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ABSTRACT

We analyze full-orbit phase curve observations of the transiting hot Jupiters WASP-19b and HAT-P-7b at 3.6 and
4.5 μm, obtained using the Spitzer Space Telescope. For WASP-19b, we measure secondary eclipse depths of

0.485% 0.024% and 0.584% 0.029% at 3.6 and 4.5 μm, which are consistent with a single blackbody with
effective temperature 2372 ± 60 K. The measured 3.6 and 4.5 μm secondary eclipse depths for HAT-P-7b are

0.156% 0.009% and 0.190% 0.006%, which are well described by a single blackbody with effective
temperature 2667 ± 57 K. Comparing the phase curves to the predictions of one-dimensional and three-
dimensional atmospheric models, we find that WASP-19b’s dayside emission is consistent with a model
atmosphere with no dayside thermal inversion and moderately efficient day–night circulation. We also detect an
eastward-shifted hotspot, which suggests the presence of a superrotating equatorial jet. In contrast, HAT-P-7b’s
dayside emission suggests a dayside thermal inversion and relatively inefficient day–night circulation; no hotspot
shift is detected. For both planets, these same models do not agree with the measured nightside emission. The
discrepancies in the model-data comparisons for WASP-19b might be explained by high-altitude silicate clouds on
the nightside and/or high atmospheric metallicity, while the very low 3.6 μm nightside planetary brightness for
HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond albedos of 0.38 ± 0.06 and 0
(<0.08 at s1 ) for WASP-19b and HAT-P-7b, respectively. In the context of other planets with thermal phase curve
measurements, we show that WASP-19b and HAT-P-7b fit the general trend of decreasing day–night heat
recirculation with increasing irradiation.

Key words: planetary systems – stars: individual (WASP-19 and HAT-P-7) – techniques: photometric

1. INTRODUCTION

Over the past decade, phase curve observations have proven
to be an invaluable tool in the intensive atmospheric
characterization of an increasingly diverse body of exoplanets.
By measuring the variation in the observed infrared flux of the
system throughout an orbit, one obtains the planet’s emission
across a range of viewing geometries, from which a long-
itudinal temperature map of the planet’s surface can be
acquired (Cowan & Agol 2008). Basic properties of the
atmosphere can be deduced by examining the shape of the
phase curve: the amplitude of the phase curve modulation
provides the day–night temperature contrast, while the
measured phase offset of the brightness maximum relative to

the time of secondary eclipse reveals longitudinal shifts in the
emission maximum relative to the substellar point, which is
related to the interplay between the atmospheric advective and
radiative timescales (e.g., Showman et al. 2009; Lewis et al.
2010; Perez-Becker & Showman 2013). Together, these
characteristics describe the thermal budget of the planet’s
atmosphere and help constrain such properties as the Bond
albedo and the recirculation efficiency (Schwartz &
Cowan 2015).
Multiband phase curve observations add a new vertical

dimension to our understanding of a planet’s atmosphere. The
measured modulation in the planet’s emission at each wave-
length provides information about the atmospheric energetics
and dynamics at a particular height within the atmosphere (e.g.,
Knutson et al. 2012; Lewis et al. 2013). To date, only six planets
have well-characterized phase curve detections at more than one
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wavelength: HD 189733b (Knutson et al. 2012), WASP-12b
(Cowan et al. 2012), WASP-18b (Maxted et al. 2013),
HAT-P-2b (Lewis et al. 2013), WASP-43b (Stevenson
et al. 2014), and WASP-14b (Wong et al. 2015).

A full interpretation of multiband phase curve observations
requires the comparison of the measured fluxes with the results
of theoretical models. The detailed morphology of the phase
variation and the relative planetary brightness in various
bandpasses (i.e., phase-resolved broadband emission spectra)
are affected by many aspects of the atmospheric dynamics and
composition. By matching the phase curve data with model-
generated light curves and spectra, one can infer the presence
or absence of a dayside temperature inversion, atmospheric
metallicity, C/O ratio, wind speeds, as well as the presence of
clouds and/or hazes (e.g., Fortney et al. 2006; Showman
et al. 2009; Lewis et al. 2010, 2013; Heng & Demory 2013;
Madhusudhan et al. 2014).

