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Abstract: We apply the recently suggested strategy to lift state spaces and operators for

(2 + 1)-dimensional topological quantum field theories to state spaces and operators for a

(3 + 1)-dimensional TQFT with defects. We start from the (2 + 1)-dimensional Turaev-

Viro theory and obtain a state space, consistent with the state space expected from the

Crane-Yetter model with line defects.

This work has important applications for quantum gravity as well as the theory of topo-

logical phases in (3 + 1) dimensions. It provides a self-dual quantum geometry realization

based on a vacuum state peaked on a homogeneously curved geometry. The state spaces

and operators we construct here provide also an improved version of the Walker-Wang

model, and simplify its analysis considerably.

We in particular show that the fusion bases of the (2 + 1)-dimensional theory lead to

a rich set of bases for the (3 + 1)-dimensional theory. This includes a quantum deformed

spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry

operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang

Hamiltonian.

Furthermore, the construction presented here can be generalized to provide state spaces

for the recently introduced dichromatic four-dimensional manifold invariants.
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1 Introduction

In this paper we will construct a state space and operators for a (3 + 1)-dimensional

topological quantum field theory with line defects, based on the (2+1)-dimensional Turaev-

Viro topological invariant [1, 2]. There are interesting and timely applications for quantum

gravity as well as for the theory of topological phases in condensed matter. Additionally

the techniques discussed here may allow a generalization to recently introduced topological

invariants for 4-dimensional manifolds, introduced by Bärenz and Barrett [3]. For the

model discussed here we construct different bases, which generalize the fusion bases for

the (2 + 1)-dimensional extended topological quantum field theories [4–6], and reveal a

fascinating duality. These bases will allow a wide range of further applications, e.g. for

background independent definitions of entanglement entropy [7] or for the construction of

coarse graining schemes [8]. Let us shortly discuss these various points:
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Quantum geometry realizations and quantum gravity with a cosmological con-

stant: for canonical approaches to quantum gravity, such as loop quantum gravity, one

is interested in a state space describing the kinematical geometric configurations of a d-

dimensional hypersurface embedded into a (d+ 1)-dimensional manifold. Here one wishes,

in particular, for a realization that respects (spatial) diffeomorphism symmetry. Such

Hilbert spaces with diffeomorphism invariant states can be constructed from topological

quantum field theories with defect excitations, as was suggested in [9]. The first such con-

struction is known as the Ashtekar-Lewandowski (–Isham) representation [10–13] and in-

volves a trivial TQFT, in which the vacuum is peaked on a geometrically totally degenerate

configuration. This fact makes the construction of states describing large scale geometries

extremely complicated. This motivated the construction of a new quantum geometry re-

alization [15–17] based on the BF topological field theory [14], which involves a vacuum

peaked on vanishing curvature instead. This vacuum indeed solves three-dimensional grav-

ity without a cosmological constant. With a cosmological constant one would, however,

expect a vacuum describing a homogeneously curved geometry. There are a number of

approaches to incorporate homogeneously curved geometry into the kinematical set-up of

(loop) quantum gravity [18–21]. An important aspect, making such a construction very

attractive [22], is that one expects the Hilbert space associated to a fixed triangulation1

to be finite dimensional. Thus the spectra of observables, which preserve the triangula-

tion, are discrete. This also avoids divergencies that appear in SU(2) based spin foam

models [23–26] and allows for (tensor network) coarse graining schemes [27–33].

In (2 + 1) dimensions the Turaev-Viro (TV) [1, 2] topological quantum field theory

for SU(2)k describes Euclidean gravity with a cosmological constant. Thus one can expect

that a Hilbert space based on the TV model with defect excitations leads to a suitable

kinematical set-up for (2 + 1)-dimensional gravity with a cosmological constant. Such a

Hilbert space, together with geometric operators, has been constructed recently in [6]. Here

braiding relations between strands of a graph defining the states, play a very important

role. In generalizing this construction to (3 + 1) dimensions one has to find a way to

implement the braiding relations.

This problem can be solved following a strategy suggested by Delcamp and the au-

thor [34]: to use a so-called Heegaard splitting in order to represent a three-dimensional

(triangulated) manifold via a so-called Heegaard surface.2 On this Heegaard surface we

can define the Hilbert space and operators of the (2 + 1)-dimensional TV topological field

theory. Imposing certain constraints, we can interpret this Hilbert space as a state space

for a (3 + 1)-dimensional topological theory. This automatically incorporates a notion of

defects, which are confined to the one-skeleton of the triangulation.

We will find that the constraints reduce the Turaev-Viro state space to a state space

of the Witten-Reshetikhin-Turaev (WTR) TQFT [36] on the Heegaard surface. Indeed

1A continuum Hilbert space can be constructed via a so-called inductive limit, in which one considers a

partially ordered set of arbitrarily fine triangulations. The resulting Hilbert space is expected to be infinite

dimensional, which allows for operators with continuum spectrum.
2See [35] for a much earlier suggestion to use surfaces to represent (3 + 1)-dimensional state spaces for

quantum gravity.
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the WTR TQFT arises as a boundary theory of the Crane Yetter invariant [39], and we

consider here a boundary given by a spatial hypersurface.

The WTR invariant can be considered as a quantization of three-dimensional Chern-

Simons theory. This brings us to recent work by Haggard, Han, Kaminski and Riello [40–

44], which construct spin foam amplitudes for four-dimensional building blocks via the

Chern-Simons theory defined on the boundary of these building blocks. The work [40–44]

also provides a semi-classical analysis of these amplitudes leading to a phase space describ-

ing blocks of homogeneously curved geometry. In this work we will provide a quantization

of this phase space. We will encounter more similarities with [40–44]: namely longitu-

dinal and transversal Wilson loops (or holonomies in [40–44]) that take over the role of

both holonomies and conjugated fluxes. ‘Longitudinal’ and ‘transversal’ are with respect

to the boundary of a blow-up of the one-skeleton of the dual to the triangulation. Such a

boundary does in fact define a Heegaard surface.3 Here we will not only provide a quanti-

zation of the phase space describing homogeneously curved building blocks but also reveal

a deep duality: we will construct two different bases that diagonalize the transversal and

longitudinal Wilson loops respectively.

(3+1)-dimensional topological phases and their excitations: the study of topolog-

ical phases and their defect excitations has seen enormous progress in the last years. This

applies in particular to (2+1) dimensions. For the (3+1)-dimensional case less systematic

results are available, in particular regarding the understanding of defect excitations.

The Walker-Wang model, which is defined for a cubical lattice [45], generalizes the

(2 + 1)-dimensional string net models [46, 47] to (3 + 1) dimensions. String net models

describe a state space of graphs labelled by objects of a pre-modular fusion category. The

string net models do provide the state space for the Turaev-Viro models (based on the same

fusion category) with defect excitations. The Crane-Yetter (as well as Turaev-Viro) model

is believed to describe BF theory with a cosmological constant term [48]. This theory is

also argued to give the effective description for the Walker-Wang model [49]. Thus one

can conjecture that the Walker-Wang model describes the state space for the Crane-Yetter

TQFT’s with defect excitations.

The Walker-Wang model is defined by a state space and a Hamiltonian. An analysis

of the excitation content of these theories is provided by Keyserlingk et al. [49], which in

particular shows that the ground state degeneracy and the properties of the excitations

depend crucially on whether the fusion category is modular or not.

Here we will provide an improved version of the Walker-Wang model. (We discuss

modular fusion categories only, non-modular (but pre-modular) categories will be consid-

ered in [50].) Our technique allows the definition of this model for arbitrary lattices and

topologies. We furthermore provide different bases for the state space, in particular a basis

that diagonalizes the (plaquette terms of the) Walker-Wang Hamiltonian. This makes the

analysis of the excitation content straightforward. In particular we can show uniqueness of

the ground state (in the modular case) for arbitrary lattices and topologies. Furthermore

3One difference is that here we depict the Heegaard surface as the boundary of the blow-up of the

one-skeleton of the triangulation, as it is the one-skeleton that carries the curvature defects.
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it seems possible to replace the Crane-Yetter invariant with the recently introduced dichro-

matic invariants [3], which can lead to a more intricate excitation structure and degeneracy

of the ground state.

The model we discuss here can be seen as a quantum deformation of lattice gauge

theory. One can understand lattice gauge theory configurations in terms of defect exci-

tations [8]. The notion of these excitations depends on a choice of vacuum. The bases

that we will construct here, make the excitation content explicit with respect to two vacua

that are dual to each other. This can help to define coarse graining schemes as well as

(background independent) notions of entanglement entropy [7].

Duality and Fourier transform: we will identify an interesting set of bases for the

(3 + 1)-dimensional state space we will be constructing. All these bases are represented by

a graph whose edges are labelled by SU(2)k irreducible representations.

