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Abstract We derive the complete set of off-shell nilpotent
and absolutely anticommuting Becchi–Rouet–Stora–Tyutin
(BRST) and anti-BRST symmetry transformations corre-
sponding to the combined “scalar” and “vector” gauge sym-
metry transformations for the (3+1)-dimensional (4D) topo-
logically massive non-Abelian (B ∧ F) theory with the help
of geometrical superfield formalism. For this purpose, we use
three horizontality conditions (HCs). The first HC produces
the (anti-)BRST transformations for the 1-form gauge field
and corresponding (anti-)ghost fields whereas the second HC
yields the (anti-)BRST transformations for 2-form field and
associated (anti-)ghost fields. The integrability of second HC
produces third HC. The latter HC produces the (anti-)BRST
symmetry transformations for the compensating auxiliary
vector field and corresponding ghosts. We obtain five (anti-
)BRST invariant Curci–Ferrari (CF)-type conditions which
emerge very naturally as the off-shoots of superfield formal-
ism. Out of five CF-type conditions, two are fermionic in
nature. These CF-type conditions play a decisive role in pro-
viding the absolute anticommutativity of the (anti-)BRST
transformations and also responsible for the derivation of
coupled but equivalent (anti-)BRST invariant Lagrangian
densities. Furthermore, we capture the (anti-)BRST invari-
ance of the coupled Lagrangian densities in terms of the
superfields and translation generators along the Grassman-
nian directions θ and θ̄ .

1 Introduction

Every p-form (p = 1, 2, 3, . . .) gauge theory remains invari-
ant under a global symmetry known as BRST symmetry when

a e-mail: raviphynuc@gmail.com
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we include the gauge-fixing term and Faddeev–Popov ghosts
in the theory [1–5]. The physical significance of the BRST
symmetry is to provide the unitarity in various interactions
under consideration [6]. The BRST symmetry transforma-
tion of the fields is generated by the BRST charge Qb which
is nilpotent

(
Q2

b = 0
)
. The nilpotency leads to the forma-

tion of BRST cohomology where the physical state |phys〉,
defined by Qb|phys〉 = 0, is equivalent to another physical
state |phys〉′ if |phys〉′ = |phys〉 + Qb|phys〉. From this
equivalence, we can identify the unphysical modes of a state
(in the total quantum Hilbert space of states) whose con-
tributions are mutually cancelled in a physical process [6].
Consequently, the unitarity is achieved in a given physical
process.

The BRST formalism is one of the most elegant and math-
ematically rich methods to covariantly quantize any arbitrary
p-form (non-)Abelian gauge theory. For a given classical
gauge symmetry, we have two linearly independent global
supersymmetric type quantum BRST and anti-BRST sym-
metries. The latter symmetries are nilpotent of order two
(i.e. s2

b = 0, s2
ab = 0) and absolutely anticommuting

(i.e. sbsab + sabsb = 0) in nature [7,8]. The absolute anti-
commutativity property of the (anti-)BRST transformations
for the non-Abelian 1-form gauge theory and higher form
(p ≥ 2) (non-)Abelian gauge theories is satisfied due to
the existence of Curci–Ferrari (CF)-type conditions [7,9–11].
Furthermore, the CF-type conditions also play an important
role in the derivation of coupled (but equivalent) Lagrangian
densities. These CF-type conditions emerge automatically
within the framework of superfield formalism [11–13]. The
emergence of CF-type of condition(s) is one of the character-
istic features of a p-form (non-)Abelian gauge theory within
the framework of superfield approach to BRST formalism.

Bonora–Tonin superfield approach to BRST formalism is
a geometrical method to derive the proper off-shell nilpo-
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tent and absolutely anticommuting (anti-)BRST symmetry
transformations for a given gauge theory [12,14,15]. In
this formalism, we generalize an ordinary D-dimensional
Minkowskian space to the (D, 2)-dimensional superspace
with the help of a pair of Grassmannian coordinates (θ, θ̄ )
(with θ2 = θ̄2 = 0, θ θ̄ + θ̄ θ = 0) in addition to the ordi-
nary bosonic coordinates xμ (μ = 0, 1, 2, 3, . . . , D − 1).
Further, we generalize the dynamical fields to their corre-
sponding superfields onto the (D, 2)-dimensional superman-
ifold. By exploiting the power and strength of celebrated hor-
izontality condition (HC) [12,14–23], we obtain the desired
(anti-)BRST symmetry transformations. The HC implies that
the components of super curvature along the Grassmannian
directions are zero. Physically, the HC condition demands
that the gauge-invariant quantities should be independent of
the Grassmannian coordinates. In other words, the gauge-
invariant quantities should not be affected by the presence
of Grassmannian variables when they are generalized on the
supermanifold.

The HC carries a very important physical significance
in the gauge theories. Since, Faddeev–Popov–DeWitt ghost
fields belongs to L(G), where L(G) is a set of left-invariant
one-forms being always isomorphic to tangent space at iden-
tity on group manifold Te(G) [24], then HC implies that
the equivalent representation of gauge field is always con-
nected to the identity i.e. there is no anomaly due to BRST
transformation in gauge theory without the matter fields [24].
This conclusion can be similarly drawn from HC for Kalb–
Ramond field. As a consequence, there is no anomaly of
color current if the topologically massive model is applied in
QCD without matter fields. Anomaly may be present when
the model contains massless fermions with suitable action. In
that case, Wess and Zumino found a consistent condition to
be obeyed if quantum action of matter content gauge theory
is not gauge invariant [1,24–26]. In that case, HC leads to
provide Wess–Zumino consistency condition for anomaly or
Stora–Zumino chain of descent equations [22].

In recent years, the “augmented” superfield formalism
(which is an extended version of Bonora–Tonin superfield
approach) has been extensively used for the interacting gauge
theories such as 1-form gauge theory interacts with Dirac’s
fields and complex scalar fields [27], gauge-invariant Proca
theory [28], gauge-invariant massive 2-form theory [29] and
references therein. In this approach, in addition to the HC, the
conserved currents and/or gauge-invariant restrictions play
very important role in the derivation of the complete set of
(anti-)BRST transformations.

During last few decades, the antisymmetric Kalb–Ramond
field Bμν(= −Bνμ) of rank two became quite popular
because of its relevance in the context of (super-)string the-
ories [30,31], (super-)gravity theories [32], dual description
of a massless scalar field [33,34] and noncommutative theo-
ries [35]. It has been shown, within the framework of BRST

formalism, that the 4D free Abelian 2-form gauge theory
provides a tractable field-theoretic model for Hodge the-
ory where de Rham cohomological operators of differential
geometry and Hodge duality operation find their physical
realizations in terms of the continuous and discrete symme-
tries, respectively [36]. Furthermore, it has also shown to be a
quasi-topological field theory (q-TFT) which captures some
features of Witten-type TFT and some aspects of Schwartz-
type TFT [37].

The 2-form antisymmetric gauge field also plays an impor-
tant role in the mass generation of the vector gauge bosons
through a well-known topological (B ∧ F) term [38–44]. In
this model, the mass of gauge bosons and gauge-invariance
co-exist together. The phenomenological aspects of this
model have been discussed in [47] which shed light on the
various kind of physical processes that are allowed by the
standard model of particle physics. We have also studied the
4D (non-)Abelian topologically massive theory within the
framework of BRST formalism [48,49]. In earlier work [10],
the 4D non-Abelian topologically massive gauge theory has
been studied in the context of superfield formalism where the
“scalar” and “vector” gauge symmetries have been treated
separately. As a consequence, the (anti-)BRST symmetry
transformations corresponding to the above gauge symme-
tries are found to be off-shell nilpotent and absolutely anti-
commuting. We point out that when we combine the (anti-
)BRST transformations corresponding to the scalar and vec-
tor gauge transformations, the resulting (anti-)BRST trans-
formations are found to be off-shell nilpotent but they do not
obey the absolute anticommutativity property. In our present
investigation, we shall investigate this issue and derive the
proper (anti-)BRST symmetries for the combined scalar and
vector gauge transformations.

We know that pure Yang–Mills (YM) theory [50] obeys
unitarity where the 1-form gauge field is taken to be mass-
less. Due to having mass, the 1-form gauge field has a phys-
ical longitudinal mode. But the scattering among the longi-
tudinal modes shows the violation of unitarity in tree level
scattering processes [51,52]. We know this happens when
we consider the tree level 2 → 2 scatterings of longitu-
dinally polarized massive gauge bosons (W± and Z0) in
electroweak sector of the standard model excluding the pro-
cess mediated by Higgs particle [53,54]. These are the Higgs
mediated processes which save the unitarity of the scatter-
ing process among the longitudinally polarized electroweak
bosons. In the Higgs mechanism [55,56], global symmetry
SU (2)L × U (1)Y is spontaneously broken to the electro-
magnetic U (1) group [57–60]. But we will consider the 4D
dynamical (B∧F) theory where mass of gauge boson is gen-
erated and keeping the global SU (N ) symmetry unbroken.

