steps.

1) First, we iterate through the list of local transaction

groups to be committed, i.e., currentItems.

2) Then, we build Netty’s ChannelBean object and
load it in the HeartBeat, and set the transaction

status to COMMIT.

3) Determining if the channel in the ChannelBean
object is empty. If so, we record the transaction

object’s TX_ID in the Error log. Otherwise, pushing

the HeartBeat to Queue and refresh it.
4) Finally, we execute the remote request method with

the elseItems and set the transaction status to

COMMIT. Because these coordinators are
clustered, thus the channels in elseItems’ transaction

objects may be connected to different coordinators.

There are two functions in the remote request
method. On the one hand, we observe the status of

the transaction coordinator channel under the local

domain and notify it to perform the transaction
commit. On the other hand, we connect to the

clusters of transaction coordinators under other

remote domains and similarly notify them of
committing transactions.

ExcuteRollback

It is responsible for the rollback process of distributed

transactions, which can be roughly divided into the fol-

lowing steps.

1) First, we determine whether the currentItems are

empty. If it matches, we just skip to the last step.
We then load the list of transaction groups into the

specified ThreadPool array, i.e., CompletableFuture,

which asynchronously performs the tasks of the
subsequent multi-transaction groups. To achieve

this, we then execute the asynchronous method in

the CompletableFuture, i.e., runAsync. Meanwhile,
we build the Netty’s ChannelBean object, load it

into a HeartBeat, and set status to ROLLBACK.

2) Determining if the channel exists in the
ChannelBean. If not, we just skip this step,

otherwise, execute the writeAndFlush method for

ChannelBean’s channel. Finally, we can push the
HeartBeat object to Queue and refresh it.

3) Until all transaction objects have been loaded into

Netty’s channel and have been executed
asynchronously through CompletableFuture. At this

point, we execute the allOf method, which can

acquire the execution result of all transaction
objects.
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4) Finally, the approach is roughly similar to the last
step in ExcuteCommit. The only difference is that

we set the transaction status to ROLLBACK and

perform the transaction rollback.

Evaluation

Experimental setup

In order to minimize the extra impact of CPU’s perform-

ance bottlenecks on the experiment, we chose higher

performance machines to build service clusters. Each

machine has an eight-core 2.7 GHz Intel Core i7 with

8GB RAM and 500GB SSD. Therefore, we have achieved

much higher throughput when running on a local

testbed with faster CPUs.

Experimental case

We applied our middleware solution based on 2PC* to

the microservice case, that is, the online e-commerce

transaction platform MSECP of an Internet company. In

this paper’s experimental case, we primarily consider

three microservices, i.e., the OrderMicroservice (COMS),

the StockMicroservice (CSMS), and the AccountMicroser-

vice (AMS). The distribu-ted transaction process be-

tween the microservices can be summarized as follows

(Fig. 6): A user initiates an order creation request from

COMS, which then invokes CSMS and AMS through an

RPC to complete the business of item out-bound and ac-

count deduction, respectively. Only when the business of

these three microservice modules is successfully exe-

cuted can we return a successful response to the user

and commit transactions in the respective microservice

modules. Otherwise, if exceptions occurred in one of

these micro-services, the user is notified that the pur-

chase failed; thus, the transactions of the respective

microservices need to be rolled back immediately.

We adapted the middleware solution to two popular

micro-services frameworks, i.e., Spring Cloud and

Dubbo. In this section, we only present the experimental

case of Dubbo, whose overall architecture is shown in

Fig. 7. We adopted Dubbo to implement the three

microservice modules, i.e., COMS, CSMS and AMS,

which deployed three physical mac-hine clusters for

each module. They completed the service registry on the

Zookeeper [30] and used the Nginx [31] server to

complete the service’s reverse proxy. To ensure the high

availability of the coordination service (denoted as CS),

we adopted Eureka [32] to achieve service registry and

service renewal and transferred the transaction entities

to the cluster-ed Redis database. In particular, the net-

work communication between the CS and multi-

microservice modules is based on Netty’s persistent

connection.