While the complexity and explanatory capabilities of
atmospheric models have increased over the past decade,
reproducing multiband phase curve observations with theore-
tical light curves remains a challenge. In particular, while the
dayside planetary emission is typically well-matched by current
models, the observed nightside emission at various wave-
lengths often diverges significantly from the theoretical
predictions (e.g., Lewis et al. 2013; Wong et al. 2015),
underscoring the need for improved models in order to better
understand the underlying physical and chemical processes that
drive atmospheric circulation. Nevertheless, the growing body
of exoplanet phase curves has begun to reveal several notable
trends. Comparisons of the day–night temperature contrasts for
exoplanets with thermal phase curve observations (e.g., Cowan
& Agol 2011), as well as hydrodynamical simulations (Perna
et al. 2012; Perez-Becker & Showman 2013), have shown that
planets with higher levels of stellar irradiation have system-
atically poorer day–night heat recirculation. An additional trend
is seen in the distribution of estimated albedos: using a simple
thermal balance to solve for the Bond albedo of planets with
thermal phase curve measurements, following the methods of
Schwartz & Cowan (2015), we showed in Wong et al. (2015)
that the albedo distribution is bimodal, with the massive hot
Jupiters (7–10 MJup) having albedos consistent with zero, and
the other less-massive hot Jupiters having higher albedos.

To explore further these emerging trends, we have obtained
phase curve observations of the hot Jupiters WASP-19b and
HAT-P-7b in the 3.6 and 4.5 μm bands using the Spitzer Space
Telescope. Photometric and radial velocity (RV) observations
of WASP-19b indicate a mass of = M M1.114 0.036p Jup

(Tregloan-Reed et al. 2013). The planet orbits a G8-type host
star with a period of 0.789 days (Tregloan-Reed et al. 2013).
Transmission spectroscopy studies of WASP-19b from the
optical to the near-infrared reveal a strong detection of water
vapor in the atmosphere, as well as a weak or absent dayside
temperature inversion (Bean et al. 2013; Huitson et al. 2013).
Atmospheric retrieval using the transmission spectroscopy data
rules out high C/O ratios (Benneke 2015). Analyses of the
dayside thermal emission via occultation light curves corrobo-
rate the lack of a strong temperature inversion (Anderson et al.
2013; Lendl et al. 2013; Zhou et al. 2014). HAT-P-7b has a
mass of = -

+M M1.776p 0.049
0.077

Jup (Pál et al. 2008) and orbits an
F8-type host star with a period of 2.20 days (Morris
et al. 2013). Previous analyses of a full-orbit optical Kepler
phase curve as well as secondary eclipse light curves in the

optical and infrared suggest the presence of a strong dayside
temperature inversion and inefficient day–night heat recircula-
tion (Borucki et al. 2009; Christiansen et al. 2010; Spiegel &
Burrows 2010).
Both planets lie on nearly circular orbits and have similar

levels of incident stellar radiation and gravitational accelera-
tion, which are two key drivers of atmospheric circulation. A
full list of relevant stellar, planetary, and orbital properties for
our two target systems is provided in Table 1. A way to
quantify the intensity of the incident stellar irradiation is to
calculate the irradiation temperature

* *
ºT T R a0 at the

substellar point, which is defined such that s=F T0 0
4 is the

incident stellar flux, where σ is the Stefan–Boltzmann constant.
WASP-19b and HAT-P-7b have irradiation temperatures of
3000 and 3210 K, respectively, making them among the most
highly irradiated hot Jupiters known.
The paper is organized as follows. The observations, data

reduction techniques, and phase curve model are summarized
in Section 2. In Section 3, we present phase curve fits and
updated orbital and planetary parameters. We discuss the
implications of our phase curve fits for the planet’s atmospheric
dynamics in Section 4.