Using the geometric features of a gauge theory [16,61–
63], we obtain proper (anti-)BRST transformations for all
the fields. But it is not guaranteed whether the BRST charge
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keeps its nilpotency after quantum corrections. The assur-
ance of unitarity at every order of quantum correction comes
from the renormalizability of model. Pure YM theory con-
taining massless 1-form gauge field is an example where the
BRST symmetry and renormalizibility are maintained simul-
taneously. The mass generation of YM field (keeping global
symmetry unbroken) shows unsatisfactory characteristics in
quantum field theory. For example, non-Abelian Stückelberg
model is found to be non-renormalizable [64–68] but it obeys
unitarity. On the other hand, Curci–Ferrari model [69] con-
taining Proca massive non-Abelian YM field shows renor-
malizibility but it fails unitary in (3+1)-dimensions [70,71].
There is a possibility of the mass generation by dynamical
symmetry breaking in non-perturbative regime, but the mass
tends to zero at the high energy limit of non-Abelian gauge
theory [72]. The BRST symmetry plays an important part in
the analysis of the various interactions according to a model
under consideration. We should need the unitarity of the scat-
tering matrix (S-matrix) in a renormalizable model.

Our present investigation is essential on the following
grounds. First, to derive the proper off-shell nilpotent and
absolutely anticommuting (anti-)BRST transformations for
combined scalar and vector gauge transformations. Because
in earlier work [10], the off-shell nilpotent (anti-)BRST trans-
formations are found to be non-anticommuting. Second,
to obtain the coupled and equivalent Lagrangian densities
which respect both BRST and anti-BRST transformations.
Third, to establish the CF-type of conditions because these
conditions play an important role within the framework of
BRST formalism.

The contents of our present endeavour are organized as
follows. In Sect. 2, we briefly discuss about the mathemati-
cal aspects and geometrical significance of the BRST sym-
metries in the realm of differential geometry. In Sect. 3, we
discuss about the 4D topologically massive (non)-Abelian
(B ∧ F) theories and associated local gauge symmetries.
Section 4 deals with the derivation of the proper off-shell
nilpotent and absolutely anticommuting (anti-)BRST sym-
metry transformations of the Yang–Mills field, antisymmet-
ric gauge field and compensating auxiliary vector field and
their corresponding (anti-)ghost fields within the framework
of geometrical superfield approach to BRST formalism. Sec-
tion 5 is devoted to the derivation of the coupled (but equiva-
lent) Lagrangian densities by using the basic tenets of BRST
formalism. We capture, in Sect. 6, the (anti-)BRST invariance
of the coupled Lagrangian densities, nilpotency and absolute
anticommutativity properties of the (anti-)BRST symmetries
within the framework of superfield formalism. Finally, in
Sect. 7, we provide some concluding remarks.

In our Appendix A, we show the precise values of the
various secondary field that are presented in the superfield
expansions in terms of the dynamical and auxiliary fields
of the (anti-)BRST invariant theory. Appendix B deals with

the proof of the absolute anticommutativity of the (anti-
)BRST transformations where the CF-type of conditions play
decisive role. The (anti-)BRST invariance of the coupled
Lagrangian densities is shown in Appendix C.

2 Geometrical significance of BRST symmetries:
mathematical aspects

In this section, we consider the geometrical significance of
the BRST symmetry (see, e.g. [16,61–63] for details). We
need to consider the principal G-bundle (P , π , M) in pure
YM theory where F ≡ G is the fibre in the total space P and
G is the structural Lie group over the base manifold which is
spacetime (see Fig. 1). Here π is the projection of F on the
M . We define a section σ : M → F such that

π(σ(y)) = idM , y ∈ G, (1)

and Lie algebra valued connection 1-form ω on the bundle.
The pull-back ω on M i.e. σ ∗ω represents YM field locally
(or local trivialization). Here idM in the Eq. (1) represents
an identity map of M . Let us consider the coordinates yi in
the fibre and a point xμ on G which is lifted in σ from M .
The vector ∂yi is tangent to the fibre and vertical whereas the
vector ∂xμ is tangent to the section but neither horizontal nor
vertical. The 1-forms dyi and dxμ span the cotangent space
P∗. Thus, 1-form ω can be decomposed as

ω = χi dy
i + φμdx

μ, (2)

where χ = χi dyi is the Maurer–Cartan form, which is
Faddeev–Popov ghost field on the bundle and φμ is the 1-
form gauge field. The ghost field χ is vertical and defined
as

χi (∂xμ) = 0, (3)

whereas the gauge field is horizontal:

Fig. 1 Fibres G in the principal fibre bundle with base manifold M
and section σ
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φμ(∂yi ) = 0. (4)

We can also decompose the exterior derivative d of a 0-
form according to the Eq. (2) as

d f = s f + b f, (5)

where s and b are defined in the following fashion:

s f = ∂yi f dy
i , b = ∂xμ f dxμ. (6)

Using the cohomology with respect to exterior derivative, we
obtain

s2 = 0, b2 = 0, sb + bs = 0, (7)

In the above, s defines the exterior differential normal to
the sections and it is nilpotent of order two whereas b is
horizontal operator. We shall identify s as the BRST operator.

Due to the construction of the fibre bundle, we can clearly
see

σ ∗(d f ) = σ ∗(b f ), (8)

because

σ ∗(s f ) = 0. (9)

Then the 2-form curvature with respect to the section σ is
given by

Σ = Ω1
i j (dy

i ∧ dy j ) + Ω2
iμ(dyi ∧ dxμ)

+Ω3
μν(dx

μ ∧ dxν), (10)

where Ω1 = sχ+ 1
2 [χ, χ ] and Ω2 = sφ+bχ+[φ, χ ]. Here

[ , ] defines the Lie bracket. The Maurer–Cartan structural
theorem states that the curvature Σ is pure horizontal i.e.

Ω1 = 0, Ω2 = 0, (11)

which provide the BRST transformations of fields in the the-
ory. In this paper we will use this horizontality conditions
to get the BRST and anti-BRST transformations of fields in
non-Abelian topologically massive (B ∧ F) model.

3 4D topologically massive (B ∧ F) theory

We first consider the topologically massive Abelian model
in (3 + 1)-dimensions of spacetime [38–40] which con-
tains a massive gauge field but keeping the gauge symme-
try unbroken. In this model, the Abelian 1-form A(1) =
dxμAμ gauge field Aμ and antisymmetric 2-form B(2) =
1

2! (dxμ ∧ dxν)Bμν field are coupled, in a physically mean-

ingful manner, through a well-known topological B ∧ F =
1

4
εμνηκ BμνFηκ term. Here Bμν is the Kalb–Ramond field

and Fμν = ∂μAν − ∂ν Aμ is the field strength tensor corre-
sponding to the Abelian gauge field Aμ. The mass of gauge

field is put by hand in the model as a (constant) coupling
parameter m of the topological term. The topologically mas-
sive Abelian model has the Lagrangian density1 [38–40]:

L0 = −1

4
FμνFμν + 1

12
HμνκHμνκ

+ m

4
εμνηκFμνBηκ , (12)

where Hμνκ = ∂μBνκ + ∂νBκμ + ∂κ Bμν is the field strength
of the Kalb–Ramond field. The Abelian model is invariant
under the following gauge transformations of the fields:

Aμ → Aμ + ∂μΩ, Bμν → Bμν, (13)

and,

Bμν → Bμν − (∂μΩν − ∂νΩμ), Aμ → Aμ, (14)

where Ω(x) and Ωμ(x) are the local gauge transformation
parameters which vanish at infinity. The Euler–Lagrange
equations of motion for Aμ and Bμν fields are give by, respec-
tively

∂μF
μν = −m

6
ενμηκHμηκ,

∂μH
μνη = m

2
ενηκρFκρ. (15)

After decoupling the above equations of motion for the fields,
we get either
(
� + m2

)
Fμν = 0, (16)

or,
(
� + m2

)
Hμνλ = 0, (17)

which are clearly the gauge-invariant Klein–Gordon equa-
tions for massive Aμ and Bμν fields. The counting of the
degrees of freedom shows that massive Bμν field has three
degrees of freedom as same as massive vector field Aμ in
physical (3 + 1)-dimensions of spacetime.