Functional experiment

In this subsection, we design a specific test case with

high randomness and a wide range to prove the func-

tional reliab-ility of our middleware solution with dis-

tributed transactions in the multi-microservice modules,

which can be described as follows.

� In COMS, the unit-price of item is randomly gener-

ated between $100 and $10,000, and the order num-
ber is set to be randomly generated between 1 and

1000, and the quantity purchased by the user is ran-

domly generated between 1 and 100. We initialize
the account balance in AMS to be $0, and the

amount of stocks in CSMS to be 0.

� In COMS, CSMS, and AMS, we embed a runtime

exception to abort the transaction process in the

business code for order numbers 100, 200 and 500,

respectively.
� Then, we continuously invoked the createOrder API

interface, making a total of approximately 50,000

calls.

Fig. 6 A case of Ctrip MSECP
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� Finally, we determined that the data-consistent dis-
tributed transaction in this case should meet the fol-

lowing two conditions: the sum of the order amount

and the account balance should be 0, and the sum
of the order quantity and stock quantity should be 0.

According to the five groups of experimental results

shown in Table 7 above, the createOrder interface was

called approximately 5000 times, and its orders were

successfully created approximately 2,450,000 to 3,180,

000 times. More importantly, all experimental data met

the above two condi-tions, i.e., Order amount + Account

balance = 0; Order number + Stock number = 0. There-

fore, our scheme is able to achieve consistent distributed

transactions for multiple applications involving

microservices.

Performance experiment

In this section, the evaluation of our scheme explores

three key questions:

1) How does the throughput and latency of the
optimized 2PC* compare with the traditional 2PC

approach at varying levels of contention across

microservices?
2) Can 2PC* guarantee its commit rate under the

scenario of high-level contention?

3) Can our optimization scheme compensate for failed
transaction steps?

Throughput

In this experimental case, we evaluated the throughput

performance of our scheme through the indicators of

TPS (transactions per second). We compare the TPS of

the optimized protocol 2PC* and 2PC and adopt the

number of local transactions of the database (i.e., Mysql)

as a reference. We ran 10, 20, 50, 100, 200, 300, and 500

concurrent threads to call COMS’s CreateOrder inter-

face, and each thread exe-cuted 10 comparison experi-

ments. Finally, we calculated and recorded the TPS

averages.

Fig. 7 Overall middleware architecture

Table 7 Data consistency experiment results

No. Call times Order amount Account balance Order number Stock number

1 50,142 24,842,305,224 −24,842,305,224 2,850,098 −2,850,098

2 51,203 27,514,201,548 −27,514,201,548 3,183,214 −3,183,214

3 50,893 22,870,237,842 −22,870,237,842 2,581,249 −2,581,249

4 50,071 24,847,024,109 −24,847,024,109 2,708,291 −2,708,291

5 50,019 23,787,312,291 −23,787,312,291 2,457,219 −2,457,219
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Through the experimental data shown below (Fig. 8),

when the number of concurrent threads is between 20

and 50, the distributed transactions are under low-level

contention. Compared with 2PC, the 2PC* protocol has

no significant advantage in terms of the TPS metric.

However, when the number of concurrent requests in-

creases from 50 to 100, the contention of the distributed

transactions increases from low to moderate, and the

performance gap between 2PC* and 2PC gradually

widens. At this point, when the number of concurrent

threads is between 100 and 200, the TPS of 2PC* can

still be maintained at a relatively optimistic level, i.e.,

670.3 and 552.8 new transactions/s, respectively, while

2PC’s TPS is reduced to 391.6 and 324.5, respectively.

Compared to transactions from the local database,

2PC*‘s TPS drops by ~ 32.7% when the number of con-

current requests is 200, while 2PC’s drops by ~ 60.5%;

the throughput of 2PC* improved by ~ 70.4% compared

to the original approach under moderate contention.