2. SPITZER OBSERVATIONS AND METHODS

For each of the two planets, we observed two full orbits: one
orbit each in the 3.6 and 4.5 μm channels of the Infrared Array
Camera (IRAC; Fazio et al. 2004) on the Spitzer Space
Telescope. All observations were carried out in subarray mode

Table 1

Target System Properties

WASP-19b References HAT-P-7b References

T* (K) 5568 ± 71 3 6441 ± 69 3
M* (Me) 0.904

± 0.040
2 1.47 ± 0.07 5

R* (Re) 1.004
± 0.016

2 1.84 ± 0.17 5

Stellar glog 4.45 ± 0.05 3 4.02 ± 0.01 3
Stellar

[Fe/H]

+0.15
± 0.07

3 +0.15 ± 0.08 3

Mp (MJup) 1.114
± 0.036

2 -
+1.776 0.049
0.077 5

Rp (RJup) 1.395
± 0.023

2 1.36 ± 0.15 6

P (d) 0.78883942 2 2.204737 6
3.3 e-07 1.7 e-05

a (au) -
+0.0165 0.0006
0.0005 1 0.0377 ±

0.0005
5

e -
+0.0024 0.0019
0.0094 4 -

+0.0055 0.0033
0.0070 4

i 78.94 ± 0.23 2 83.111
± 0.030

6

ω (°) -
+260 170
15 4 -

+204 89
53 4

T0 (K)
a 3000 L 3210 L

Teq (K)
b 2520 L 2700 L

Notes.
a Irradiation temperature at the substellar point assuming zero albedo:

* *
ºT T R a0 .

b Planet dayside equilibrium temperature assuming zero albedo and reradiation
from dayside only.
References. (1) Hebb et al. (2010), (2) Tregloan-Reed et al. (2013), (3) Torres
et al. (2012), (4) Knutson et al. (2014), (5) Pál et al. (2008), (6) Morris
et al. (2013).
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with 2.0 s integration times and no peak-up pointing. Addi-
tional observation details can be found in Table 2.

2.1. Photometry Extraction

The techniques we use in extracting photometry are identical
to those described in detail in several previous analyses of post-
cryogenic Spitzer data (e.g., Lewis et al. 2013; Todorov
et al. 2013; Wong et al. 2014, 2015). After the raw data are
dark-subtracted, flat-fielded, linearized, and flux-calibrated
using version S19.1.0 of the IRAC pipeline, we generate the
BJDUTC mid-exposure time series, subtract the sky back-
ground, and correct for hot pixels using the methods described
in Knutson et al. (2012) and Lewis et al. (2013).

We calculate the position of the star in each image using
flux-weighted centroiding over a circular region of radius r0
pixels centered on the approximate position of the star on the
array (see, for example, Knutson et al. 2008). The width of the
star’s point response function, which is the convolution of the
star’s point-spread function (PSF) and the detector response
function, is estimated by computing the noise pixel parameter
b (Mighell 2005) across a region of radius r1 centered on the
star centroid.

We obtain the flux of the stellar target using both fixed and
time-varying circular apertures where, in the case of time-
varying apertures, the radius is related to the square-root of the
noise pixel parameter b with either a constant scaling factor or
a constant shift (Lewis et al. 2013). Each set of fixed and time-
varying apertures is generated for several choices of r0 and r1
(for time-varying apertures only). For every phase curve
observation, we determine the optimal aperture by selecting the
aperture that produces the least scatter in the residual series
from the phase curve model fit, binned in five-minute intervals.
When selecting the optimal aperture, we fix the planets’ period,
orbital eccentricity, and argument of pericenter to the most
recent values in the literature (see Table 1).

For WASP-19b, the optimal aperture for the 3.6 μm data set
has a time-varying radius of b = r1.35 , 3.00 , and =r 1.01 ,
while for the 4.5 μm data set, we prefer a time-vaying aperture
with a radius of b + = r1.2, 3.50 , and =r 1.01 . For the
HAT-P-7b phase curves, we find that a fixed aperture of radius
2.0 pixels with =r 4.00 results in the lowest scatter in the
3.6 μm bandpass, while in the 4.5 μm bandpass, we prefer a
time-varying aperture with a radius of b = r1.45 , 4.50 , and
=r 2.01 . The relevant information describing our optimal

apertures is summarized in Table 2. Figures 1 and 2 show the
measured star positions, noise pixel values, and extracted hot
pixel-corrected photometric series for the 3.6 and 4.5 μm phase
curve observations of WASP-19b and HAT-P-7b, respectively.
For each photometric series, we apply a moving median filter

to the flux, x and y star centroid position, and b series and
iteratively remove points that vary by more than 3σ from the
corresponding median values in the adjacent 64 points in the
time series. For the WASP-19b observations, the percentages
of excised points are 3.3% and 2.6% in the 3.6 and 4.5 μm
bandpasses, respectively, while for the HAT-P-7b observations,
the corresponding percentages are 1.9% and 1.4%.