We now discuss the non-Abelian generalization of the
above model. This theory is described by the following
Lagrangian density2 [41–44]

L = −1

4
Fμν · Fμν + 1

12
Hμνη · Hμνη

+ m

4
εμνηκ Bμν · Fηκ , (18)

1 We adopt the conventions and notations such that the 4D flat
Minkowski metric has mostly negative signatures: ημν = ημν =
diga (+1,−1,−1,−1). The Greek indices μ, ν, κ, . . . = 0, 1, 2, 3 cor-
respond to spacetime directions whereas the Latin indices i, j, k, . . . =
1, 2, 3 stand for space directions only.
2 The dot and cross products in the SU (N ) algebraic space between
two non-null vectors X and Y are defined as: X ·Y = XaY a, X ×Y =
f abc XaY bT c. Here the structure constants f abc are chosen to be totally
antisymmetric in their indices a, b, c and T a are the generators of the
gauge group SU (N ).
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where Fa
μν T

a ≡ Fμν = ∂μAν − ∂ν Aμ − g(Aμ × Aν) is
the field strength tensor for the non-Abelian 1-form gauge
field Aμ = Aa

μ T a . The totally antisymmetric compensated
curvature tensor Hμνη ≡ Ha

μνηT
a for the non-Abelian gauge

field Bμν = Ba
μν T

a is defined as

Ha
μνη T

a ≡ Hμνη = DμBνη + DνBημ + DηBμν

+ g (Fμν × Kη) + g (Fνη × Kμ)

+ g (Fημ × Kν), (19)

where 1-form K (1) = dxμKμ · T is the compensating auxil-
iary vector field Kμ = Ka

μT
a and g is a dimensionless cou-

pling constant. The gauge bosons Aμ acquire mass through
the topological term (B∧F) without taking any help of Higgs
mechanism. The presence of topological term m

4 εμνρσ Bμν ·
Fρσ also ensures us the CP-invariance of the model. It is
because of the parity transformation of Kalb–Ramond field:
B0i → −B0i , Bi j → Bi j [45]. The topological term does
not break Lorentz invariance in (3+1)-dimensions unlike the
topological term present in [46]. The compensating auxiliary
vector field is required for the invariance of kinetic term for
tensor field Bμν under the non-Abelian vector gauge trans-
formation: Bμν → Bμν − (DμΛν − DνΛμ) (see below).
The absence of propagator of the auxiliary vector field in
Eq. (18) implies the absence of its role in the physical pro-
cesses. We will see from the BRST transformation of Kμ

that its all modes are unphysical. This model is shown to be
renormalizable algebraically in [44] and unitary at tree level.

The non-Abelian generalization must keep all the sym-
metries that were present in the Abelian model. The above
Lagrangian density respects two kinds of gauge symmetry
transformations: (i) scalar gauge symmetry (δ1), and (ii) vec-
tor gauge symmetry (δ2). These symmetry transformations
are listed as follows:

δ1Aμ = Dμζ ≡ ∂μζ − g(Aμ × ζ ),

δ1Bμν = −g(Bμν × ζ ), δ1Kμ = −g(Kμ × ζ ),

δ1Fμν = −g(Fμν × ζ ), δ1Hμνη = −g(Hμνη × ζ ),

δ2Bμν = −(DμΛν − DνΛμ), δ2Kμ = −Λμ,

δ2Aμ = 0, δ2Fμν = 0, δ2Hμνη = 0. (20)

where ζ = ζ · T and Λμ = Λμ · T are the SU (N )-valued
local “scalar” and “vector” gauge transformation parame-
ters. Under these local gauge transformations, the Lagrangian
density transforms as

δ1L = 0, δ2L = −∂μ

[m
2

εμνηκΛν · Fηκ

]
. (21)

Thus, the action integral (S = ∫
d4xL) remains invariant

under the gauge transformations for the physically well-
defined fields which vanish rapidly at infinity due to Gauss
divergence theorem. Also, the combined gauge transforma-
tions δ = (δ1 + δ2) leaves the action integral invariant.

4 Off-shell nilpotent and absolutely anticommuting
(anti-)BRST symmetries: geometrical superfield
formalism

In this section, we derive the complete set of off-shell nilpo-
tent and absolutely anticommuting (anti-)BRST symmetries
with the help of Bonora–Tonin superfield approach to BRST
formalism. For this purpose, we generalize our ordinary 4D
spacetime to the (4, 2)D superspace. The latter is charac-
terized by a pair of Grassmannian variables3 (θ, θ̄ ) (with
θ2 = θ̄2 = 0, θ θ̄ + θ̄ θ = 0) in addition to the bosonic
spacetime variables xμ (with μ = 0, 1, 2, 3) as [12,14,15]

xμ → ZM ≡ (xμ, θ, θ̄ ), ∂μ → ∂M ≡ (∂μ, ∂θ , ∂θ̄ ), (22)

where the super-coordinates ZM parametrized the (4, 2)D
supermanifold. The partial derivatives ∂θ = ∂

∂θ
and ∂θ̄ = ∂

∂θ̄

(with ∂2
θ = ∂2

θ̄
= 0, ∂θ ∂θ̄ + ∂θ̄ ∂θ = 0) are the transla-

tional generators along the Grassmannian directions θ and θ̄ ,
respectively. We shall see later on that these translational gen-
erators provide the geometrical meaning of the anti-BRST
and BRST symmetry transformations, respectively.

In our upcoming subsections, we shall exploit the horizon-
tality conditions and integrability condition for the derivation
of proper (anti-)BRST transformations.

4.1 Derivation of the (anti-)BRST transformations of YM
field and corresponding ghost fields

For the derivation of (anti-)BRST symmetry transformations
of the YM gauge field, we generalize the exterior deriva-
tive d = dxμ∂μ (with d2 = 0) and 1-form connection
A(1) = dxμAa

μT
a to the super-exterior derivative d̃ (with

d̃2 = 0) and super 1-form Ã(1) = dxμÃa
μT

a on the (4, 2)D
supermanifold in the following fashion:

d̃ = dZM∂M ≡ dxμ ∂μ + dθ ∂θ + d θ̄ ∂θ̄ ,

Ã(1) = dZM AM ≡ dxμ Ãμ(x, θ, θ̄ ) + dθ ˜̄F(x, θ, θ̄ )

+ d θ̄ F̃(x, θ, θ̄ ), (23)

where the superfields Ãμ(x, θ, θ̄ ), F̃(x, θ, θ̄ ) and ˜̄F(x, θ, θ̄ ),
as the super-multiplets of super 1-form, are the generalization
of 1-form gauge field Aμ(x), ghost field C(x) and anti-ghost
field C̄(x), respectively, on the (4, 2)D supermanifold. One
can expand these superfields along the Grassmannian direc-
tions (θ, θ̄ ) as

Ãμ(x, θ, θ̄ ) = Aμ(x) + θ R̄μ(x) + θ̄Rμ(x) + θ θ̄Sμ(x),

F̃(x, θ, θ̄ ) = C(x) + θ B̄1(x) + θ̄B1(x) + θ θ̄s(x),
˜̄F(x, θ, θ̄ ) = C̄(x) + θ B̄2(x) + θ̄B2(x) + θ θ̄ s̄(x), (24)

3 The Grassmannian variables obey the following Hermiticity proper-
ties: θ† = θ and θ̄† = −θ̄ .
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where the secondary fields R̄μ, Rμ, s, s̄ are fermionic and the
remaining secondary fields Sμ, B1, B̄1, B2, B̄2 are bosonic in
nature.

To determine the values of these secondary fields, we
invoke the following HC

d̃Ã(1) + i

2
g

[
Ã(1), Ã(1)

]
= d A(1) + i

2
g

[
A(1), A(1)

]


⇒ F̃ (2) = F (2), (25)

where the super 2-form F̃ (2) = 1
2! (dZ

M ∧dZN ) F̃MN is the
generalization of F (2) = 1

2! (dx
μ ∧ dxν)Fμν on the super-

manifold. The HC in the literature is also known as soul-
flatness condition which states that the r.h.s. is independent
of the Grassmannian variables when it is generalized onto
(4, 2)D supermanifold. To be more precise, the HC demands
that all the Grassmannian components of the super 2-form
curvature F̃MN are equal to zero (i.e., F̃μθ = F̃μθ̄ = F̃θθ

= F̃θ̄ θ̄ = F̃θ θ̄ = 0). As we already know that the kinetic
term (− 1

4 Fμν · Fμν) for the gauge field Aμ remains invari-
ant under the combined gauge transformations (δ). Thus, the
kinetic term would also remain invariant under (anti-)BRST
transformations. Physically, the HC implies that the gauge-
invariant quantity must be independent of the Grassmannian
variables (θ, θ̄ ) (i.e. − 1

4 F̃MN ·F̃MN = − 1
4 Fμν ·Fμν) when

it is generalized on the (4, 2) supermanifold. It is worthwhile
to point out that the Grassmannian variables are just a mathe-
matical artifact and they cannot be physically realized in our
physical 4D spacetime. In fact, they are used to construct the
(4, 2)-dimensional superspace.