In the scenario with high-level contention, i.e., when

the number of concurrent requests is from 300 to 500,

2PC* shows significant advantages. Under the scenarios

with 300 concurrent requests, 2PC*‘s TPS reduces to

401.5 new trans-actions/s, which is still half the perform-

ance of the local transactions, while 2PC’s TPS reduces

to only 92.6. In parti-cular, when the number of concur-

rent requests peaked at 500, the throughput of 2PC

reached a performance bottleneck, while our scheme

could still scale out. As the experimental data show, the

transaction throughput performance of 2PC* is still quite

high compared to that of 2PC; the TPS values are 304.6

new transactions/s and 12.7 new transactions/s, respe-

ctively. We abandoned the low-performance synchron-

ous blocking lock in the control of transaction resources

and repl-aced it with a novel second-level asynchronous

lock, i.e., the SAOL, which can greatly reduce the

blocking caused by the surging number of transactions;

this is the key factor in the obvious advantage of the

TPS performance of 2PC*.

In summary, our scheme has a significant improve-

ment of throughput compared to the traditional ap-

proach, especially in scenarios of high-level contention.

In other words, when the number of concurrent requests

from users reaches a peak, the throughput of 2PC* can

still maintain excellent perfor-mance, and it can be ap-

plied to highly concurrent requests for microservices

with distributed transactions.

Latency

Transaction latency is another key indicator in our

evaluation. We adopt the service’s RT (response time)

parameter to evaluate the latency performance of 2PC*.

Similar to the experimental case in the “Throughput”

sub-section, we ran 10, 20, 50, 100, 200, 300, and 500

concurrent threads to call COMS’s CreateOrder inter-

face, performed 10 comparison experiments for each

thread and calculated their RT averages.

Through the analysis of the experimental results

(Fig. 9), when the transactions are under low-level con-

tention, i.e., the number of concurrent requests is be-

tween 20 and 50, 2PC*‘s RT has no obvious advantage

compared with that of 2PC; for example, when the num-

ber of requests reaches 50, our scheme only reaches

18.3% improvement. The RT of 2PC is more sensitive to

the increase in contention. When the number of concur-

rent requests grew to 200, the transactions reached

moderate-level contention, and the latency of 2PC*

achieved a significant performance advantage. In detail,

when the number of concurrent requests reaches 100,

the RT of 2PC* is only half that of 2PC. Compared to

the original businesses’ RT value, our scheme drops by

~ 39.6%. The latency superiority of 2PC* under high

Fig. 8 TPS experiment result
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contention becomes more obvious. When the number of

concurrent requests reaches 300, the RT of 2PC is 823.7

ms, which is 2.89 times that for the original business,

while our scheme only increases to 401.5 ms. In particu-

lar, when the contention reaches its peak, 2PC is no lon-

ger suitable for the distributed transaction across

microservices because its RT surpasses one second; it is

1352.7 ms. 2PC* is less sensitive to the increase in con-

tention; the RT drops by ~ 33.4% with the original busi-

ness and the latency is reduced by more than half

compared with that of 2PC.

Similar to TPS, the factors affecting RT performance

are closely related to the blocking rates between transac-

tions. In the runtime protocol, 2PC* adopts an

optimization algorithm based on a directed graph to ag-

gregate and reorder the depen-dencies between transac-

tions, which is able to reduce the conflict probability and

avoid deadlocks and aborts between transactions. Add-

itionally, the specific implementation utiliz-es the per-

sistent connection network communication mode of the

Netty framework, and we choose asynchronous threads

in the coding; these are the key factors that show the ob-

vious advantages of our proposed scheme in the experi-

mental results of latency.

In summary, 2PC* demonstrates a better latency

performa-nce with high-level contention than the trad-

itional approach. Moreover, under the high-concurrency

business scenario of microservices, our scheme can cre-

ate less overhead due to latency.

Committing rate

In the three cases of low, moderate, and high contention,

we evaluate the transactions’ commit rate under our

scheme. As shown in Fig. 10, 2PC* guarantees that the

transactions are committed successfully even when the

number of concurrent requests reaches a peak, while

2PC cannot be extended. When the transactions reached

high con-tention, 2PC’s commit rate dropped to almost

zero—from 0.31 to 0.03.