There are in particular two bases that are dual to each other. These are associated to

the one-skeleton of the triangulation and the one-skeleton of the dual complex respectively.

The latter basis coincides4 with a (quantum deformed) spin network basis [51, 52], which

diagonalizes (spatial) geometry operators, such as the areas of the triangles. The dual basis

is associated to the one-skeleton of the triangulation and can be interpreted as encoding

the curvature (in excess of the homogeneous curvature) concentrated on this one-skeleton.

We will therefore refer to it as the curvature basis. It generalizes the fusion basis for the

(2 + 1)-dimensional case, as it encodes the excitations away from the vacuum peaked on

homogeneous curvature. (All these bases do descend from (2 + 1)-dimensional fusion bases

on the Heegaard surface, however, the geometrical interpretation of these bases differs for

the (3 + 1)-dimensional theory.)

The spin network basis diagonalizes Wilson loops along the boundary of the triangles

of the triangulation, which represent exponentiated flux operators [15–17, 40–44]. The cur-

vature basis diagonalizes Wilson loops around the edges of the triangulation and represent

holonomy operators, measuring curvature. The transformation between these two bases

is therefore a generalized Fourier transform. A related duality transform, but involving

expectation values of geometric observables in three- and four-dimensional state sum mod-

els, has been discussed in [39, 53–56]. Here we also find that the spectra of both kinds of

Wilson loops coincide, revealing a deep self-duality.

The two bases also define two different vacua: setting all free labels of the curvature

basis to be trivial we conjecture that we obtain the Crane-Yetter (or quantum deformed

BF) vacuum. Setting all labels to be trivial for the spin network basis we obtain a (quantum

deformation of the) Ashtekar-Lewandowski vacuum, expressed on a fixed triangulation or

dual graph. Note however that a refinement of these states (in order to define the continuum

limit) would require different embedding maps [57, 58]. The entire construction rather

assumed a quantum deformed BF vacuum and we can therefore expect that the operators

we consider here are cylindrically consistent with respect to this vacuum. Thus it should be

straightforward to construct a continuum Hilbert space based on the techniques in [15–17].

4Here, in the sense that both basis arise from graphs dual to a triangulations, with links labelled by

SU(2)k representations.
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We leave the question whether one can construct also an Ashtekar-Lewandowski vacuum

based continuum Hilbert space, based on the techniques presented here, for future research.

Outline of the paper: in the next section 2 we will outline the construction for the

(3 + 1)-dimensional state spaces. This needs two pre-requisites. First the construction

of state spaces for the (2 + 1)-dimensional Turaev-Viro theory, which we will review in

section 3. Secondly some basics on Heegaard splittings, that we provide in section 4. We

then construct the state spaces, bases, and operators for the (3 + 1)-dimensional theory in

section 5. In section 6 we discuss a number of examples, that is, state spaces for different

choices of triangulations and lattices. We will, in particular, consider the 3-torus with a

cubical lattice that underlies the Walker-Wang model. We close with a discussion and

outlook in section 7.

2 Outline of the construction

We will follow the strategy outlined in [34] in order to construct the state space for a

(3 + 1)-dimensional topological quantum field theory with defects from the state space for

a (2 + 1)-dimensional topological field theory.

The state spaces for the (2 + 1)-dimensional topological field theories are defined on

(possibly punctured) surfaces Σ. Since we are dealing with a topological field theory the

state space depends only on the topology of the surface. For the class of topological field

theories discussed here degrees of freedom are associated to (equivalence classes of) non-

contractible cycles on the surface Σ.

We now wish to consider a (3 + 1)-dimensional topological field theory, which also

associates degrees of freedom to non-contractible cycles. On the three-dimensional equal

time hypersurfacesM we will allow for line defects, and more generally for a defect graph.

By definition, we require that cycles cannot be deformed across the edges of a defect graph.

For a sufficiently nice defect graph, in particular, if the defect graph coincides with the one-

skeleton of a triangulation, we can encode the information on the first fundamental group

by a so-called Heegaard diagram. This is given by a (Heegaard) surface, which can be

obtained as the boundary of a blow-up of the defect graph. The Heegaard surface is in

addition equipped with a set of curves which are contractible in the enclosing manifold

complement, but not contractible on the Heegaard surface itself. We will refer to these

curves as C2 curves.

Thus we can adopt the state space of a (2 + 1)-dimensional TQFT for the Heegaard

surface. To make the interpretation as a state space for a (3 + 1)-dimensional TQFT

with defects viable, we have to impose constraints that do not allow any excitations to be

associated to the C2 curves. Thus these curves appear effectively as contractible curves.

We will apply this strategy to the state space of the Turaev-Viro topological quan-

tum field theory (TV TQFT). Here braiding relations play an important role, making the

presence of the Heegaard surface particularly useful.

To proceed we will first review the state space and operators for the TV TQFT. We

will then provide the necessary basics on Heegaard diagrams and handle decompositions.

Finally we will use these techniques to construct the state space for the (3+1) dimensional

TQFT with defects.
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We provide some background material on the quantum group SU(2)k and a re-

lated graphical calculus in the appendix. More extensive treatments can be found in

e.g. [6, 59–61].

3 Hilbert space for Turaev-Viro states on (closed) surfaces

We consider a closed genus g surface and want to construct an associated Hilbert space

spanned by solutions of the TV TQFT for this surface [4, 6, 62]. (Being a solution means

that the states are in the image of the projector defined by the path integral or, equivalently

satisfy the constraints associated to the TV theory.)

This Hilbert space will be spanned by states based on graphs, whose links are labeled

(or coloured) by SU(2)k representations, embedded into the surface Σ. We will impose

equivalence relations on such graph states. These equivalence relations impose the flatness5

constraints. These will ensure that we can isotopically deform the graph, so that degrees of

freedom are only associated to non-contractible cycles. Gauß constraints, derived from (a

quantum deformed version of) gauge invariance, are imposed through the coupling rules of

SU(2)k, which will restrict the allowed colourings of the graphs. These constraints ensure in

particular that the graphs, on which the states are based, cannot have open ends (labelled

with non-trivial representations).

In the following we define the graphs, colourings and equivalence relations in

more detail.

Graphs: we consider trivalent graphs embedded into the surface Σ. For SU(2)k, which

has self-dual representations, we do not need an orientation for the strands of the graphs.

Colourings: we colour the strands of a given graph with irreducible, admissible repre-

sentations of SU(2)k, that is, with labels j = 0, 1/2, . . . , k/2. These labels also correspond

to simple objects from the fusion category associated to SU(2)k. For each node we impose a

coupling condition: the three representations meeting at a (trivalent) node need to include

the trivial representation in their fusion product. (For SU(2)k the ordering in this fusion

product does not influence the coupling conditions, which are detailed in (A.5).)

Equivalence relations: on the space of embedded coloured graphs we impose the fol-

lowing equivalence relations:

• Strands can be (isotopically) deformed:

j = j . (3.1)

• Strands with trivial representations can be omitted:

0

jj

= j . (3.2)

5Here ‘flatness’ means a quantum deformed flatness, that is, in the gravitational context states satisfying

F ∼ Λe∧e. In condensed matter literature the corresponding constraint is also known as plaquette constraint

or plaquette stabilizer.
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• The local connectivity of the graph can be changed by a so-called F -move:

i
m

k

l

j

=
∑
n

F ijmkln

i

n

k

l

j

. (3.3)

The F -symbol is defined in the appendix, equation (A.9).

• Contractible loops of a graph can be annihilated using bubble moves:

k

i

l

j =
vivj
vk

δkl δijk

k

l

. (3.4)

Here vj = (−1)j
√
dj is the square root of the quantum dimension of the representa-

tion j. With dj we denote the quantum number [2j+1] defined in (A.2). Furthermore

δijk = 1 if the triple i, j, k dis admissable (see (A.5)), and δijk = 0 otherwise. Note the

special case k = l = 0 and thus i = j, stating that the j-bubble graph is equivalent

to v2j times the empty graph.

Crossings: we can also allow crossing of strands, but we need to keep track which strands

are over-crossing and which are under-crossings. A crossing can be resolved into two three-

valent nodes using the relations (A.12). Note that double over– or under– crossings can be

also resolved by deforming one of the strands:

= (3.5)

A particularly important identity involves a strand circling another strand:

j

j

i =
sij
s0j

j

j

, (3.6)

where sij is the so-called (rescaled) S-matrix defined in (A.14), (A.15).

Vacuum strands: vacuum strands are defined as weighted sums over the strands labelled

by admissible irreducible representations of SU(2)k:

j

j

:=
1

D
∑
k

v2k

k

l

. (3.7)

Here D is the total quantum dimension, defined in (A.4).
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A loop made out of a vacuum strand enjoys a special property known as the sliding

property. This holds for loops enclosing an arbitrarily complicated region. The sliding

property makes the region enclosed by the vacuum loop invisible to outside strands, in the

sense that we can slide strands over the region:

j

j

=

j

j

. (3.8)

Thus we are allowed to deform Wilson lines, or holonomy operators, across the enclosed

region. We can therefore interpret the vacuum loop as enforcing flatness over the en-

closed region.