By exploiting the above HC, we obtain the values of the
secondary fields [cf. (A.1)]. The substitution of the values of
secondary fields in the super-expansions of the superfields,
we obtain4

Ã(h)
μ (x, θ, θ̄ ) = Aμ + θDμC̄ + θ̄DμC

+ θ θ̄
(
DμB − g(DμC × C̄)

)
,

F̃ (h)(x, θ, θ̄ ) = C + θ B̄ + θ̄
g

2

(
C × C

) − θ θ̄g
(
B̄ × C

)
,

˜̄F (h)(x, θ, θ̄ ) = C̄ + θ
g

2

(
C̄ × C̄

) + θ̄ B

+ θ θ̄g
(
B × C̄

)
, (26)

where the superscript (h) on the superfields denotes the
super-expansions obtained after the application of HC (25).
We have made the identifications: B̄1 = B̄ and B2 = B for
the Nakanishi–Lautrup (NL) fields B and B̄. These fields
are required for the off-shell nilpotency of the (anti-)BRST
transformations. Similarly, the super-curvature F̃ (h)

μν corre-

sponding to the superfield A(h)
μ can be written as

4 The Nakanishi–Lautrup fields B, B̄ are real and the anticommuting
ghost fields satisfy the following Hermiticity properties: C† = C , and
C̄† = −C̄ .

F̃ (h)
μν (x, θ, θ̄ ) = Fμν − θg

(
Fμν × C̄

) − θ̄g
(
Fμν × C

)

+ θ θ̄
(
g2(Fμν × C) × C̄

− g(Fμν × B)
)
. (27)

From the above super-expansions, one can easily read-off
all the (anti-)BRST transformations for the YM field and
corresponding (anti-)ghost fields. These are listed as follows

sb Aμ = DμC, sbC = g

2
(C × C), sbC̄ = B,

sbB = 0, sb B̄ = −g(B̄ × C),

sbFμν = −g(Fμν × C),

sab Aμ = DμC̄, sabC̄ = g

2
(C̄ × C̄), sabC = B̄,

sab B̄ = 0, sabB = −g(B × C̄),

sabFμν = −g(Fμν × C̄). (28)

Geometrically, the BRST transformation (sb) for any generic
field Σ(x) is equivalent to the translational of correspond-
ing superfield Σ̃(h)(x, θ, θ̄ ) along θ̄ -direction while keeping
θ -direction fixed. In a similar fashion, the anti-BRST trans-
formation (sab) can be obtained by taking the translational
of the superfield along θ -direction while θ̄ -direction remains
intact. As a consequence, the following mappings are valid
between the Grassmannian translational generators (∂θ , ∂θ̄ )
and the (anti-)BRST symmetry transformations, namely;

∂

∂θ̄
Σ̃(h)(x, θ, θ̄ )

∣∣∣
θ=0

= sb Σ(x),

∂

∂θ
Σ̃(h)(x, θ, θ̄ )

∣∣∣
θ̄=0

= sab Σ(x),

∂

∂θ̄

∂

∂θ
Σ̃(h)(x, θ, θ̄ ) = sbsab Σ(x). (29)

The (anti-)BRST transformations of the NL auxiliary fields B
and B̄ have been derived from the requirements of the nilpo-
tency and absolute anticommutativity of the (anti-)BRST
transformations.

We point out that the absolute anticommutativity property
of the BRST and anti-BRST transformations is satisfied due
to the validity of the following CF condition [7] [cf. (A.1)]:

B + B̄ − g
(
C × C̄

) = 0. (30)

It is a physical condition on the theory in the sense that
it is BRST as well as anti-BRST invariant quantity (i.e.
s(a)b[B + B̄ − g

(
C × C̄

)] = 0). This is an original CF con-
dition which was emerged automatically first time for the
non-Abelian 1-form gauge theory within the framework of
superfield approach to BRST formalism [12]. For the sake
of brevity, the restriction F̃θ θ̄ = 0 leads to the above CF
condition.
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4.2 (Anti-)BRST symmetries of antisymmetric gauge field
and associated ghost fields

In this subsection, we focus on the derivation of the BRST
and anti-BRST transformations for Bμν and corresponding
(anti-)ghost fields. For this purpose, we use another HC as
given below

H (3) = H̃(3), (31)

which again implies that the kinetic term for the 2-form field
Bμν is a gauge-invariant quantity. Here H̃(3) = 1

3! (dZ L ∧
dZM ∧ dZN )HLMN defines the 3-form super-curvature on
the (4, 2)D supermanifold corresponding to the 3-form cur-
vature H (3) = 1

3! (dxμ ∧ dxν ∧ dxη)Hμνη. These (super-
)curvature are defined in the following fashion:

H̃(3) = d̃B̃(2) + ig
[
Ã(1)

(h), B̃(2)
]

+ ig
[
K̃(1), F̃ (2)

(h)

]
,

H (3) = dB(2) + ig
[
A(1), B(2)

]
+ ig

[
K (1), F (2)

]
, (32)

where Ã(1)
(h) is the super 1-form obtained after the application

of first HC (25) and F̃ (2)
(h) defines the corresponding super-

curvature. It is straightforward to check that H (3) produces
the curvature tensor (19). The super 1-form K̃(1) and super
2-form B̃(2) can be written as follows:

K̃(1) = dxμ K̃μ(x, θ, θ̄ ) + dθ ˜̄ξ(x, θ, θ̄ ) + d θ̄ ξ̃ (x, θ, θ̄ ),

B̃(2) = 1

2! (dZM ∧ dZN ) B̃MN (x, θ, θ̄ )

≡ 1

2! (dxμ ∧ dxν) B̃μν(x, θ, θ̄ )

+ (dxμ ∧ dθ) ˜̄Fμ(x, θ, θ̄ ) + (dxμ ∧ d θ̄ ) F̃μ(x, θ, θ̄ )

+ (dθ ∧ d θ̄ ) Φ̃(x, θ, θ̄ ) + (dθ ∧ dθ) ˜̄β(x, θ, θ̄ )

+ (d θ̄ ∧ d θ̄ ) β̃(x, θ, θ̄ ), (33)

where K̃(1) and B̃(2) are the generalizations of K (1) and
B(2), respectively on the supermanifold. Again, the super-
multiples, as the components of the above super 1-form and
super 2-form, can be expanded along the directions of Grass-
mannian variables (θ, θ̄ ) as

B̃μν(x, θ, θ̄ ) = Bμν(x) + θ R̄μν(x) + θ̄Rμν(x) + θ θ̄ Sμν(x),

K̃μ(x, θ, θ̄ ) = Kμ(x) + θ P̄μ(x) + θ̄ Pμ(x) + θ θ̄ Qμ(x),

F̃μ(x, θ, θ̄ ) = Cμ(x) + θ b̄(1)
μ (x) + θ̄ b(1)

μ (x) + θ θ̄ qμ(x),

˜̄Fμ(x, θ, θ̄ ) = C̄μ(x) + θ b̄(2)
μ (x) + θ̄ b(2)

μ (x) + θ θ̄ q̄μ(x),

Φ̃(x, θ, θ̄ ) = φ(x) + θ f̄1(x) + θ̄ f1(x) + θ θ̄ b1(x),

β̃(x, θ, θ̄ ) = β(x) + θ f̄2(x) + θ̄ f2(x) + θ θ̄ b2(x),
˜̄β(x, θ, θ̄ ) = β̄(x) + θ f̄3(x) + θ̄ f3(x) + θ θ̄ b3(x),

ξ̃ (x, θ, θ̄ ) = ξ(x) + θ R̄1(x) + θ̄ R1(x) + θ θ̄ S1(x),
˜̄ξ(x, θ, θ̄ ) = ξ̄ (x) + θ R̄2(x) + θ̄ R2(x) + θ θ̄ S2(x), (34)

where the secondary fields Rμν , R̄μν , Pμ, P̄μ, qμ, q̄μ, f1, f̄1,
f2, f̄2, f3, f̄3, S1, S2 are fermionic in nature and Sμν , Qμ,

b(1)
μ , b̄(1)

μ , b(2)
μ , b̄(2)

μ , b1, b2, b3, R1, R̄1, R2, R̄2 are the bosonic
secondary fields.