2.2. Full Phase Curve Model

In this work, we use the same phase curve model as in Wong
et al. (2015). Both WASP-19b and HAT-P-7b have nearly
circular orbits, and so we model the planet’s apparent
brightness modulation throughout an orbit as a sinusoidal
function of the true anomaly f (Lewis et al. 2013),

( ) ( ) ( ( ) ) ( )= + -F t F t c f t ccos , 10 1 2

where F0 is the star’s flux, c1 is the amplitude of the phase
variation, and c2 is the phase shift. We set c1 and c2 as free
parameters in our fits. We considered including higher
harmonics in our phase curve model but found that they
resulted in higher values of the Bayesian Information Criterion
(BIC; see Section 2.3). In light of the low orbital eccentricities
of both planets, we also experimented with setting the
eccentricity to zero in our global phase curve fits. The best-fit
phase curve parameters in the zero-eccentricity fits are
consistent at better than the s0.2 level with the corresponding
values computed in the fits with eccentricities derived from our
updated RV analysis (see Section 3). In this paper, we report
the best-fit parameter values derived from our fits with non-
zero eccentricity.
Each phase curve observation contains one transit and two

secondary eclipses, which we model using the formalism of
Mandel & Agol (2002). In our full phase curve analysis, we fit
for the scaled orbital semimajor axis

*
a R , the inclination i, the

center of transit time tT, and the planet–star radius ratio *
R Rp , as

well as the center of eclipse time tE and the relative eclipse depth
d of each secondary eclipse. In the final version of our phase
curve fits, we fix the orbital eccentricity e, argument of perihelion
ω, and orbital period P to the updated values obtained from our

Table 2

Spitzer Observation Details

Target λ (μm) UT Start Date Length (hr) nimg
a tint (s)b ttrim (hr)c r0

c r1
c Fixedd rphot

c

WASP-19b 3.6 2011 Aug 3 24.5 44352 2.0 0.5 3.0 1.0 no 1.55
4.5 2011 Aug 13 24.5 44352 2.0 0.0 3.5 1.0 no 1.66

HAT-P-7b 3.6 2010 Aug 9 62.5 112000 2.0 0.5 4.0 none yes 2.00
4.5 2010 Aug 20 62.5 112000 2.0 0.0 4.5 2.0 no 1.97

Notes.
a Total number of images.
b Image integration time.
c
ttrim is the amount of time trimmed from the start of each time series, r0 is the radius of the aperture used to determine the star centroid position on the array, r1 is the

radius of the aperture used to compute the noise pixel parameter, and rphot is the radius of the photometric aperture. We provide the median aperture radius over the
observation in the case of a time-varying aperture. All radii are given in units of pixels. When using a fixed aperture, the noise pixel parameter is not needed, and so r1
is undefined.
d Denotes whether the photometry was obtained using a fixed or time-varying aperture.

3

The Astrophysical Journal, 823:122 (21pp), 2016 June 1 Wong et al.



RV and ephemeris analysis (see Section 3). We model the effect
of limb-darkening on the transit light curve in each bandpass
using the four-parameter nonlinear limb-darkening law described
in Sing (2010). The relevant host star properties are listed in
Table 1. For WASP-19, we use the limb-darkening parameter
values calculated for a 5500 K star with =glog 4.50 and [Fe/H]

= +0.10: [ ]- = - -c c 0.5437, 0.4959, 0.4787, 0.18521 4 at
3.6 μm and [ ]- = - -c c 0.6287, 0.8565, 0.8561, 0.31641 4 at
4.5 μm.19 For HAT-P-7b, we take the limb-darkening parameters
calculated for a 6500 K star with =glog 4.00 and [Fe/H] =
+0.10: [ ]- = - -c c 0.4972, 0.5359, 0.5630, 0.23671 4 at
3.6 μm and [ ]- = - -c c 0.5601, 0.8206, 0.8745, 0.34161 4

at 4.5μm.