Note that the insertion of a normalized vacuum loop, that is of a vacuum loop weighted

with 1/D, defines a projection operator P, satisfying P ◦ P = P. To see this, slide one

vacuum loop over the other loop and use the bubble move relation (3.4).

Furthermore, vacuum loops encircling a strand, force the associated representation

label to be trivial:

j

j

= D δj0. (3.9)

This killing property holds (only) for modular fusion categories (such as SU(2)k), in which

the S-matrix is invertible. The killing property can be generalized to pre-modular fusion

categories, but in this case only the non-transparent part of the strand going through the

vacuum loop is annihilated, see [3]. Transparent objects are objects that braid trivially

with all other objects of the category. The killing property will play an important role in

our discussion of the (3 + 1)-dimensional theory.

Bases: it is rather involved to find a set of independent states under the equivalence

relations (3.3) and (3.4). However a systematic way of constructing a basis for a given

genus g surface is known [4, 63, 64]. It is a generalization of the so-called fusion basis for

punctured spheres [4]. These bases are defined to be orthonormal, which equips the Hilbert

space with an inner product.

If the surface Σ is a sphere, all cycles are contractible, and the equivalence rela-

tions (3.1)–(3.4) can be used to reduce any graph to the empty graph. The Hilbert space

associated to the sphere is therefore one-dimensional. The first non-trivial case is when

Σ has the topology of the torus. Two bases for the torus are depicted in equation (3.10.)

The bases diagonalize over– and under-crossing Wilson loops around the equator (for the

basis depicted on the left side) or the meridian (for the basis depicted on the right side)

respectively, as we will see further below. The two bases are connected by a unitary trans-
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Figure 1. A basis for a genus 3 surface. Three of the shown vacuum loops can be contracted to a

trivial cycle after using repeatedly the sliding property with the remaining vacuum loops.

formation

ju

jo

=
∑
ko,ku

Sjoju,koku
ko

ku

(3.10)

described by a so-called S-matrix (associated to the Drinfeld double of SU(2)k), which

factorizes into parts describing the over-crossing and under-crossing graphs respectively:

Sjoju,koku = Sjoko Sjuku . (3.11)

For a genus g ≥ 2 surface we decompose the surface into pants, that is, thrice-punctured

spheres. To this end we need to cut the surface along (3g− 3) non-contractible curves. We

will refer to this set of cutting curves as CB. We can construct a trivalent graph F dual to

this set of curves. (This graph is also called a spine.) Each link of F crosses one curve, and

each pant component carries one node of the graph F . A basis can now be constructed as

follows: we double the graph F to a double strand graph, where one copy Fo of the graph

is formed from over-crossing strands and the other copy Fu from under-crossing strands.

Along each cutting curve we draw a vacuum loop, that over-crosses the under-crossing

graph copy and under-crosses the over-crossing graph copy.6 Figure 1 shows a choice for

vacuum loops and the over– and under-crossing graphs for a genus 3 surface.

The set of these states given by all admissible colourings of the double graph, defines

an orthonormal basis for the Hilbert space H(Σ).

Different bases, with different underlying choices for the spine F can be transformed

into each other by two transformations:

6The set of vacuum loops will in general be over-complete, in the sense that vacuum loops can be slid

over each other and then projected out. There will be, however, a minimal set of vacuum loops that cannot

be further reduced. This corresponds to a set of independent cycles in the graph F . Note however that for

each redundant vacuum loop that we remove we need to multiply the state with a factor of D, so that the

norm remains invariant.
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• The S-moves apply when two boundaries of a three-punctured sphere are glued to

each other:

ko

ku

io

iu
=
∑
jo,ju

Sioiukoku,joju

ju
jo

iu
io

. (3.12)

The S-transformation factorizes again in an under-crossing and over-crossing part

Sioiukoku,joju
= Aiokojo B

iu
kuju

, (3.13)

where the tensors A and B are defined in (A.17).

• Flip moves, or F-moves apply to a gluing of two three-punctured spheres to form a

four-punctured sphere:

io

jo

iu

mo

mu

ko
ku

lolu

ju

=
∑
no,nu

F iojomo

kolono
F iujumu

kulunu

io
iu lolu

jo

ju

ko

ku

no

nu

. (3.14)

This transformation property follows from the F-move equivalence (3.3) and the fact

that a vacuum loops sourrounding several punctures can be generated combining the

vacuum loops around the constituent punctures. That is, the vacuum loops around

the punctured spheres in (3.14) are redundant, given that there are vacuum loops

around the four boundary punctures (which are not depicted in (3.14)).

The fact that these transformations keep the splitting into an over-crossing and an under-

crossing graph intact, will play an important role later-on.

Ribbon operators: on the Hilbert space H one can define so-called ribbon operators [6,

46, 47, 65], which change the graph state in the region covered by the ribbon. From a

lattice gauge theory or loop quantum gravity perspective these ribbon operators unify flux

and holonomy operators [8, 65]. Open ribbon operators require the presence of punctures,

we will therefore consider only closed ribbons. For a modular category (such as SU(2)k)

the closed ribbon operators are labeled by two representations (ko, ku) and act by inserting

an over-crossing Wilson loop with colour ko and an under-crossing Wilson loop with colour

ku along the ribbon [6].

– 10 –



J
H
E
P
0
5
(
2
0
1
7
)
1
2
3

The type of bases described above diagonalize the Wilson loops that are parallel to

the vacuum loops. This can be seen by sliding the Wilson loop across the vacuum loop:

ko

ku

ju jo

=

ju jo

ko

ku

=
sjoko
v2jo

sjuku
v2ju

ju jo

(3.15)

where the (rescaled) S-matrix sjk = DSjk determines the eigenvalues of the Wilson loop

operators.

4 Heegaard splittings and diagrams

Let M be a three-dimensional closed, orientable, connected, and compact manifold M.

The topology of such a manifold can be encoded into a Heegaard diagram [66, 67]. Such

a diagram is defined as a set of non-contractible and non-intersecting curves on a closed

(so-called Heegaard) surface Σ.

This Heegaard surface arises through a Heegaard splitting of the manifold M, that

is a representation of M = M1 ∪M2 as the union of two handle bodies M1 and M2.

Handlebodies are three-dimensional manifolds with boundary that arise from the gluing of

closed three-dimensional balls. This gluing is accomplished by identifying pairwise disks

on the boundary of the 3-balls.

The Heegaard surface Σ = ∂M1 = ∂M2 is defined as the boundary of these handle-

bodies and can therefore be considered to be a surface embedded into M, that splits M
into two parts.

The Heegaard surface can be equipped with two sets of closed, non-contractible (on

Σ), curves. The first set C1 are curves that can be contracted by homotopy inM1 to trivial

cycles. Here we need only to consider a minimal generating set of equivalence classes of

curves, where two curves are equivalent if they are related by homotopy on Σ. Likewise,

the second set C2 is given by (equivalence classes of) curves which can be contracted inM2.

Here we will be interested in representing states on a manifold with defects. These

defects will prevent the contractibility of the curves from the set C1, that is the defect

structure can be identified with the handle body M1.

We can achieve a Heegaard splitting through a triangulation ∆ of the manifold M.

(Or more generally by using a discretization of M via a cell complex.) To this end we

consider the one-skeleton ∆1 of the triangulation, that is the set of edges and vertices.

The handlebody M1 will be given by the closure of a regular neighbourhood of this one-

skeleton. This can be imagined as a blow-up of the one-skleleton. Indeed, we can construct

such a blow-up of a one-skeleton as a handlebody by identifying the blowen up vertices

as 3-balls that are glued to each other via the (blowen up) edges. This one-skeleton will

be allowed to carry the (curvature) defects by defining curves from the set C1 to be not
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contractible. A (possibly over-complete) set C1 of such curves is given by choosing a cycle

around each edge of the triangulation. The (over-) completeness of this set follows from

the same argument as we present for the set C2 below.