By using the second HC (31) together with (26) and (27),
we obtain the values of the above secondary fields except
Pμ, P̄μ and Qμ [cf. (A.2)]. As a result, we get the desired
super-expressions of the above superfields (34):

B̃(h)
μν (x, θ, θ̄ ) = Bμν + θ

[−(DμC̄ν − Dν C̄μ)

+ g(C̄ × Bμν) + g(ξ̄ × Fμν)
]

+ θ̄
[−(DμCν − DνCμ) + g(C × Bμν)

+ g(ξ × Fμν)
]

+ θ θ̄
[−(DμBν − DνBμ) + g(DμC × C̄ν)

− g(DνC × C̄μ) + g(B × Bμν)

+ g2(
ξ̄ × (Fμν × C)

) − g2(
C̄ × (C × Bμν)

)

+ g
(
C̄ × (DμCν − DνCμ)

)

+ g(R × Fμν) − g2(
C̄ × (ξ × Fμν)

)]
,

F̃ (h)
μ (x, θ, θ̄ ) = Cμ + θ B̄μ + θ̄

[ − Dμβ + g(C × Cμ)
]

+ θ θ̄
[
Dμλ − g(DμC̄ × β)

− g(B̄ × Cμ) − g(B̄μ × C)
]
,

˜̄F (h)

μ (x, θ, θ̄ ) = C̄μ + θ
[ − Dμβ̄ + (C̄ × C̄μ)

] + θ̄ Bμ

+ θ θ̄
[ − Dμλ̄ + g(DμC × β̄)

+ g(B × C̄μ) + g(Bμ × C̄)
]
,

β̃(h)(x, θ, θ̄ ) = β + θ λ + θ̄ g
(
C × β

)

+ θ θ̄
[
g(C × λ) − g(B̄ × β)

]
,

˜̄β(h)(x, θ, θ̄ ) = β̄ + θ g
(
C̄ × β̄

) + θ̄ λ̄

+ θ θ̄
[ − g(C̄ × λ̄) + g(B × β̄)

]
,

Φ̃(h)(x, θ, θ̄ ) = φ + θ ρ̄ + θ̄ ρ

+ θ θ̄
[
g(B × φ) − g(C̄ × ρ̄)

− g(C × λ̄) + g2(
C × (C × β̄)

)]
,

ξ̃ (h)(x, θ, θ̄ ) = ξ + θ R̄ + θ̄
[ − β + (C × ξ)

]

+ θ θ̄
[
λ − g(R̄ × C) − g(B̄ × ξ)

]
,

˜̄ξ(h)(x, θ, θ̄ ) = ξ̄ + θ
[ − β̄ + (C̄ × ξ̄ )

] + θ̄ R

+ θ θ̄
[ − λ̄ − g(R × C̄) − g(B × ξ̄ )

]
. (35)

In the above, we have chosen b(2)
μ = Bμ, b̄(1)

μ = B̄μ, R2 = R,
R̄1 = R̄ for the bosonic NL-type auxiliary fields Bμ, B̄μ,
R, R̄ and f1 = ρ, f̄1 = ρ̄, f̄2 = λ, f3 = λ̄ for the
additional fermionic NL-type fields ρ, ρ̄, λ, λ̄. Again, these
(bosonic) fermionic auxiliary fields are required for the off-
shell nilpotency of the (anti-)BRST transformations. One can
also express the 3-form super-curvature in terms of the Grass-
mannian variables as
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H̃(h)
μνη(x, θ, θ̄ ) = Hμνη − θg(Hμνη × C̄)

− θ̄g(Hμνη × C) + θ θ̄
[ − g(Hμνη × B)

+ g2(Hμνη × C) × C̄
]
. (36)

As a consequence of the above super-expansions, we obtain
the following BRST and anti-BRST symmetry transforma-
tions, namely;

sbBμν = −(DμCν − DνCμ) + g(C × Bμν)

+ g(ξ × Fμν),

sbCμ = −Dμβ + g(C × Cμ), sbC̄μ = Bμ,

sbβ = g(C × β), sbβ̄ = λ̄, sbφ = ρ,

sbξ = −β + g(C × ξ), sb ξ̄ = R,

sb R̄ = λ − g(R̄ × C) − g(B̄ × ξ),

sbλ = g(λ × C) − g(B̄ × β),

sbHμνη = −g(Hμνη × C), sb[Bμ, R, ρ, λ̄] = 0,

sbρ̄ = g(B × φ) + g(ρ̄ × C) − g(ρ × C̄)

− g2(
C × (C̄ × φ)

)
,

sb B̄μ = −Dμ

(
ρ − g(C × φ)

) − g2(
(C × C̄) × Cμ

)

+ g(B × Cμ) − g(B̄μ × C) + g(C̄ × Dμβ),

sabBμν = −(DμC̄ν − Dν C̄μ) + g(C̄ × Bμν)

+ g(ξ̄ × Fμν),

sabC̄μ = −Dμβ̄ + g(C̄ × C̄μ), sabCμ = B̄μ,

sabβ̄ = g(C̄ × β̄), sabβ = λ,

sabφ = ρ̄, sab ξ̄ = −β̄ + g(C̄ × ξ̄ ),

sabξ = R̄, sabR = λ̄ − g(R × C̄) − g(B × ξ̄ ),

sabλ̄ = g(λ̄ × C̄) − g(B × β̄),

sabHμνη = −g(Hμνη × C̄), sab[B̄μ, R̄, ρ̄, λ] = 0,

sabρ = g(B̄ × φ) − g(ρ̄ × C) + g(ρ × C̄)

− g2(
C̄ × (C × φ)

)
,

sabBμ = −Dμ

(
ρ̄ − g(C̄ × φ)

) − g2(
(C × C̄) × C̄μ

)

+ g(B̄ × C̄μ) − g(Bμ × C̄) + g(C × Dμβ̄). (37)

These transformations are also off-shell nilpotent and abso-
lutely anticommuting in nature.

4.3 (Anti-)BRST transformations of Kμ and associated
ghosts

We have, so far, determined the BRST and anti-BRST trans-
formations for the YM, Kalb–Ramond and their associated
(anti-)ghost fields. But the proper (anti-)BRST transforma-
tions of the compensating auxiliary vector field are still
unknown. This is because of the fact that the second HC
is incapable to determine the precise value of the secondary
fields Pμ, P̄μ and Qμ.

It is to be noted that the field strength tensors trans-
form covariantly (i.e. δFμν = −g(Fμν × ζ ) and δHμνη =
−g(Hμνη × ζ )) under the combined gauge transformations

δ. In a similar manner, it is interesting to point out that the
following quantity

δ[(DμKν − DνKμ) − Bμν]
= − [(DμKν − DνKμ) − Bμν] × ζ, (38)

transforms covariantly under the combined gauge transfor-
mations, too.

In the language of differential forms, one can write

dK (1) + ig
[
A(1), K (1))

]
− B(2)

= 1

2! (dxμ ∧ dxν)[(DμKν − DνKμ) − Bμν], (39)

which is clearly a 2-form quantity. Generalizing this 2-form
quantity on the (4, 2)D superspace which in turn produces
the third HC

d̃K̃(1) + ig
[
Ã(1)

(h), K̃(1)
]

− B̃(2)
(h)

= dK (1) + ig
[
A(1), K (1)

]
− B(2). (40)

It is worthwhile to mention that the above HC can also be
obtained from the integrability of the second HC (31) [41].
Exploiting the above HC and setting all the Grassmannian
differential equal to zero, we obtain the precise values of
the renaming secondary fields [cf. (A.3)] and we have the
following super-expansion of K̃μ as given below

K̃(h)
μ (x, θ, θ̄ ) = Kμ + θ

[
Dμξ̄ − C̄μ − g(Kμ × C̄)

]

+ θ̄
[
Dμξ − Cμ − g(Kμ × C)

]

+ θ θ̄
[
DμR − Bμ

− g(DμC × ξ̄ ) − g(Kμ × B)

− g
(
Dμξ − Cμ − g(Kμ × C)

) × C̄
]
. (41)

Thus, we obtain the following BRST and anti-BRST trans-
formations for the compensating auxiliary field:

sbKμ = Dμξ − Cμ − g(Kμ × C),

sabKμ = Dμξ̄ − C̄μ − g(Kμ × C̄). (42)

The above transformations as listed in (37) and (42) are off-
shell nilpotent and absolutely anticommuting. However, the
absolute anticommutativity property is satisfied on the con-
strained hypersurface defined by the CF-type condition (30)
and the following additional CF-type conditions [cf. (B.5)]:

B̄μ + Bμ + Dμφ − g(C̄ × Cμ) − g(C × C̄μ) = 0,

R̄ + R + φ − g(C̄ × ξ) − g(C × ξ̄ ) = 0,

ρ + λ − g(C × φ) − g(C̄ × β) = 0,

ρ̄ + λ̄ − g(C̄ × φ) − g(C × β̄) = 0. (43)

These CF-type conditions emerge from the second and third
HCs [cf. (A.2) and (A.3)]. Furthermore, it is to be noted that
the first two CF-type conditions are bosonic whereas last two
are fermionic in nature.