2.3. Stellar Variability

WASP-19 is an active G-type star with a measured rotation
period of 10.7 ± 0.5 days and photometric variability due to
starspots at the 1.8% (peak-to-peak) level in the visible (Abe

et al. 2013). Although the star’s rotation period is much longer
than the duration of our phase curve measurements, and the
level of stellar variability in the infrared is reduced relative to
its amplitude in the visible, the stellar contribution to light
curve variations is still comparable to the amplitude of the
planet’s phase curve and must be accounted for. There was no
simultaneous monitoring of the host star during our phase
curve observations. We therefore model the effects of stellar
variability in our data as a quadratic function of time (Knutson
et al. 2012):

( ) ( ) ( ) ( ) = - + -F t t t t t , 2T T0 1 2
2

where 1 and 2 are free parameters. To determine how many
terms are necessary for modeling the stellar variability in each
phase curve data set, we use the BIC, which is defined as

( )c= + k NBIC ln , 32

where k is the total number of free parameters in the fit, and N

is the number of data points. We select the stellar variability
model that minimizes the BIC. For the 3.6 μmWASP-19b data,
we find that including both terms yields a significantly lower

Figure 1. Measured stellar x centroids, y centroids, noise pixel values, and raw
photometric series with hot pixels excised as a function of orbital phase relative
to transit for the 3.6 μm (top) and 4.5 μm (bottom) phase curve observations of
WASP-19b. The data are binned in two-minute intervals.

Figure 2. Measured star centroids, noise pixel values, and raw photometric
series for the HAT-P-7b phase curve observations; see Figure 1 for a complete
description.

19 Tables of limb-darkening parameter values calculated in the Spitzer
bandpasses are provided on David Sings website: www.astro.ex.ac.uk/
people/sing.
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BIC compared to the case with just a linear term, while for the
4.5 μm data, a linear stellar variability function results in the
lowest BIC. The addition of higher-order terms does not
improve the BIC in either bandpass. For completeness, we also
experimented with including stellar variability in our HAT-P-
7b phase curve fits, but did not find a reduction in BIC.

2.4. Correction for Instrumental Effects

Small oscillations in the telescope pointing during Spitzer/
IRAC observations in the 3.6 and 4.5 μm bandpasses lead to
variations in the measured flux from the target due to intrapixel
sensitivity variations (Charbonneau et al. 2005). In our
analysis, we utilize two methods for decorrelating this
instrumental systematic: pixel mapping (Ballard et al. 2010;
Lewis et al. 2013) and pixel-level decorrelation (PLD; see
Deming et al. 2015, for a complete description).

Deming et al. (2015) found that results from PLD were
comparable to or better than those from other methods as long
as the range of star positions across the data set remains below
∼0.2 pixels. In our full phase curve observations, the ranges of
star centroids exceed the 0.2 pixel threshold (see Figures 1 and
2). In Wong et al. (2015), we compared the performance of
pixel mapping and PLD in full phase curve fits and determined
that pixel mapping consistently produced residuals with lower
variance. Therefore, we use pixel mapping when fitting the full
phase curve data sets in this work. On the other hand, when
carrying out individual fits of HAT-P-7b secondary eclipses
(see Section 3), where there is significant residual red noise in
the light curve after decorrelating the intrapixel sensitivity
variations with the pixel mapping technique and the range of
star positions is under 0.2 pixels, we find that PLD is more
effective than pixel mapping at reducing the level of residual
noise.

In addition to the intrapixel sensitivity effect, data obtained
using Spitzer/IRAC often exhibit a short-duration ramp at the
beginning of the observation (e.g., Knutson et al. 2012; Lewis
et al. 2013). We first experimented with removing the first 30,
60, or 90 minutes of data from each phase curve observation
and found that a removal interval of 30 minutes yields the
minimum binned residual rms for the 3.6 μm observations;
meanwhile, for the 4.5 μm observations, the binned residual
rms is minimized without removing any data.

Next, we considered adding a ramp function to our phase
curve model to further improve our fits. We model the ramp as
an exponential function of time (Agol et al. 2010):

( )( ) ( )=  - - - -F a e a e1 , 4t t a t t a
1 3

0 2 0 4

where t0 is the observation start time, and a1–a4 are free
parameters. We determine the number of exponential terms to
include in the ramp model by means of the BIC. For the
WASP-19b phase curve observations, we find that the BIC is
minimized when using a single exponential ramp in the 3.6 μm
bandpass; a double ramp is needed for the 4.5 μm data. For the
HAT-P-7b data, we prefer a single exponential ramp at 3.6 μm
and no ramp at 4.5 μm. In addition to exponential ramps, we
experimented with ramps of different forms, such as logarith-
mic and quadratic; we find that these other forms result in fits
with residual scatter and BIC values comparable to or larger
than those obtained by fitting exponential ramps.