We will however impose contractibility for the second set of curves C2. A set of curves,

that are contractible throughM2, can be also constructed from the triangulation: we con-

sider the set of triangles in the triangulation and for each triangle t take the curve that

arises from t ∩ Σ(∆), where Σ(∆) is the embedded Heegaard surface defined by the trian-

gulation ∆. This set C2({t}) determined by the triangles is (over-) complete: cutting the

handlebody M2 along disks that are bounded by these curves we remain with a collection

of 3-balls, one for each tetrahedron of the triangulation. The boundary of a given 3-ball

is given by a sphere with four punctures, corresponding to the four triangles bounding the

associated tetrahedron. Curves on the sphere not surrounding a puncture can be trivially

contracted on this sphere. If a curve surrounds a puncture we can also move this curve

across the puncture, as this puncture corresponds to a triangle, and thus a curve in C2.
The Heegaard diagram, that is the Heegaard surface equipped with the sets C1 and

C2 of curves, encodes the topology of the manifold M. Such an encoding can be also

used to construct a so-called handle decomposition of M [67]. This describes M as the

gluing of n-handles, where n = 0, 1, 2, 3. A 0-handle is a 3-ball and 1-handles are (‘long

and thin’) cylinders D × [0, 1], that are glued along the discs D × {0} and D × {1} to

disks on the boundary of the 0-handles. The gluing of 0-handles and 1-handles gives by

definition a handlebody, which will give the first part M1 of our Heegaard splitting. One

can always find a handle-decomposition with only one 0-handle: if the Heegaard surface is

a genus g surface we need one 0-handle and g 1-handles. (In the triangulation picture this

reduction can be achieved by contracting the edges of the triangulation along a connected

and spanning tree in the graph given by the one-skeleton of the triangulation.) 2-handles

are also cylinders (or pancakes) [0, ε] × D, that are glued along the circumference of the

cylinder [0, ε] × {r = 1} × [0, 2π] to the handlebody resulting from the 0- and 1-handles.

Given a Heegaard diagram one glues the 2-handles along the curves in the set C2 to the

handlebody M1. (This requires framed curves, but the 2-handles can be only glued along

curves without twists, thus a framing is naturally defined parallel to the Heegaard surface.)

Having glued 0-,1- and 2-handles, there is a unique way to glue 3-handles (solid 3-balls)

along their spherical surfaces such that one obtains a closed three-dimensional manifold.

5 Hilbert space for three-dimensional manifolds with (line) defects

The Heegaard diagrams allow us to encode the topology of a manifold into a surface

decorated with curves. Additionally we can allow the handlebodyM1, which can be defined

as the blow-up of the one-skeleton of a triangulation, to carry curvature excitations. That

is, we do not impose contractibility for curves in C1, that are contractable through the

handlebody M1, but not in the Heegaard surface Σ.

We can thus use the Hilbert space structure defined for a surface in section 3 to

define a Hilbert space H(Σ) associated to the Heegaard surface Σ. Due to the equivalence

relations (3.1), (3.3), (3.4) for graph based states this Hilbert space encodes degrees of
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freedom associated to non-trivial cycles of the Heegaard surface. Even though we plan

to keep cycles contractible through M1 as possibly non-trivial, we still want to impose

triviality for cycles in C2.
We therefore impose 2-handle constraints. To this end we remind the reader of the

sliding property of vacuum loops, discussed in section 3. This property does indeed ensure

that any strand along a vacuum loop can be reduced to a contractible strand. We therefore

define projection operators, one for each equivalence class of curves in C2. A projection

operator associated to a given curve is defined as inserting an over-crossing7 normalized

vacuum loop along this curve.

We then define a new Hilbert space H(Σ, C2) as the image of these projectors of the

Hilbert space H(Σ). We can also lift operators on H(Σ), that leave the subspace H(Σ, C2)
invariant, to operators on H(Σ, C2).

5.1 Imposing the 2-handle constraints

In section 3 we discussed different bases for the Hilbert space H(Σ). We now want to

choose a basis that simplifies the imposition of the 2-handle constraints.

A basis for a surface Σ can be specified by choosing a set of curves CB, along which

Σ is cut into three-punctured spheres. Let us choose CB such that it includes the set C2.
As explained in section 4 these curves cut Σ(∆) into four-punctured spheres. (If we use

other lattices we may obtain spheres with a different number of punctures.) Thus all that

remains to do is to choose for each of these spheres one closed curve that cuts a given

four-punctured sphere into two three-punctured ones. Note that these additional cycles

can be generated from the cycles in C2.
The basis associated to the set CB is then constructed by (a) inserting a vacuum loop

along each loop in CB. (It is actually sufficient to consider only vacuum loops along curves

in C2, as the corresponding cycles generate all the cycles in CB.) And (b) we construct

a graph F dual to the curves in CB. We then consider a doubling of this graph F ; one

copy Fu made of under-crossing strands and the other copy Fu of over-crossing strands. In

particular Fu under-crosses the vacuum lines along curves in CB and Fo over-crosses the

same vacuum lines. Allowing all admissible colourings of these graphs we obtain a basis

for H(Σ).

We now impose the 2-handle constraints, that is impose the projectors given by over-

crossing vacuum loops along curves in C2. Along a given curve c in C2 we thus have two

vacuum loops: one, co is over-crossing the dual strand in both graphs Fu and Fo, and the

other vacuum loop cu is over-crossing Fu but under-crossing Fo. We can slide the vacuum

loop cu over co. This does not affect Fu, as it under-crosses both vacuum loops. However

after the sliding, the vacuum loop cu is encircling the strand of Fo which is dual to c. Hence

according to the killing property (3.9) the strand is annihilated, i.e. only states in which

7We could also choose to use under-crossing vacuum loops, but over-crossing ones are more natural as

the constraints imposes contractibility through M2 that surrounds M1.
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this strand of Fo carries the trivial label, survive:

ju
jo

=

ju jo

= D δjo0

ju

. (5.1)

This annihilation applies to all strands of the over-crossing copy Fo, that cross loops

in C2. The cycles in C2 do generate all the cycles in CB, and in fact the entire copy Fo is

annihilated. That is all strands of this copy Fo are forced to carry the trivial representation

label j = 0.

Thus we have a basis of the constrained Hilbert space H(Σ, C2) labelled by all admis-

sible colourings of the graph Fu, which is dual to a set of cutting curves CB obtained from

completing the set C2. We will refer to such a basis as a B2-basis.

We have seen that the 2-handle constraints kill the over-crossing copy of the graph

Fo. The resulting state space can be identified with the state space for the WTR model.

Indeed, the TV partition function is in a precise sense given by a square of the WTR

partition function [68–71].

5.2 Bases and Fourier transform

We can express this set of states, satisfying the 2-handle constraints, also in an alternative

basis. As explained in section 3 a basis transformation can be implemented via S- and

F-maps. Both these maps do not mix the under-crossing and over-crossing copies Fu and

Fo. Let us consider an S-move, defined in equ. (3.12), and apply it to some element of the

B2 basis, satisfying the 2-handle constraints:

ku
iu

=
∑
ju

Biu
kuju

ju

iu . (5.2)

Here we assume on the left hand side a state of the B2 basis, with a 2-handle constraint

along the meridian curve of the punctured torus. Thus the over-crossing graph copy is

labelled by trivial representations, in particular ko = 0. Exchanging the meridian curve

with the equator curve in the set CB, which defines a new basis, we can express the state

of the original basis, shown on the left hand side of (5.2) as a linear combination of new

basis states, shown on the right hand side of (5.2). Here the over-crossing graph copy Fo
features a vacuum loop along the curve that defines the 2-handle constraint.

We see that the S-move does define new basis states that satisfy again the 2-handle

constraints. These basis states are again labelled by the representations assigned to the
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under-crossing graph copy only. The over-crossing graph features a vacuum loop along the

2-handle attaching curve.

Follow-up F-moves can in principle lead to more involved prescriptions for the over-

crossing graph copy Fu. We can, however, always re-apply the (normalized) vacuum loops

along the C2 curves, and the sliding property for these vacuum loops can be used to simplify

the over-crossing graph copy again. In addition one can use the sliding property across the

vacuum loops, which define the basis, i.e. are parallel to the CB curves. We will however

not need to know the exact state for the over-crossing copy: it suffices to know that it

is uniquely prescribed (as it is defined by applying the basis transformation to a B2 basis

state where the over-crossing copy Fu is trivial), and that the 2-handle constraints are

always imposed.

Above we discussed a basis constructed with cutting curves that include the set C2
of 2-handle attaching curves. These curves go along the boundaries of the triangles. The

graph F is dual to these curves: thus we have one link for each triangle. These links meet in

a priori four-valent nodes, representing the tetrahedra of the triangulation. For the graph

F these nodes are expanded into three-valent nodes. Thus a B2 basis can be identified

as a quantum deformed spin network basis [18, 51, 52, 72–74]. This allows us to define

a (Ashtekar-Lewandowski like) vacuum state (on a fixed triangulation), by assigning only

trivial labels also for the under-crossing graph Fu in the B2 basis.

Another interesting basis is constructed from cutting curves that include the set C1,
given by cycles around all the edges of the triangulation. If we cut the Heegaard surface

along all curves in C1 we remain with punctured spheres associated to the blown up vertices

of the triangulation. Depending on the valency of these vertices we need to introduce further

cutting curves to obtain three-punctured spheres. These additional cutting curves are once

again generated by the cycles in C1. We refer to such a basis as a B1 basis.