Under the scenario with 500 concurrent requests, we

count the instances of each of the three states of the trans-

action, i.e., RUNNABLE, WAITING and BLOCKED. We

then calculate their blocking rates. According to Fig. 11,

the blocking rates of 2PC* and 2PC both peaked at 450ms

and were 31% and 97%, respectively; thus, 2PC* is more

than 3 times better than 2PC in terms of the committing

rate. At this point, almost all threads in 2PC were blocked,

which is the key reason for its commit rate almost reach-

ing zero. 2PC* is also affected by the increase to high-level

contention, although it is less sensitive than 2PC because

it avoids aborting and retrying transactions. Compared

with the traditional approach, 2PC* improves the per-

formance of transaction committing by 3 to 4.5 times.

Transaction compensation

We continuously request the CreateOrder interface in

the weak network environment with 100 concurrent

threads, for which the running time is 30 s. As shown in

the experimental data (Fig. 12), the transactions under

2PC* and 2PC occurred with 23,853.6 and 21,976.1 ex-

ceptions, respectively. We then recover the net-work en-

vironment and perform the transaction compensation

process.

Our scheme can continuously compensate for excep-

tional transactions, which takes less than 3 s in total.

2PC* can be maintained at approximately 4831.4 groups

per second, while 2PC has little ability to compensate.

Based on BASE theory, 2PC* uses the CMQ asynchron-

ously to comp-ensate for these failed transaction steps.

In other words, it improves the fault tolerance of the

system, which is also essential in large distributed sys-

tems, such as microservices.

Fig. 9 RT experiment result
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Deployment and operations in cloud platform

Finally, we deployed our middleware solution in Ctrip’s

intelligent PaaS (Platform as a Service) cloud platform

[33], called CPaaS Fig. 13. Its core includes three basic

modules, namely, the big data platform, microservice ap-

plication platform and application integration platform.

The microservice business is deployed in the microser-

vice application platform. Mean-while, application per-

formance monitoring is responsible for managing the

monitoring of the service interfaces. More importantly,

our transactional middleware is deployed in the applica-

tion integration platform, which is responsible for the

distributed transaction control of microservices deployed

in the CPaaS platform.

Through the monitoring system of the CPAAS cloud

plat-form, we obtained the performance data of our

scheme over 3months. The results are shown in Table 8

below. TPS can be maintained at ~ 700 new transactions/s

with an RT of no more than 96ms. Most importantly, the

transaction commit rate is always 100%, and transaction

compensation can be successfully completed. Therefore,

the long-term monitoring results prove that our scheme is

stable and has universal app-licability in cloud computing.

Related work

In academia and industry, much of the recent work is

still focused on transaction concurrency control using

2PC comb-ined with OCC in distributed databases, such

as H-Store [32], VoltDB [34] by Michael and Samuel

et al. In both H-Store and VoltDB, where data is

assigned to different partitions according to specific

rules, one of the great contributions of H-Store is that

most transactions can be performed in a single partition,

thus greatly reducing the additional overhead of concur-

rency control. For example, H-Store can avoid the over-

head of concurrent protocols with single-thread model

for absolute single-partition transaction. It can supple-

ment a few cross-partition transactions with the light-

weight concur-rency protocol [35] to ensure possibility

of serializability. However, as we have mentioned in this

paper, these dist-ributed databases can only be applied

to the single database and cannot be extended across

Fig. 10 Commit rate experiment result

Fig. 11 Blocking rate experiment result
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multiple microservices, while 2PC* improved this

function.

The multi-data-center consistency (MDCC) proposed

by Tim Kraska et al. [36] used a commit method based

on optimistic control, which was frequently used for

storage across data centers. Therefore, MDCC does not

require a global master node or a static data partitioning

approach, and provides additional overhead similar to

the design of eventual consistency. MDCC is based on

Generalized Paxos [37] design, combined with Commu-

tative Operations support. Therefore, MDCC performs

better than any synchronous commit method. The rea-

son is that it requires only single message to commit

most transactional requests between multiple data

centers.