3. RESULTS

The best-fit parameter values and uncertainties derived from
our WASP-19b and HAT-P-7b phase curve fits are listed in
Tables 3 and 4, respectively. As in Wong et al. (2015), we
calculate the uncertainties using both the “prayer-bead” (PB)

method of residual permutation (Gillon et al. 2009) and a
Markov chain Monte Carlo (MCMC) routine with 105 steps,
reporting the larger of the two errors for each parameter. The
PB uncertainties are usually larger, ranging between 0.9 and
3.6 times that of the corresponding MCMC uncertainties for the
phase curve parameters. The binned full-orbit photometric
series with instrumental variations and ramps removed are
shown in Figures 3 and 4, while the individual eclipse and
transit light curves are shown in Figures 5−8.
The residual rms scatter is 15% and 28% (WASP-19b) and

14% and 12% (HAT-P-7b) higher than the photon noise limit
in the 3.6 and 4.5 μm bands, respectively. Figures 9 and 10
show the residual rms from the best-fit solution for various bin
sizes. Comparing these values with the expected level of white
noise, we find that on timescales comparable to the transit

Table 3

WASP-19b Best-fit Parameters

Parameter 3.6 μm 4.5 μm

Transit Parameters

*
R Rp -

+0.1399 0.0018
0.0014

-
+0.1427 0.0025
0.0017

tT (BJD−2455770)a -
+7.16289 0.00021
0.00022

-
+17.41786 0.00022
0.00023

Eclipse Parameters
1st eclipse depth, d1 (%) -

+0.521 0.035
0.038

-
+0.575 0.039
0.044

tE1 (BJD−2455770)a,b -
+6.76944 0.00083
0.00082

-
+17.02306 0.00076
0.00078

2nd eclipse depth, d2 (%) -
+0.455 0.031
0.035

-
+0.593 0.039
0.040

tE2 (BJD−2455770)a,b -
+7.55656 0.00088
0.00095

-
+17.81151 0.00074
0.00077

Orbital Parameters
Inclination, i (°) -

+79.63 0.82
0.84

-
+77.98 0.84
0.78

Scaled semimajor axis, -
+3.59 0.11
0.12 3.36 ± 0.10

*
a R

Phase Curve Parameters
Amplitude, c1 (́ -10 3) -

+2.36 0.18
0.17

-
+2.37 0.20
0.23

Phase shift, c2 (°) -
+0.6 6.6
4.6 - -

+2.2 5.6
4.5

Maximum flux offset (hr)b −0.55 ± 0.21 −0.68 ± 0.19
Minimum flux offset (hr)b - -

+0.55 0.35
0.24 - -

+0.70 0.30
0.24

Ramp/Stellar Parametersc

a1 (́ -10 2) -
+1.92 0.40
4.73

-
+0.26 0.15
1.74

a2 (d) -
+0.38 0.18
0.49

-
+0.11 0.10
0.55

a3 (́ -10 2) 0 (fixed) -
+0.32 1.00
2.21

a4 (d) 0 (fixed) -
+0.95 0.65
2.12

1 (́ -10 2 d−1) - -
+1.26 3.53
0.31 - -

+0.41 1.07
0.34

2 (́ -10 2 d−2) -
+1.13 0.77
2.37 0 (fixed)

Notes.
a All times are listed in BJDUTC for consistency with other studies. To convert
to BJDTDB, add 65.184 s. The center of secondary eclipse times are not
corrected for the light travel time across the system (D =t 16.3 s).
b The maximum and minimum flux offsets are measured relative to the center
of secondary eclipse time and center of transit time, respectively, and are
derived from the phase curve fit parameters c1 and c2. The phase curve is
modeled as a single sinusoid as a function of the true anomaly f:

( )= + -F c f c1 cos1 2 .
c The exponential ramp at the beginning of observation is parametrized as

( ) [( ) ] [( ) ]= - - - -F t a t t a a t t aexp exp1 0 2 3 0 4 , where t0 is the observa-
tion start time. The variation in stellar brightness is modeled as a second-order
function in time: ( ) ( ) ( ) = + - + -F t t t t t1 T T1 2

2.
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ingress/egress duration, the red noise increases the rms by
factors of roughly 1.6 and 1.3 (WASP-19b) and 2.5 and 1.2
(HAT-P-7b) at 3.6 and 4.5 μm, respectively.