Note that, for the case that the three-dimensional manifold M has the topology of

the 3-sphere, the 2-handle constraints together with the vacuum loops parallel to the C1
cycles allow to reduce the over-crossing graph copy to the vacuum loops associated to the

2-handles.

We can use a B1 basis to impose flatness constraints, i.e. to make also curves in C1
contractible, and thus remove defect excitations a-priori allowed on M1. These flatness

constraints define the plaquette terms in the Walker-Wang Hamiltonian [45]. In fact, as

we will discuss in the next section Wilson loops along C1 curves will be diagonalized by the

B1 basis. In this sense the B1 basis diagonalizes the Walker-Wang Hamiltonian8 and labels

the (curvature) excitations of the Walker-Wang model.

Ground states of the Wallker-Wang model have to satisfy the flatness constraints.

These are imposed by under-crossing vacuum loops around the edges of the triangulation,

that is, along the curves in C1. We thus have for each edge of the triangulation two parallel

vacuum loops, one under-crossing the graph Fu and the other over-crossing the graph Fu.

These vacuum loops force all representation labels of Fu to be trivial.

8Here we consider only the plaquette part of the Hamiltonian. A second part suppresses violations of

the coupling conditions at the nodes, but we do not consider such violations here.
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Hence we have shown that the ground state of the model as defined here, is unique,

namely given by a labelling of Fu with only trivial representations. (This holds for modular

fusion categories where the killing property (3.9) holds.) The line of argument we used

here is quite straightforward compared to the arguments used in [49], to show the non-

degeneracy of the vacuum of the 3-torus.9 Additionally our argument covers all compact

topologies (of the equal-time hypersurfaces) at once.

We conjecture that this ground state, i.e. the state given by assigning trivial labels

to Fu in the B1 basis, can be also identified with a quantum deformed BF or Crane-

Yetter vacuum.

We thus have two dual vacuum states, that are both given by trivial representation

labels for the under-crossing graph copy in a B1 basis and a B2 basis respectively. These

two vacuum states are associated to graphs that are given by the one-skeleton of the

triangulation (for the quantum deformed BF vacuum) and the one-skeleton of the dual

complex (for the quantum deformed AL vacuum) respectively.

The transformation from a B1 basis to a B2 basis can be obtained by applying an

appropriate sequence of S- and F-moves. For a lattice gauge theory this is equivalent to

transforming the holonomy (or group) representation to the spin network representation.

Such a transformation is based on a group-Fourier transform. The transformation from a

B1 basis to a B2 basis implements therefore a (q-deformed) Fourier transform.

5.3 Operators on the constrained Hilbert space

We can furthermore consider operators on H(Σ) that commute with the projectors defined

by the 2-handle constraints, that is operators that leave the constrained Hilbert space

invariant. In section 3 we discussed (closed) ribbon operators, which in the case of the

modular fusion category SU(2)k amount to inserting over-crossing and under-crossing Wil-

son loops. From the discussion in section 5.1 it is clear that the under-crossing Wilson

loops preserve the constrained Hilbert space H(Σ, C2).
There are two particularly interesting classes of loops: along curves in C1 and along

curves in C2. Let us discuss the loop operators along these curves, starting with curves from

C1. As shown in (3.15) loop operators along C1 curves are diagonalized by a B1 basis, for

which we have vacuum loops along the C1 curves. Similarly Wilson loops along C2 curves

will be diagonalized by the B2 basis.

As discussed the B2 basis corresponds to the spin network basis as e.g. used in loop

quantum gravity. An SU(2) spin network is a graph based on the dual graph to a triangula-

tion, which is labelled by representations of SU(2). The spin network basis diagonalizes the

Casimir operator formed from the so-called flux operators, associated to a given triangle.

Geometrically, the square root of this Casimir operator defines the area operator for this

triangle, and has eigenvalues proportional to
√
j(j + 1), if the link through this triangle

carries the label j [51, 52]. In the quantum group case the l-Wilson loop operator along a

9A similar argument is used in [75] to show uniqueness of the vacuum for a specific model based on a

cubical lattice.
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C2 curve that (in the B2 basis) crosses a strand labelled by j, gives an eigenvalue

sjl
v2j

=
(−1)2l[(2j + 1)(2l + 1)]

[2j + 1]
= (−1)2l

sin
(

π
k+2(2j + 1)(2l + 1)

)
sin
(

π
k+2(2j + 1)

) . (5.3)

If we consider a normalized l-Wilson loop operator, that is, a l-Wilson loop operator divided

by the (signed) quantum dimension v2l we obtain as eigenvalue

sin
(

π
k+2(2j + 1)(2l + 1)

)
sin
(

π
k+2

)
sin
(

π
k+2(2j + 1)

)
sin
(

π
k+2(2l + 1)

) = 1− 8

3
j(j + 1) l(l + 1)

(
π

k + 2

)2

+ O
((

π

k + 2

)4)
. (5.4)

Thus we can extract in the limit of large k the SU(2) Casimir eigenvalue j(j + 1). In

the loop quantum gravity interpretation [51, 52] this gives the square of the area of the

triangle enclosed by the Wilson loop. The limit (5.4) for the eigenvalues of the normalized

Wilson loop operators suggest a geometric interpretation for these operators: in SU(2)

one can approximate the Casimir operator of the group via a sum over the cosine function

applied to the Lie algebra generators [15–17]. Due to the exponentiation this operator does

however violate gauge invariance. One can however project the operator back to a gauge

invariant one, and the resulting spectrum approximates the Casimir spectrum j(j + 1) for

sufficiently small representation labels [15–17]. For larger j the bound imposed by taking

the cosine of the generators sets in.

The eigenvalues (5.4) show also this behaviour, with the representation k of the Wilson

loop functioning as the exponentiation parameter and playing the same role as a step size

for a discrete Laplacian. Thus we can relate the normalized Wilson loop around the

triangles to an (exponentiated) area operator. Here the gauge invariance is manifestly

preserved however.

Another reason to identify the Wilson loop around triangles with an exponentiated

area operator is the analysis of [40–44]. There one considers phase spaces associated to

homogeneously curved simplices. The holonomy around a homogeneously curved triangle

is thus constrained by the fact that the curvature integrated over the triangle has to

be proportional to the area of the triangle. A third reason is provided by [34], which

constructs the lift of state spaces and operators for three-dimensional TQFT’s to state

spaces and operators for four-dimensional TQFT’s with line defects to BF theory with

classical groups. In this case ribbon operators that go around triangles and preserve the

2-handle constraints indeed map to (exponentiated) flux operators, from which one can

define, via gauge averaging, the (exponentiated) area operators.

For (normalized) Wilson loops along C1 curves, that is, around the edges of a trian-

gulation, one finds — of course — the same eigenvalues. These operators are diagonalized

in the B1 basis [6]. These eigenvalues (5.4) do indeed approach in the limit k → ∞ the

eigenvalue for the normalized SU(2) Wilson loop operator (with representation label l)

sin((2l + 1)θ)

(2l + 1) sin(θ)
(5.5)
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for a state peaked on a curvature (class) angle θ along the encircled edge. Thus curvature

is discretized as we can identify θ = π
k+2(2j + 1).

The fact that (exponentiated) area operators and curvature operators have the same

eigenvalues hints towards a duality relation, see also [53]. We conjecture that this fact is

due to the polar duality [76] for spherical simplices: for a given spherical simplex σ one

can construct a dual simplex σ′ whose lenghts are determined by the dihedral angles of σ.

6 Examples

Here we will consider a number of examples of triangulations and topologies.

6.1 A defect along a loop

We start with a simple example and choose M to be the 3-sphere with a defect loop

inserted. We therefore define a genus 1 Heegaard splitting of the sphere: the handle-body

M1 is given by a solid torus, its equatorial line defines the loop carrying the defect. (Thus

loops encircling this defect line are not contractible.) The Heegaard diagram includes also

an attaching curve (below as red dashed line) for the 2-handle which is along the equator

of the torus:

. (6.1)

The B1 and B2 basis, after the 2-handle constraints have been imposed, are as follows:

B1(i) :=
i

, B2(j) :=

j

. (6.2)

The two bases are connected by an S-transformation

B1(i) =
∑
j

Sij B2(j) . (6.3)

We consider two kinds of operators: under-crossing Wilson loops along meridians and

equators of the torus. The meridian l-Wilson loops Wmeri(l) are diagonalized by the B1
basis, whereas they generate the B2 basis from the state B2(0):

Wmeri(l) B B2(0) = B2(l) . (6.4)

Analogously the equatorial Wilson loops are diagonalized by the B2 basis, whereas they

generate from the vacuum B1(0) the states of the B1 basis.
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Figure 2. The left panel shows a Heegaard diagram for the 3-sphere, determined by a triangulation

consisting of two tetrahedra. Three attaching curves, corresponding to three of the triangles are

depicted as red dashed lines. The attaching curve associated to the fourth (bottom) triangle can

be obtained from combining the other three curves. On the right panel the Heegaard surface is

deformed into the standard form for a genus 3 surface. Three 2-handle constraints are imposed via

vacuum loops. The 2-handle constraint for the fourth triangle (determined by a curve surrounding

all three holes) follows from the other three constraints. To see this one has to use the sliding

property of the vacuum loops. We have also indicated a basis, which is neither a B1 basis nor a

B2 basis.