123



Eur. Phys. J. C (2018) 78 :452 Page 9 of 14 452

5 Coupled but equivalent Lagrangian densities

Using the basic principles and ingredients of BRST formal-
ism, the most appropriate (anti-)BRST invariant Lagrangian
densities which incorporate the gauge-fixing and Faddeev–
Popov ghosts terms can be written as

L(B) = L + sbsab

[
1

2
Aμ · Aμ + C̄ · C + 1

2
φ · φ

+ 2 β̄ · β + C̄μ · Cμ − 1

4
Bμν · Bμν

]
, (44)

L(B̄) = L − sabsb

[
1

2
Aμ · Aμ + C̄ · C + 1

2
φ · φ

+ 2 β̄ · β + C̄μ · Cμ − 1

4
Bμν · Bμν

]
. (45)

It is worthwhile to mention that all terms in the square brack-
ets are Lorentz scalar and they are chosen in such a way
that each term carries zero ghost number and mass dimen-
sion equal to two (in natural units: h̄ = c = 1) for the
4D theory. Furthermore, the (anti-)BRST symmetry trans-
formations (decrease) increase the ghost number by one unit
when they operate on any generic field. Also, the operation
of nilpotent transformations raises mass dimension by one
when they act on any field. One can see these observations
directly from the expressions of the (anti-)BRST symmetry
transformations given in (28), (37) and (42). The Lagrangian
densities in its full blaze of glory (in the Feynman-t’ Hooft
gauge) can written as

L(B) = −1

4
Fμν · Fμν + 1

12
Hμνη · Hμνη

+ m

4
εμνηκ B

μν · Fηκ + 1

2

[
B · B + B̄ · B̄]

− B · (∂μA
μ) + [

Bμ − g(C × C̄μ)
] · [

Bμ + Dμφ

− g(C × C̄μ) + DνBμν

]

+ 1

2

[
(DμC̄ν − DνC̄μ) − g(ξ̄ × Fμν)

] · [
(DμCν

− DνCμ) − g(ξ × Fμν)
]

− ∂μC̄ · DμC + Dμβ̄ · Dμβ

+ g

2

[
R − g(C × ξ̄ )

] · (Bμν × Fμν)

− [
λ̄ − g(C × β̄)

] · [
ρ − g(C × φ) − DμC

μ
]

− [
ρ − g(C × φ)

] · DμC̄
μ, (46)

L(B̄) = −1

4
Fμν · Fμν + 1

12
Hμνη · Hμνη

+ m

4
εμνηκ B

μν · Fηκ + 1

2

[
B · B + B̄ · B̄]

+ B̄ · (∂μA
μ) + [

B̄μ − g(C̄ × Cμ)
] · [

B̄μ + Dμφ

− g(C̄ × Cμ) − DνBμν

]

+ 1

2

[
(DμC̄ν − DνC̄μ) − g(ξ̄ × Fμν)

] · [
(DμCν

− DνCμ) − g(ξ × Fμν)
]

− DμC̄ · ∂μC + Dμβ̄ · Dμβ

− g

2

[
R̄ − g(C̄ × ξ)

] · (Bμν × Fμν)

− [
ρ̄ − g(C̄ × φ)

] · [
λ − g(C̄ × β) + DμC

μ
]

+ [
λ − g(C̄ × β)

] · DμC̄
μ. (47)

These are the coupled Lagrangian densities because the pairs
of the NL-type auxiliary fields (B, B̄), (Bμ, B̄μ), (R, R̄),
(λ, ρ), (λ̄, ρ̄) are related to each other through CF-type con-
ditions (cf. (30) and (43)). Further, the couple Lagrangian
densities are equivalent because they respect (anti-)BRST
symmetry transformations on constrained surface defined by
CF-type conditions (see Appendix C below).

6 (Anti-)BRST invariance of the Lagrangian densities,
nilpotency and absolute anticommutativity of the
(anti-)BRST symmetries: superfield approach

It is evident from the expressions of the Lagrangian densi-
ties (44) and (45) that the (anti-)BRST invariance can now be
proven in a rather simpler way. This is because of the fact that
under the operation of (anti-)BRST transformations,L trans-
forms to a total spacetime derivative and rest part in (44) and
(45) turns out to be zero due to the nilpotency and anticom-
mutativity properties of the (anti-)BRST transformations.

The above BRST and anti-BRST invariances of the cou-
pled Lagrangian densities can also be discussed in the con-
text of superfield formalism. Thus, for the sake of brevity,
we generalize the Lagrangian densities on the (4, 2)D super-
manifold as

L̃(B) = L̃ + ∂

∂θ̄

∂

∂θ

[
1

2
Ã(h)

μ · Ãμ(h) + ˜̄F (h) · F̃ (h)

+ 1

2
Φ̃(h) · Φ̃(h) + 2 ˜̄β(h) · β̃(h)

+ ˜̄F (h)

μ · F̃μ(h) − 1

4
B̃μν(h) · B̃(h)

μν

]
, (48)

L̃(B) = L̃ − ∂

∂θ

∂

∂θ̄

[
1

2
Ã(h)

μ · Ãμ(h) + ˜̄F (h) · F̃ (h)

+ 1

2
Φ̃(h) · Φ̃(h) + 2 ˜̄β(h) · β̃(h)

+ ˜̄F (h)

μ · F̃μ(h) − 1

4
B̃μν(h) · B̃(h)

μν

]
, (49)

where the super-Lagrangian density L̃ is given by

L̃ = −1

4
F̃ (h)

μν · F̃μν(h) + 1

12
H̃(h)

μνη · H̃μνη(h)

+ m

4
εμνηκ B̃(h)

μν · F̃ (h)
ηκ . (50)

By virtue of the HCs [cf. (25) and (31)], the first two terms
in the super-Lagrangian density (L̃) are independent of the
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Grassmannian variables (θ, θ̄ ). The key reason behind this
is that these terms are gauge-invariant (and obviously (anti-
)BRST invariant). The super-topological term in (50) can be
expressed, in terms of Grassmannian variables, as

m

4
εμνηκB(h)

μν · F (h)
ηκ = m

4
εμνηκ Bμν · Fηκ

− θ ∂μ

[
m

2
εμνηκFμν · C̄κ

]

− θ̄ ∂μ

[
m

2
εμνηκFμν · Cκ

]

+ θ θ̄ ∂μ

[
m

2
εμνηκFμν · B̄κ

]
. (51)

The (anti-)BRST invariance of the super-topological term
can be captured in the context of superfield formalism as

∂

∂θ̄

[
m

4
εμνηκB(h)

μν · F (h)
ηκ

]∣∣∣∣
θ=0

= − ∂μ

[
m

2
εμνηκFμν · Cκ

]

= sb

[
m

4
εμνηκ Bμν · Fηκ

]
,

∂

∂θ

[
m

4
εμνηκB(h)

μν · F (h)
ηκ

]∣∣∣∣
θ̄=0

= − ∂μ

[
m

2
εμνηκFμν · C̄κ

]

= sab

[
m

4
εμνηκ Bμν · Fηκ

]
,

∂

∂θ̄

∂

∂θ

[
m

4
εμνηκB(h)

μν · F (h)
ηκ

]
= + ∂μ

[
m

2
εμνηκFμν · B̄κ

]

= sbsab

[
m

4
εμνηκ Bμν · Fηκ

]
.

(52)

Thus, under the operation of Grassmannian translational gen-
erators ∂θ̄ , ∂θ , the super-topological term remains quasi-
invariant (i.e. transforms to a total spacetime derivative). This
implies that the topological term remains invariant modulo a
total spacetime derivative term under the operations of BRST
and/or anti-BRST transformations. Consequently, the super-
Lagrangian densities (48) and (49) remain invariant (up to
a total spacetime derivative) under the action of Grassman-
nian derivatives due to the nilpotency (i.e. ∂2

θ̄
= 0, ∂2

θ = 0)
and anticommutativity (i.e. ∂θ̄ ∂θ + ∂θ∂θ̄ = 0) of the Grass-
mannian translation generators. This implies the (anti-)BRST
invariance of the coupled Lagrangian densities within the
framework of superfield formalism.

We can also capture the nilpotency and absolute anticom-
mutativity properties of the (anti-)BRST symmetry transfor-
mations in the language of Grassmannian translational gen-
erators. Mathematically, to corroborate this statement, the
following relations are true, namely;

∂

∂θ̄

∂

∂θ̄
Σ̃(h)(x, θ, θ̄ ) = 0 ⇐⇒ s2

bΣ(x) = 0,

∂

∂θ

∂

∂θ
Σ̃(h)(x, θ, θ̄ ) = 0 ⇐⇒ s2

abΣ(x) = 0, (53)

(
∂

∂θ̄

∂

∂θ
+ ∂

∂θ

∂

∂θ̄

)
Σ̃(h)(x, θ, θ̄ ) = 0

⇐⇒ (
sb sab + sab sb

)
Σ(x) = 0, (54)

where Σ(x) is any generic field present in the 4D (anti-
)BRST invariant theory and Σ̃(h)(x, θ, θ̄ ) is the correspond-
ing superfield defined on the (4, 2)D supermanifold.