In our global fits, the full light curve model includes models
for the exponential ramp, stellar variability, and the intrapixel
sensitivity effect, in addition to the phase curve model. In order
to check that the best-fit parameters of the phase curve model
are unique for each measured phase curve and not biased by
correlations with instrumental systematics and/or stellar
variability, we carried out a global search over a two-
dimensional grid of values for the phase curve amplitude c1
and phase offset c2. At each point within this ( )c c,1 2 grid, we
computed the best-fit light curve model by minimizing c2 over
all other parameters, while keeping ( )c c,1 2 fixed at the value for
that grid point. For each phase curve, we found that a unique
minimum c2 exists in this parameter space and lies at the grid
point that is most consistent with the corresponding best-fit
( )c c,1 2 values computed from the full global fit (with c1 and c2
as free parameters; Tables 3 and 4). This shows that there are
no significant degeneracies between the phase curve model and
our models for instrumental systematics and stellar variability.

The intrapixel sensitivity-corrected phase curves of HAT-P-
7b shown in Figure 4 indicate a significant level of uncorrected
instrumental noise, particularly at 3.6 μm. This may be
attributable to the significant long-term drift of the stellar
target across the array (Figure 2). A wider range of star
positions means that the density of sampling in any given
region of the pixel is lower, resulting in larger uncertainties

when calculating the pixel response at a given position.
Furthermore, in the 3.6 μm data set, the y position of the stellar
target crosses over a pixel boundary, which corresponds to the
notable dip in the residuals at roughly −0.4 in orbital phase.
We experimented with trimming points with y positions within
0.05 pixels of the pixel boundary and found that the best-fit
phase curve parameters did not change significantly. In this
paper, we have chosen to present the results from the
untrimmed fit.
The presence of uncorrected systematics can bias our

estimates of the best-fit eclipse depths, which subsequently
affects our estimates of the dayside brightness temperature. To
obtain a better estimate of the HAT-P-7b eclipse depths, we
select a short 0.35 day (16,000 data points) segment of the
phase curve observation surrounding each eclipse and fit the
data to a simplified secondary eclipse light curve model using
PLD to decorrelate the intrapixel sensitivity variations, as
described in Wong et al. (2015). The HAT-P-7b eclipse data
with instrumental effects removed are shown in Figure 7 along
with the best-fit secondary eclipse model light curves. In
Table 4, we report the eclipse parameters for HAT-P-7b
derived from our individual eclipse fits. We also tried fitting
each WASP-19b eclipse individually and found that the depths
derived from our individual eclipse fit are consistent with the
depths computed from the global phase curve fit at better than
the s0.2 level. We choose to report the eclipse depths from the
global WASP-19b phase curve fits in this paper.
For WASP-19b, the error-weighted average eclipse depths are

0.485% 0.024% and 0.584% 0.029% for the 3.6 and
4.5 μm bandpasses, respectively. These are consistent with the
depths reported in Anderson et al. (2013) in their analysis of
previous Spitzer secondary eclipse observations at better than the
s1 level ( 0.483% 0.025% at 3.6 μm and 0.572% 0.030%
at 4.5μm). An analogous calculation for HAT-P-7b yields error-
weighted average 3.6 and 4.5 μm eclipse depths of

0.156% 0.009% and 0.190% 0.006%, respectively. These
values differ from the previously reported depths in Christiansen
et al. (2010) at the s3.0 and s1.4 levels, respectively
( 0.098% 0.017% at 3.6 μm and 0.159% 0.022% at
4.5 μm). The Christiansen et al. (2010) study analyzed secondary
eclipse observations which were obtained in the full-array mode
of Spitzer/IRAC during the cryogenic mission and were analyzed
using the standard (at the time) second-order polynomial
decorrelation technique, which has since been shown to lead to
biases in the estimated eclipse depths in a subset of cases (e.g.,
Diamond-Lowe et al. 2014; Hansen et al. 2014; Lanotte
et al. 2014; Deming et al. 2015). We note that the previous
Anderson et al. (2013) analysis of WASP-19b Spitzer secondary
eclipses also utilized the polynomial decorrelation technique, but
contrary to the case of HAT-P-7b, this approach did not produce
a discernible bias in the estimated eclipse depths.
HAT-P-7b resides in the Kepler field, making it one of the