Note that a B1(0) basis state is expressed via the S-transformation as the following

combination of B2 states:

∑
j

v2j
D
B2(j) , (6.5)

which describes a vacuum loop along the meridian under-crossing a vacuum loop along the

equator. The B2(0) state is equivalent to the state given by a pair of vacuum loops along

the equator over and under-crossing a vacuum loop along the meridian. Indeed, using the

sliding and annihilation property of the vacuum loops, one can show that such a state

reduces to the state shown on the right hand side of (6.3).

6.2 The two-tetrahedra triangulation of the 3-sphere

We again consider the 3-sphere, this time triangulated by two tetrahedra, that are glued

to each other. The gluing identifies the vertices, edges, and triangles of the two tetrahedra

with each other. The one-skeleton of this triangulation coincides therefore with the one-

skeleton of one tetrahedron. This gives a genus 3 Heegaard surface, see figure 2. The three

loops around the holes can be identified with three independent 2-handle attaching curves,

corresponding to three of the four triangles. (The 2-handle curve associated to the fourth

triangle is generated by the other three curves.)

We can construct a B1 basis and a B2 basis. The B2 basis corresponds to (an expansion

to three-valent nodes of) the usual spin network basis, which is based on graphs with nodes

dual to tetrahedra and links dual to triangles. These two bases are shown in figure 3.

Following the discussion in section 5.3 we can interpret the B1 basis as diagonalizing

the curvature around the edges of the tetrahedron, and the B2 basis as encoding the spatial

geometry, i.e. the four areas and one dihedral angle per tetrahedron.
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Figure 3. The left panel shows a B1 basis for the two-tetrahedra-triangulation of the 3-sphere.

Here we did not depict the over-crossing graph copy Fu and the vacuum loops associated to the

2-handle constraints. This copy can be transformed, using sliding across the 2-handle vacuum loops,

to the same 2-handle vacuum loops. The basis is labelled by six quantum numbers and diagonalizes

Wilson loop operators around the (six) edges of the triangulation. The right panel shows a B2
basis. The strands and vacuum loop on the backside of the genus 3 surface are depicted in grey.

Note that for both bases we have 6 vacuum loops. But always three vacuum loops can be generated

from the other three loops, using the projection property (modulo factors of D) and the sliding

property of the loops. The graph Fu can be identified with the one-skeleton of the dual complex

to the triangulation: two four-valent nodes (expanded into three-valent ones) representing the two

tetrahedra and connected with each other by four links, representing the four triangles. This basis

diagonalizes Wilson loop operators around the four triangles of the triangulation and in addition

two Wilson loops around pairs of triangles.

A similar relation between the triangulation and the dual complex for a tetrahe-

dron was noted in [53], which discusses geometric expectation values for the Turaev-Viro

partition function. This lead to a duality (or Fourier) transformation for the quantum

{6j} symbols, where the transformation is defined via the S-matrix. Here we identi-

fied a similar Fourier transform as basis transformations in a Hilbert space describing a

(3 + 1)-dimensional theory.

6.3 The 4-simplex triangulation of the 3-sphere

The next simplest triangulation of the 3-sphere is given by the boundary of a 4-simplex.

The resulting Heegaard surface is of genus 6 and depicted in figure 4. The 4-simplex

triangulation is self-dual, that is the dual complex has the same connectivity as the 4-

simplex. A B1 basis is depicted in figure 4.

The B1 basis diagonalizes Wilson loop operators around the ten edges and also Wil-

son loop operators around certain pairs of edges. The B2 basis diagonalizes Wilson loop

operators around the ten triangles and around certain pairs of triangles.

Such a dual structure of holonomy operators, around both edges and triangles of a 4-

simplex, plays also an important role in [40–44], which constructs the 4-simplex amplitude

for a spin foam model describing gravity with a cosmological constant, and examines the

semi-classical limit of this amplitude. The work [40–44] also discusses the phase space

associated to the boundary of a homogeneously curved simplex, and notes the dual role

of the two kinds of holonomies. We conjecture that the Hilbert spaces and operators

constructed in this work provide a quantization of the phase spaces discussed in [40–44].

– 20 –



J
H
E
P
0
5
(
2
0
1
7
)
1
2
3
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Figure 4. The left panel shows the Heegaard diagram for the 4-simplex triangulation. The

Heegaard surface is of genus six. Six of the ten attaching curves for the 2-handles are shown.

The other four curves are generated from these six curves. Note that the curve for the triangle

t(124) under-crosses the handle representing the edge e(15). The right panel shows a B1 basis for

the 4-simplex triangulation. For each vertex of the triangulation one can choose a cutting of the

associated four-punctured sphere into two three-punctured ones. Again we have not shown the

over-crossing graph copy. Using the 2-handle vacuum loops, as well as the vacuum loop around the

edge e(15), one can transform the over-crossing graph copy to the 2-handle vacuum loops.

We conjectured that the curvature vacuum, that is, the state of a B1 basis labelled

with only trivial representations, represents the vacuum of the Crane-Yetter TQFT [37, 38].

One way to confirm this is to find the explicit expansion of this curvature vacuum in terms

of a B2 basis, e.g., by finding the sequence of S- and F-moves, that implement the basis

change from a B1 basis to a B2 basis. The conjecture is confirmed if the B2 basis coefficient

of the curvature basis is given by the Crane-Yetter amplitude, which is a particular kind

of a quantum deformed {15j} symbol, see [37, 38].

6.4 The 3-torus

Next we consider the 3-torus, but this time we work with a cubical lattice. To begin with

we choose the smallest possible lattice consisting of one cube, three edges and one vertex.

The dual complex is given by the same cubical lattice. The Heegaard diagram for such a

lattice is depicted in figure 5, as well as a choice for the B1 basis.

The B1 basis diagonalizes Wilson loops around the edges of the (direct) lattice — or

alternatively around the plaquettes of the dual lattice, whereas the B2 lattice diagonalizes

loops around the faces of the direct lattice, or around the links of the dual lattice.

The basis allows us to identify the 3-torus Hilbert space (also with a more refined lat-

tice) with the one proposed by Walker and Wang [45]. The Walker-Wang models generalize

the Levin-Wen string net models [46, 47] from (2 + 1) dimensions to (3 + 1) dimensions.

The Hilbert space is defined as a span of states based on a cubical lattice, whose nodes

have been expanded to three-valent nodes. Then plaquette operators are introduced by

defining Wilson loop operators for the plaquettes of the lattice together with their planar

projections, so that the graphical equivalences (3.3), (3.4), (A.12) can be used. This can

be done such that the plaquette operators commute.
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z

x y

Figure 5. The left panel shows a Heegaard diagram for the 3-torus. The x, y and z directions

have to be periodically identified. The Heegaard surface is based on a lattice constructed from a

cube whose sides have been identified pairwise. This surface is of genus three: there is a punctured

sphere corresponding to one vertex of the triangulation and three one-handles corresponding to the

three edges of the lattice. There are three two-handles corresponding to the three pairs of identified

sides. The attaching curves are shown in blue, green and red. To obtain the Heegaard surface for a

lattice with more cubes we just need to glue more of the basic building blocks, shown in the panel,

to each other. The right panel shows a choice for a B1 basis, where for clarity we have omitted

vacuum loops and the over-crossing graph Fu.

It is clear that such a prescription is also provided by the B2 basis. (The B1 basis

would also provide such a prescription, but one traditionally understands under ‘plaquette’

operators Wilson loop operators around the faces of the dual lattice, or equivalently around

the edges of the direct lattice. Thus we identify the original prescription of the Walker-

Wang model with the B2 basis.) The plaquette operators are given by (under-crossing)

Wilson loops around the edges of the lattice, which — as the loops are not intersecting

on the Heegaard surface — clearly commute. In addition we have Wilson loop operators

around the links of the dual lattice, which are however diagonal in the B2 basis. An

important difference between the version of the Walker-Wang model discussed here and

the original definition [45], is the presence of over-crossing vacuum loops. In our view

this feature leads however to an improved and more consistent version of the model. This

feature allows in particular the straightforward identification of the (unique) ground state.