7 Conclusions

In our present investigation, we have exploited the superfield
formalism to derive the off-shell nilpotent and absolutely
anticommuting BRST as well as anti-BRST symmetry trans-
formations corresponding to the combined “scalar” and “vec-
tor” gauge transformations for the 4D topologically massive
non-Abelian gauge theory. In this approach, we have invoked
the power and strength of three horizontality conditions in
order to derive the complete set of the (anti-)BRST trans-
formations. By using the basic tenets of BRST formalism,
we have obtained the most general BRST and anti-BRST
invariant Lagrangian densities (in the Feynman gauge) for
the topologically massive model (cf. (46) and (47)), respec-
tively, where the ghost number and mass dimension of the
dynamical fields are taken into account.

The BRST and anti-BRST invariant Lagrangian densities
are coupled but equivalent due to the very existence of five
constrained field equations defined by CF-type conditions
(cf. (30) and (43)). Two of them are fermionic in nature (cf.
(43)). These CF conditions provide us the relations between
the pairs of NL-type auxiliary fields. All CF-type conditions
play very important role:

1. in the proof of anticommutativity (i.e. linear indepen-
dence) of the BRST and anti-BRST transformations (cf.
(A.4) and (B.5)), and

2. in the derivation of coupled (but equivalent) Lagrangian
densities.

These CF conditions are (anti-)BRST invariant and, thus,
they are physical restrictions on the (anti-)BRST invariant
theory.

We have provided the geometrical origin of the BRST
and anti-BRST symmetry transformations in the language
of Grassmannian translational generators ∂θ̄ and ∂θ , respec-
tively. The properties of the (anti-)BRST transformations are
also captured in terms of the Grassmannian translational gen-
erators. Further, by exploiting the key properties of Grass-
mannian translation generators, we have also captured the
(anti-)BRST invariance of the coupled Lagrangian densities
within the framework of superfield formalism in a simple and
straightforward manner.

We have observed that the vector gauge symmetry of the
Kalb–Ramond field Ba

μν in the non-Abelian generalization
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of the topologically model exists due to the introduction of
an auxiliary vector field Ka

μ in the Lagrangian density (18)
with the expression of the field strength given in Eq. (19).
From the (anti-)BRST transformations of Ka

μ as given in Eq.
(42):

sbK
a
μ = (Dμξ)a − Ca

μ − g(Kμ × C)a,

sabK
a
μ = (Dμξ̄)a − C̄a

μ − g(Kμ × C̄)a,

we observe that all the modes of the auxiliary field are
unphysical.

We have not included matter fields in this gauge the-
ory. Fermions can be introduced in the model via the cou-

pling ψ̄σμνψBμν where σμν = i

4
[γ μ, γ ν]. This coupling

is invariant under CP transformation and remains invariant
under the gauge transformations

Aμ → U AμU
† + i

g
(∂μU )U †,

Bμν → UBμνU
†, ψ → Uψ, ψ̄ → ψ̄U †, (55)

but the interaction term does not obey the vector gauge
symmetry of Bμν field. It will be interesting to see how
the interaction ψ̄σμνψBμν contribute to the chromomag-
netic moment and mass renormalization of quarks in QCD.
We can also think of modification of the interaction as
ψ̄σμνψ

[
Bμν − (DμKν − DνKμ)

]
to get an interaction term

remained invariant under the vector gauge symmetry of Bμν

field. In the both cases, we should see how those interactions
contribute to the beta function in the non-Abelian gauge the-
ory because the interaction terms are new with respect to
existing literature . We do not know from our present knowl-
edge how the chiral symmetry of fermion field can be broken
in this model. It should also be part in the investigation how
mass of gluon is renormalized in this topologically massive
model.
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Appendix A: Determination of various secondary fields

Exploiting the first HC (25) for the superfields (24), we obtain
the values of secondary fields in terms of the dynamical and
auxiliary fields of the 4D (anti-)BRST invariant theory. The-

ses are listed as follows:

Rμ = DμC, R̄μ = DμC̄, B1 = g

2
(C × C),

s = − g(B̄1 × C), s̄ = g(B2 × C̄),

B̄2 = g

2
(C̄ × C̄), B̄1 + B2 − g(C × C̄) = 0,

Sμ = DμB2 − g(DμC × C̄)

≡ − Dμ B̄1 + g(C × DμC̄). (A.1)

The second relation in the third line of the above equation is
nothing but the well-known CF condition. It is the hallmark
of non-Abelian 1-form gauge theory and emerged very nat-
urally within the framework of superfield approach to BRST
formalism.

Using the second HC (31) together with (26) and (27), we
obtain the values for the secondary fields for the expansions
of superfields (34), namely;

f̄3 = g(C̄ × β̄), R1 = −β − g(C × ξ),

R̄2 = − β̄ + g(C̄ × ξ̄ ), f2 = g(C × β),

f̄1 + f3 − g(C̄ × φ) − g(C × β̄) = 0,

f1 + f̄2 − g(C × φ) − g(C̄ × β) = 0,

S1 = g(C × R̄1) − g(B̄ × ξ) + f̄2,

S2 = g(C̄ × R2) − g(B × ξ̄ ) − f3,

b̄(1)
μ + b(2)

μ + Dμφ − g(C̄ × Cμ) − g(C × C̄μ) = 0,

b1 = g(C × f̄1) − g(B̄ × φ) + g(C̄ × f̄2)

− g2(
C̄ × (C̄ × β)

)

≡ − g(C̄ × f1) + g(B × φ) − g(C × f3)

+ g2(
C × (C × β̄)

)
,

b2 = g(C × f̄2) − g(B̄ × β)

≡ g(B × β) − g(C × f1) − g(C̄ × f2)

+ g2(
C × (C × φ)

)
,

b3 = g(B × β̄) − g(C̄ × f3)

≡ g(C̄ × f̄1) + g(C × f̄3) − g(B̄ × β̄)

− g2(
C̄ × (C̄ × φ)

)
,

b(1)
μ = −Dμβ + g(C × Cμ),

b̄(2)
μ = −Dμβ̄ + g(C̄ × C̄μ),

qμ = Dμ f̄2 − g(DμC̄ × β) + g(C × b̄(1)
μ ) − g(B̄ × Cμ),

q̄μ = −Dμ f3 + g(DμC × β̄) − g(C̄ × b(2)
μ ) + g(B × C̄μ),

Rμν = −(DμCν − DνCμ) + g(C × Bμν) + g(ξ × Fμν),

R̄μν = −(DμC̄ν − Dν C̄μ) + g(C̄ × Bμν) + g(ξ̄ × Fμν),

Sμν = g(B × Bμν) − (DμBν − DνBμ) + g(R2 × Fμν)

+ g(DμC × C̄ν) − g(DνC × C̄μ)

+ g2(
ξ̄ × (Fμν × C)

) + gC̄ × (
(DμCν − DνCμ)

− g(C × Bμν) − g(ξ × Fμν)
)

≡ (Dμ B̄ν − Dν B̄μ) − g(B̄ × Bμν) − g(R̄1 × Fμν)

+ g(Dν C̄ × Cμ) − g(DμC̄ × Cν)

− g2(
ξ × (Fμν × C̄)

) − gC × (
(DμCν − DνCμ)
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− g(C × Bμν) − g(ξ × Fμν)
)
. (A.2)

It is to be noted that the third and seventh equations in the
above are the CF-type conditions. These constrained field
equations emerge naturally when we set the coefficients of
the wedge products (dθ ∧ d θ̄ ∧ d θ̄ ), (dθ ∧ dθ ∧ d θ̄ ) and
(dxμ ∧ dθ ∧ dθ) equal to zero due to the HC (31).

Similarly, the third HC (40) produces the precise values
of the remaining secondary fields as

Pμ = Dμξ − Cμ − g(Kμ × C),

P̄μ = Dμξ̄ − C̄μ − g(Kμ × C̄),

R̄ + R + φ − g(C̄ × ξ) − g(C × ξ̄ ) = 0,

Qμ = DμR − g(DμC × ξ̄ ) + g(B × Kμ) − Bμ

−g
(
C̄ × (Dμξ − Cμ − g(Kμ × C))

)

≡ −Dμ R̄ + g(DμC̄ × ξ) − g(B̄ × Kμ) + B̄μ

+g
(
C × (Dμξ̄ − C̄μ − g(Kμ × C̄))

)
. (A.3)

The field equation in the third line of the above equation
is also the CF-type condition and it emerges naturally from
the coefficient of Grassmannian differentials (dθ ∧ d θ̄ ) in
Eq. (40).