Google’s proposed Percolator [2] adopts OCC to sup-

port Snapshot Isolation [38]. Percolator compensates for

the lack of batch processing of document updates in sys-

tems such as MapReduce [39]. It supports incremental

document processi-ng and has been deployed by Google

in its internal web sear-ch system. To improve through-

put, Percolator allows multip-le clients to fetch docu-

ments simultaneously, and to provide isolation between

different clients, it uses 2PC combined with MVCC for

transaction support. Percolator has improved the timeli-

ness of Google web search results by 50% since Google

deployed it. The SAOL locking mechanism in 2PC* is

also borrowed from the Percolator’s design. SAOL uses

the snapshot to breaking down locks in transactions into

multiple levels of optimistic control, thereby reducing

the blocking overhead of synchronous locks in a

transaction.

In the Sinfonia [40] system built by Marcos K Aguilera

et al., the concept of Min Transaction was innovatively

Fig. 12 Transaction compensation experiment result

Fig. 13 Overall CPaaS cloud platform. Our transactional middleware is deployed in the application integration platform, i.e., the part identified as

red in the figure above
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propos-ed, and its transaction implementation was also

based on the 2PC protocol. Min Transaction is per-

formed by locking the access object in the first phase of

the Transaction and then committing it in the second

phase. Sinfonia perfected the 2PC mechanism and came

up with the concept of 1PC so that a single message ex-

change could commit the entire transaction for the co-

ordinator. Unfortunately, the 1PC protocol of the

Sinfonia is not able to be scaled for multiple microser-

vices, as microservices often exist in the form of cross-

services and cross-resources, which is the reason that

2PC* is still based on the two-phase commit protocol.

Andrei Furda et al. migrated microservices into the

cloud computing environment and addressed several key

issues in the process, one of which was data consistency

[41]. That is, the challenges encountered in migrating

legacy code runs can be summarized as operating decen-

tralized data repositories from a centralized data reposi-

tory to the microservices. Guy Pardon et al. studied the

BAC theorem (backup, availability, and/or consistency)

[42], which is an effective solution for the consistent dis-

aster recovery for microservices, and is inspired by the

CAP theorem. We also improved the fault tolerance of

the 2PC* protocol, which is similar to the even-tual

consistency they proposed, except that we borrowed

from the BASE theory.

Zhang et al. proposed GRIT’s distributed transaction

model across microservices [3], which utilizes determin-

istic database technology and OCC to process data con-

sistently. During the execution phase, transactions are

optimally exec-uted by capturing their read and write

operations. Then, at commit time, this method performs

a conflict check and makes a global commit decision.

Logically committed trans-actions are first transferred to

the log and then executed asyn-chronously to carry out

the database business. GRIT works at the procedural

language level of the different data-bases, and 2PC* also

adopts OCC’s optimistic control, but we focus on trans-

action concurrency optimization and data consistency

constraints.

Conclusion

This paper proposed 2PC*, a novel concurrency control

protocol for distributed transactions in multi-

microservice modules. For this purpose, we designed a

novel secondary asynchronous optimistic lock, which

can avoid the locks that are held in the transaction

process. 2PC* utilizes a novel transaction concurrency

control protocol, which is able to reduce the probability

of concurrent conflicts among multiple transactions.

Compared to the original 2PC, 2PC* can extract greater

concurrency across multiple microservices. Finally, we

implemented a middleware prototype based on 2PC*

and applied it to a case of Ctrip MSECP deployed in the

CPaaS cloud platform. The experimental results demon-

strate that in high-level contention scenarios, our

scheme has a higher throughput and lower latency than

2PC. Additionally, through long-term application per-

formance monitoring by the CPaaS cloud platform, our

scheme effectively supports distributed transaction con-

currency control in a multi-microservice system.

In addition, we intend to continue some of our re-

search in future work. We will adapt our scheme to

some microservice frameworks in addition to Spring

Cloud and Dubbo, which were discussed in this paper.

As cloud computing becomes more popular, we can de-

ploy it in DevOps [43, 44] in the PaaS [33, 45] cloud

platform. In the IoT (Internet of Things) [27, 29], where

cloud computing takes place, our scheme can also be ex-

tended. We also need to improve the QoS (quality of

service) [29, 46] of microservices under various scenarios

for mobile social networks [47] and hybrid networks

[48] in the future.
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