Our treatment provides also a dual basis for the Walker-Wang model, namely the B1
basis. This basis diagonalizes the plaquette operators, which in the definition of the Walker-

Wang model, contribute to the Hamiltonian operator. (A second part of the Hamiltonian

measures gauge invariance violations at the nodes, which we do not consider here.) The B1
basis therefore diagonalizes the Hamiltonian of this model. As we have argued in section 5.2

the ground state for this Hamiltonian is unique and given by the state of the B1 basis where

all representation labels of the under-crossing graph copy are set to be trivial.

This argument generalizes to other topologies and triangulations and is much simpler

than the one provided in [49] for the periodic cubical lattice. The uniqueness of the ground

state depends crucially on the modularity of the fusion category, as we use the killing

property (3.9) for the vacuum loops. Indeed non-modular fusion categories (e.g. fusion

categories based on group representations) can lead to ground state degeneracy [49]. The

(generalized) fusion bases for such non-modular categories will be discussed in [50]. Another

possibility to obtain ground state degeneracy is to apply the strategy of Bärenz and Bar-
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rett [3] for the construction of new so-called dichromatic invariants for four-dimensional

manifolds. The construction of these invariants is based on a handle decomposition of

the four-dimensional manifolds. Also for four-dimensional manifolds such decompositions

are determined by the 1-handles and 2-handles only. For the Crane-Yetter invariant one

decorates both the 1-handles and 2-handles with vacuum loops. For the more general

dichromatic invariants the 2-handles are not necessarily decorated with the vacuum loop of

the full fusion category, but with a vacuum loop of a subcategory. More generally one can

invoke a second fusion category and a functor between the two fusion categories. The same

strategy can be applied here: we could replace the constraints, so far given by vacuum

loops of a modular fusion category along the attaching curves of the two-handles, by e.g.

vacuum loops of a subcategory. Such ‘dichromatic’ models may also lead to ground state

degeneracy as shown in [3].

7 Discussion

In this work we constructed state spaces and operators for (3 + 1)-dimensional topological

field theories with line defects. To this end we utilized the encoding of a triangulated

three-dimensional manifold via a Heegaard surface that is equipped with a set of so-called

2-handle attaching curves. This allowed us to start from the state spaces and operators

of a three-dimensional topological quantum field theory. To obtain the state space of

a (3 + 1)-dimensional theory we have additionally imposed constraints related to the 2-

handle attaching curves. This yielded in particular an improved version of the Walker-

Wang model [45].

Here we considered, as a (2+1)-dimensional starting point, the Turaev-Viro topological

quantum field theory [1, 2], based on a modular fusion category. This construction can be

generalized to pre-modular (or spherical) fusion categories, indeed [34] considered the rep-

resentation category of a finite group. Due to the modification of the killing property (3.9)

in this case, the structure of excitations is more involved. In particular the associated

Walker-Wang Hamiltonian will feature a ground state degeneracy [49]. An analysis of the

ground states and more generally the construction of the generalized fusion bases in the

case of pre-modular categories will appear elsewhere [50]. Another generalization is to

follow the strategy of Bärenz and Barrett [3] in replacing the 2-handle constraints with

(less restrictive) constraints. This would presumably lead to state spaces associated to the

dichromatic invariants constructed in [3], but also allow for line defects. Thus the tech-

nique here could allow for a large variety of state spaces, describing (3 + 1)-dimensional

TQFT’s with defects, see [77] for alternative constructions. The advantage of the method

pursued here is that it allowed us to construct an interesting set of bases, resulting from

the (2 + 1)-dimensional fusion basis. One of these bases diagonalizes the Walker-Wang

Hamiltonian. This makes it straightforward to prove ground state uniqueness (for the case

of modular fusion categories) and to understand the properties of the excitations of this

Hamiltonian.

In a quantum gravity context the construction here develops and makes much more

concrete ideas expressed in e.g. [35, 78]. In [35] one also uses surfaces to represent (3 + 1)-
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dimensional state spaces. The surfaces are equipped with a spin network but one does not

impose 2-handle constraints. The work here reemphasizes the role of topological quantum

field theory in quantum gravity [9, 78] and paves the way to realize quantum gravity as

a theory of space time foam. It connects to the recent construction of spin foam simplex

amplitudes via the boundary Chern-Simons theory [40–44]. It provides a quantization for

the phase space constructed in [40–44].

A particularly interesting aspect found in this work are the self-dual features of the

quantum geometry states: firstly, in the set of generalized fusion bases there are two

bases that are dual to each other and diagonalize quantum deformations of holonomy

operators or quantum deformations of area operators respectively. Secondly both operators

are implemented via Wilson loops and the spectra of these two classes of operators agree.

Apart from the generalization of the models as described above there are many direc-

tions of research to follow up:

Introduction of boundaries: in some sense we treated already the Heegaard surface as

boundary of the handle-bodyM2. This is because we impose that curves can be contracted

through M2 but not through the complement handle-body M1. One question would be

to generalize this set-up and use compression bodies instead of handle-bodies [66]. This

allows a Heegaard splitting for three-manifolds with boundary. Another way to introduce

boundaries is to allow cuts through the Heegaard surface leading to punctures of this

surface. One would then start with the state space of e.g. the Turaev-Viro model with

punctures [4, 6, 62]. This would include — in addition to curvature defects — torsion

defects, that is, violations of the Gauß constraints that are implemented by allowing strands

to end at the boundary of the Heegaard surface. These kinds of cuts would also allow the

definition of gluings of state spaces and the related construction of entanglement entropy

as in [7]. Such a gluing could be performed in the B1 basis (in which triangulation edges

would be glued) or in the B2 basis (in which spin network links would be glued), which

can lead to different notions of entanglement entropy. Another treatment of boundaries

and (string-like) defects in the context of (undeformed) BF theory can be found in [79].

There the string-like defects carry a group-valued field that couples to the spin network

describing the BF theory of the bulk.

Having at our disposal different ways of introducing boundaries the next imperative is

to impose boundary conditions and to analyze the associated boundary excitations. E.g.

the analyses of [49] shows the existence of surface anyons with a certain choice of boundary

conditions.

Refinement moves and vacua: here we based the Heegaard surface on a fixed tri-

angulation. One can refine the triangulation with e.g. Alexander moves, which will lead

to another (larger) Hilbert space. The question is to specify so-called embedding or re-

fining maps, that map states from a ‘coarser’ Hilbert space to states in a ‘finer’ Hilbert

space [57, 58]. Such embeddings impose a certain vacuum state [9] and allow the construc-

tion of a continuum Hilbert space via an inductive limit (if certain consistency conditions

are satisfied) [15–17]. A particular such embedding map would impose a quantum-deformed

BF vacuum: here one would just surround each new triangulation edge with a vacuum loop.
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(In the B1 basis, in which the strands of the under-crossing graph are parallel to the edges,

the BF vacuum associates j = 0 labels to such strands.) But it seems also possible to con-

struct other refining maps, e.g. corresponding to a (Ashtekar-Lewandowski like) vacuum,

in which spatial geometry operators vanish. Additionally one can use the refinement moves

to impose a (gravitational) dynamics, see below.

Coarse graining: to construct the continuum limit for the dynamics of a given discrete

theory it is helpful to understand coarse graining of the associated state spaces. The fusion

basis in (2+1) dimensions is perfectly suited for coarse graining [8], as it encodes excitations

on different coarse graining scales. The B1 and B2 bases describe, however, excitations on

the lattice scale (with respect to two different vacua). By changing the pant decomposition

of the Heegaard surface, which determines the fusion basis, we can also obtain a basis that

describes the fusion or coarse graining of excitations. E.g. start from the curvature basis

and contract the Heegaard surface of genus g along a spanning tree of the spine. That

will deform the surface such that it appears as a 2g punctured sphere with g handles glued

onto it. The decomposition of the the 2g punctured sphere into three-punctured spheres

or pants will determine a fusion scheme for the basic curvature excitations, defined by the

handles. Likewise one can start from the B2 basis, which would define a coarse graining or

fusion of flux (or spatial geometry) excitations.

The coarse graining of non-Abelian gauge theories leads to the emergence of torsion

degrees of freedom, which on the lattice level are described by violations of the Gauß con-

straints [8, 15–17, 80]. This brings as to the question of how to accommodate such torsion

degrees of freedom, see also the paragraph on the introduction of boundaries.

Finally one would like to implement a ‘flow of the cosmological constant’. On the

classical level this is realized in [19, 20]. A different strategy for the quantum theory would

be to start from the state space for a small cosmological constant (large k) and to impose

curvature constraints with a large cosmological constant (corresponding to a smaller k).

See [81–83] for a perturbative ansatz based on path integral quantization.