Appendix B: Absolute anticommutativity property of
(anti-)BRST transformations

It is well-known that BRST and anti-BRST transformations
by construction are off-shell nilpotent and absolutely anti-
commuting. The latter property is satisfied due to the exis-
tence of five CF-type conditions. The anticommutator of the
BRST and anti-BRST transformations for the gauge field Aμ

can be written as

{sb, sab}Aμ = Dμ

[
B + B̄ − g

(
C × C̄

)]
. (A.4)

Thus, it is clear that {sb, sab}Aμ = 0 on the constraint hyper-
surface defined by CF condition: B + B̄ − g

(
C × C̄

) = 0.
Similarly, for the sake of completeness, we note that the fol-
lowings are true:

{sb, sab}Bμν = g[B + B̄ − g(C × C̄)] × Bμν

+ g[R + R̄ − g(C × ξ̄ ) − g(C̄ × ξ)] × Fμν

− Dμ[Bν + B̄ν − g(C̄ × Cν) − g(C̄ × C̄ν)]
+ Dν [Bμ + B̄μ − g(C̄ × Cμ) − g(C̄ × C̄μ)],

{sb, sab}Cμ = g[B + B̄ − g(C × C̄)] × Cμ

− Dμ[ρ + λ − g(C × φ) − g(C̄ × β)],
{sb, sab}C̄μ = g[B + B̄ − g(C × C̄)] × C̄μ

− Dμ[ρ̄ + λ̄ − g(C̄ × φ) − g(C × β̄)],
{sb, sab}ρ = g

[
B + B̄ − g(C × C̄)

] × (
ρ − g(C × φ)

)

− g2([
B + B̄ − g(C × C̄)

] × φ
) × C,

{sb, sab}ρ̄ = g
[
B + B̄ − g(C × C̄)

] × (
ρ̄ − g(C̄ × φ)

)

− g2([
B + B̄ − g(C × C̄)

] × φ
) × C̄,

{sb, sab}φ = g
[
B + B̄ + i(C × C̄)

] × φ,

{sb, sab}Bμ = g
[
B + B̄ − g(C × C̄)

] × Bμ

− gDμ

[
ρ̄ + λ̄ − g(C × β̄) − g(C̄ × φ)

] × C

+ g2([
B + B̄ − g(C × C̄)

] × C
) × C̄μ,

{sb, sab}B̄μ = g
[
B + B̄ − g(C × C̄)

] × B̄μ

− gDμ

[
ρ + λ − g(C̄ × β) − g(C × φ)

] × C̄

+ g2([
B + B̄ − g(C × C̄)

] × C̄
) × Cμ,

{sb, sab}Kμ = g
[
B + B̄ − g(C × C̄)

] × Kμ

+ Dμ

[
R + R̄ + φ − g(C × ξ̄ ) − g(C̄ × ξ)

]

− [
Bμ + B̄μ + Dμφ

− g(C × C̄μ) − g(C̄ × Cμ)
]
. (B.5)

Thus, the anticommutativity property of the BRST and anti-
BRST transformations for the fields Aμ, Bμν , Cμ, C̄μ, ρ, ρ̄,
φ, Bμ, B̄μ, Kμ is satisfied only on the constrained hyper-
surface defined by the CF-type conditions. For remaining
fields (i.e. β, β̄, ξ, ξ̄ , λ, λ̄, R, R̄) this property is trivially sat-
isfied. We again emphasize that all five CF-type conditions
play an important role in providing the anticommutativity of
the (anti-)BRST transformations and also responsible for the
coupled (but equivalent) Lagrangian densities.

Appendix C: (Anti-)BRST invariance of coupled
Lagrangian densities

The Lagrangian densities L(B) respects the BRST symmetry
transformations, as one check that it remains quasi-invariant.
To be more precise, L(B) transforms to a total spacetime
derivative under the BRST transformations as follows

sbL(B) = −∂μ

[
B · DμC + m

2
εμνηκ Fνη · Cκ

− (
Bμ − g(C × C̄μ)

) · (
ρ − g(C × φ)

)

− (
Bν − g(C × C̄ν)

) · (
DμCν − DνCμ

− g(ξ × Fμν)
) − (

λ̄ − g(C × β̄)
) · Dμβ

]
.

(C.6)

As a consequence, the action integral remains invariant (i.e.
sb

∫
d4xL(B) = 0) due to Gauss divergence theorem. It is

interesting to note that under the anti-BRST symmetry trans-
formations L(B) transforms to a total spacetime derivative
plus some additional terms
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sabLB = −∂μ

[
B · ∂μC̄ + m

2
εμνηκ Fνη · C̄κ

− (
Bν − g(C × C̄ν)

) · (
DμC̄ν − DνC̄μ

− g(ξ̄ × Fμν)
)

+ (
ρ̄ − g(C̄ × φ)

) ·
(
Bμ + Dμφ − g(C × C̄μ)

+ DνB
μν

)
− (

λ − g(C̄ × β)
) · Dμβ̄

]

+ Dμ

[(
B + B̄ − g(C × C̄)

) · ∂μC̄
]

− g2

2

[(
B + B̄ − g(C × C̄)

) × ξ̄
] · (Bμν × Fμν)

+ g
[(
B + B̄ − g(C × C̄)

) × β̄
] · [

ρ − g(C × φ)

− DμC
μ
]

− [
λ̄ − g(C × β̄)

] · Dμ

[
Bμ + B̄μ + Dμφ

− g(C × C̄μ) − g(C̄ × Cμ)
]

− Dμ

[
Bν + B̄ν + Dνφ − g(C × C̄ν)

− g(C̄ × Cν)
] · [

DμC̄ν − DνC̄μ − g(ξ̄ × Fμν)
]

− g

2

[
R + R̄ + φ − g(C × ξ̄ ) − g(C̄ × ξ)

]

· [(
DμC̄ν − DνC̄μ − g(ξ̄ × Fμν)

) × Fμν

]

− [
λ + ρ − g(C × φ) − g(C̄ × β)

] · Dμ(Dμβ̄)

+ g

2

[
ρ̄ + λ̄ − g(C̄ × φ)

− g(C × β̄)
] · (Bμν × Fμν). (C.7)

Due to the validity of CF conditions, all the extra terms,
except total derivative term, vanish. Thus, L(B) also respects
the anti-BRST transformations on the constrained hypersur-
faces defined by CF conditions (30) and (43).

In a similar fashion, the anti-BRST transformations leave
L(B̄) to a total spacetime derivative

sabL(B̄) = ∂μ

[
B̄ · DμC̄ − m

2
εμνηκ Fνη · C̄κ

− (
B̄μ − g(C̄ × Cμ)

) · (
ρ̄ − g(C̄ × φ)

)

− (
B̄ν − g(C̄ × Cν)

) · (
DμC̄ν − DνC̄μ

− g(ξ̄ × Fμν)
) + (

λ − g(C̄ × β)
) · Dμβ̄

]
.

(C.8)

Thus, L(B̄) respects off-shell nilpotent anti-BRST symme-
try transformations. It is to be noted that under the BRST
transformations LB̄ transforms in the following fashion:

sbLB̄ = −∂μ

[
− B̄ · ∂μC + m

2
εμνηκ Fνη · Cκ

+ (
B̄ν − g(C̄ × Cν)

) · (
DμCν − DνCμ

− g(ξ × Fμν)
)

+ (
ρ − g(C × φ)

) ·
(
B̄μ + Dμφ − g(C × C̄μ)

− DνB
μν

)
− (

λ̄ − g(C × β̄)
) · Dμβ̄

]

− Dμ

[(
B + B̄ − g(C × C̄)

) · ∂μC
]

+ g2

2

[(
B + B̄ − g(C × C̄)

) × ξ
] · (Bμν × Fμν)

− g
[(
B + B̄ − g(C × C̄)

) × β
] · [

ρ̄ − g(C̄ × φ)

+ DμC̄
μ
]

− [
λ − g(C̄ × β)

] · Dμ

[
Bμ + B̄μ + Dμφ

− g(C × C̄μ) − g(C̄ × Cμ)
] + Dμ

[
Bν + B̄ν

+ Dνφ − g(C × C̄ν)

− g(C̄ × Cν)
] · [

DμCν − DνCμ − g(ξ × Fμν)
]

+ g

2

[
R + R̄ + φ − g(C × ξ̄ ) − g(C̄ × ξ)

] · [(
DμCν

− DνCμ − g(ξ × Fμν)
) × Fμν

]

− [
λ̄ + ρ̄ − g(C̄ × φ) − g(C × β̄)

] · Dμ(Dμβ)

− g

2

[
ρ + λ − g(C × φ)

− g(C̄ × β)
] · (Bμν × Fμν). (C.9)

It is clear that Lagrangian density L(B̄) also respects the
BRST symmetry transformations due to the validity of CF-
type conditions. As a consequence, the coupled Lagrangian
densities respect BRST and anti-BRST symmetries on the
constrained hypersurface defined by the CF-type conditions.
This shows that the coupled Lagrangian densities are equiv-
alent on the constrained hypersurface.
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