Geometric interpretation of observables and vacua: in a quantum gravity context

a more in-depth analysis of the various Wilson loop operators is needed, and in particular

a geometric interpretation. We argued that Wilson loops around edges and the Wilson

loops around triangles are related to holonomy and flux operators respectively. This is

also in line with the construction of [40–44]. In addition there are Wilson loop operators

around other curves, which might be diagonalized by a basis that is neither a B1 and

B2 basis. What is the geometrical interpretation of these operators? In addition to Wil-

son loop operators one can consider grasping operators [18], which usually implement the

fluxes, and can be straightforwardly evaluated using (3.3), (3.4). How are these operators

geometrically interpreted [21, 85]? Do they provide an alternative quantization of (possi-

bly non-exponentiated) flux operators? Conversely can one construct operators for more

involved geometric quantities like the three-volume [51, 52, 84]?

We provided a set of bases which arose from the fusion bases. Can we re-construct

the (quantum) geometries described by these states? The work in [40–44] is discussing a

reconstruction for states in the B2 basis. Another interesting case is the curvature basis.
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Is there a deeper meaning to the self-duality between the spin network like basis and the

curvature basis? A possible reason could be polar duality [76]. Another possible link is the

interpretation of the Gauß constraints (or closure constraints) as a Bianchi identity and a

possible re-construction of a new kind of connection proposed in [86, 87].

With each generalized fusion basis we have also an a priori different vacuum state.

What is the geometric interpretation of these states? Can these states be interpreted as

coherent states?

Including Immirzi- and theta-parameters: (3+1)-dimensional loop quantum gravity

is based on the Ashtekar variables [88, 89], that can be generalized to include an Immirzi-

Barbero parameter [90, 91]. Whereas the state space does not change (as long as the

parameter is real) the parameter leads to a re-interpretation of the geometric meaning

of the holonomy and flux operators. What would be the role of such a Immirzi-Barbero

parameter in the current framework [92–94] and how would it influence the geometric

interpretation of operators and vacua? See also the recent work [95].

One can furthermore generalize the canonical loop quantum variables to include a

theta-parameter [96–98], which would lead to a different geometric re-interpretation of the

operators. For the framework presented here, can one relate a change of theta-parameter

to a change of generalized fusion basis?

Here we choose to impose the 2-handle constraints by inserting over-crossing vacuum

loops. We could have also used under-crossing vacuum loops. Is it possible to use a

combination of both possibilities?

Dynamics: having the state spaces and therefore kinematics of quantum gravity one of

course wishes also to implement the (quantum gravity) dynamics. One possibility is to

use Pachner moves, that change the Heegaard surface, as suggested in [35]. These Pachner

moves can be interpreted as gluing 4-simplices in different ways to the triangulated hyper-

surface, see [99], and can thus be implemented by a corresponding gluing of a 4-simplex

amplitude, for instance constructed along the lines of [40–44]. Such Pachner moves should

eventually (that is in the continuum limit) act as refining or coarse graining operators [9,

99]. The reason is that time evolution in background independent theories, such as gravity,

corresponds to a gauge transformation, namely a diffeomorphism, and thus should map

between (gauge) equivalent states.

However such a discrete dynamics for four-dimensional gravity, which is implemented

(via the 4-simpex gluing) in a local way, breaks four-dimensional diffeomorphism in-

variance [100–103]. To restore this symmetry one would have to consider a continuum

limit [19, 20, 104–106], which can be constructed via an auxiliary coarse graining flow [58].

For coarse graining schemes along the lines of [27–33] the finiteness of the state spaces

constructed here facilitates a numerical implementation.

Another possibility is to consider the dynamics of line defects in a q-deformed BF

theory. This would not define a dynamics for quantum gravity — it rather constitutes

a quantum deformation of the dynamics discussed in [79]. We have already defined such

a dynamics: for instance transition amplitudes between two states are given by the inner

product of our (3+1)-dimensional theory. This inner product agrees with the inner product
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of the Hilbert space of the (2 + 1)-dimensional theory, as defined on the Heegaard surface.

Here we assume that one considers two states defined on the same triangulation - so that

the Heegaard surfaces do agree. But this can be easily extended to include also the case

that the triangulations are not the same: in this case one has to consider a common

refinement of the two triangulations. To this end one needs the embedding map for the

quantum-deformed BF vacuum), which we have introduced above.
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A The quantum group SU(2)k

Here we will give a very short review of some basic facts about SU(2)k. More extensive

introductions can be found in [59–61]. SU(2)k, where k is a positive integer, can be un-

derstood as a quantum deformation of SU(2). (The reader should distinguish k, which

denotes the level of the quantum group SU(2)k, from k, which is occasionally used to

denote a representation of SU(2)k.) The deformation parameter

q = e2πi/(k+2) (A.1)

is a root of unity. We define quantum numbers

[n] :=
qn/2 − q−n/2

q1/2 − q−1/2
=

sin
(

π
k+2 n

)
sin
(

π
k+2

) , ∀n ∈ N− {0}, (A.2)

with [0] = 1. This leads to quantum dimensions dj = [2j + 1]. To avoid negative quan-

tum dimensions (which are associated to so-called trace zero representations), one only

allows representations in a range j ∈ {0, 1/2, 1, . . . , k/2}. These representations are called

admissible. We will frequently encounter the signed quantum dimensions

v2j := (−1)2jdj (A.3)

and their square roots vj (with (−1)1/2 = i). The total quantum dimension is defined as

D :=

√∑
j

v4j =

√
k + 2

2

1

sin
(

π
k+2

) . (A.4)

This brings us to the recoupling theory for SU(2)k. As in the group case we can ten-

sor representations (although with a deformed co-product). Admissible triples are triples
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(i, j, l) of representations that include the trivial representation in their tensor product.

Such triples (i, j, l) are defined by the following conditions:

i ≤ j + l, j ≤ i+ l, l ≤ i+ j, i+ j + l ∈ N, i+ j + l ≤ k. (A.5)

Note the last condition, which is special to the quantum group SU(2)k.

The F -symbols transform between different bracketings for the tensor product, and are

closely related to the {6j} symbol, see below. They also appear in the F-move equivalence

relation in (3.3). To define the F -symbols we introduce first for any admissible triple (i, j, k)

the quantity

∆(i, j, k) := δijk

√
[i+ j − k]![i− j + k]![−i+ j + k]!

[i+ j + k + 1]!
, (A.6)

where [n]! := [n][n− 1] . . . [2][1].

The (Racah-Wigner) quantum {6j} symbol is then given by the formula{
i j m

k l n

}
:= ∆(i, j,m)∆(i, l, n)∆(k, j, n)∆(k, l,m)

∑
z

(−1)z[z + 1]!

×

(
[i+ j + k + l − z]![i+ k +m+ n− z]![j + l +m+ n− z]!

)−1
[z − i− j −m]![z − i− l − n]![z − k − j − n]![z − k − l −m]!

,

(A.7)

where the sum runs over

max(i+j+m, i+l+n, k+j+n, k+l+m) ≤ z ≤ min(i+j+k+l, i+k+m+n, j+l+m+n).

(A.8)

Now the F -symbols are defined as

F ijmkln := (−1)i+j+k+l
√

[2m+ 1][2n+ 1]

{
i j m

k l n

}
. (A.9)

We will furthermore need the so-called R-matrices, which allow one to resolve over-

and under crossings in the graphical calculus:

ij

k

= Rijk

j

k

i

,

i

k

j

=
(
Rijk
)∗ i

k

j

. (A.10)

Thus, using a special case of the F -move (3.3)

∑
k

vk
vivj

i

k

j

j

i

=

i j

i j

, (A.11)
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one can conclude that

i

j

j

=
∑
k

vk
vivj

Rijk i
k

i

j

j

,

i

j

j

=
∑
k

vk
vivj

(
Rijk
)∗

i
k

i

j

j

. (A.12)

For SU(2)k the R-matrix is given by

Rijk = (−1)k−i−j
(
qk(k+1)−i(i+1)−j(j+1)

)1/2
. (A.13)

The S-matrix is defined as

DSij := sij := i j , (A.14)

that is one has to remove first the crossings with the help of (A.12) and reduce the resulting

graphs via F -moves to bubbles. These can be related to the empty graph via the bubble

move (3.4). The resulting coefficient between the right hand side of (A.14) and the empty

graph state defines the s-matrix:

sij =
∑
l

v2l R
ij
l R

ji
l = (−1)2(i+j)[(2i+ 1)(2j + 1)]. (A.15)

The S-matrix for SU(2)k is invertible and unitary, making SU(2)k into a modular fusion

category. Note that the S-matrix is also real and symmetric:

Sij = Sji,
∑
l

SilSlj = δij . (A.16)

For the basis transformation (3.12) on the punctured torus we need generalizations of

the S-matrix given by

Aikj =
1

D vi

j k

i

, Bi
kj =

1

D vi

j k

i

. (A.17)
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