few transiting exoplanets for which the secondary eclipse depth
has been measured in both visible light and the infrared, and
the only one so far with full orbital phase curves in both
wavelength regimes. The planet was discovered prior to
Keplerʼs launch (Pál et al. 2008) and has the alternative
designation Kepler-2b. It was observed by Kepler in short
cadence mode with a one-minute exposure time throughout the
entire Kepler mission (Gilliland et al. 2010). In Figure 11, we
show the phase-folded and binned Kepler light curve of the
secondary eclipse, which we have analyzed here. Our analysis

Table 4

HAT-P-7b Best-fit Parameters

Parameter 3.6 μm 4.5 μm

Transit Parameters

*
R Rp -

+0.0793 0.0012
0.0015

-
+0.07769 0.00080
0.00076

tT (BJD−2455410)a -
+9.55743 0.00070
0.00054

-
+20.58203 0.00047
0.00040

Eclipse Parametersb

1st eclipse depth, d1 (%) -
+0.161 0.015
0.014

-
+0.186 0.006
0.008

tE1 (BJD−2455410)a -
+8.4554 0.0019
0.0021

-
+19.4772 0.0009
0.0010

2nd eclipse depth, d2 (%) -
+0.153 0.010
0.011

-
+0.204 0.013
0.014

tE2 (BJD−2455410)a -
+10.6591 0.0018
0.0022 21.6849 ± 0.0012

Orbital Parameters
Inclination, i (°) 81.3 ± 1.5 -

+83.7 1.6
2.2

Scaled semimajor axis,
*

a R -
+3.88 0.21
0.22

-
+4.23 0.23
0.28

Phase Curve Parameters
Amplitude, c1 (́ -10 4) -

+10.4 1.8
1.7

-
+5.8 1.0
0.9

Phase shift, c2 (°) 112 ± 11 -
+109 11
10

Maximum flux offset (hr)c 1.0 ± 1.1 0.6 ± 1.1
Minimum flux offset (hr)c -

+1.1 1.6
1.5

-
+0.6 1.7
1.5

Ramp Parametersd

a1 (́ -10 3) -
+2.38 0.49
0.54

L

a2 (d) -
+0.069 0.023
0.039

L

Notes.
a All times are listed in BJDUTC for consistency with other studies. To convert
to BJDTDB, add 65.184 s. The center of secondary eclipse times are not
corrected for the light travel time across the system (D =t 36.7 s).
b These values are computed from fitting each secondary eclipse separately.
c The maximum and minimum flux offsets are measured relative to the center
of secondary eclipse time and center of transit time, respectively, and are
derived from the phase curve fit parameters c1 and c2.
d The exponential ramp at the beginning of observation is parametrized as

( ) [( ) ]= - -F t a t t aexp1 0 2 , where t0 is the observation start time.
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is similar to that of the Kepler-13Ab secondary eclipse
presented in Shporer et al. (2014), where only the eclipse
depth and mid-eclipse time are free parameters in the model
fitting, with the rest of the parameters constrained to their

known values and uncertainties. The results for the two fitted
parameters are = t 2455709.48109 0.00013E,Kep (BJDTDB)

and = d 71.80 0.32 ppmKep . This eclipse depth is consistent
(within s1 ) with some of the values published by others

Figure 3. Top panels: final photometric series for the 3.6 and 4.5 μm WASP-19b phase curve observations with instrumental systematics removed, binned in five-
minute intervals (black dots). The best-fit single and double exponential ramp models at 3.6 and 4.5 μm, respectively, are also removed. The best-fit model light curve
is overplotted in red. Middle panels: The same data as the upper panel, but with y axis expanded for clarity. Bottom panels: The residuals from the best-fit solution.

Figure 4. Final photometric series for the HAT-P-7b phase curve observations with instrumental systematics removed. The best-fit single exponential ramp model is
removed from the 3.6 μm light curve data; no ramp is used in the 4.5 μm phase curve fit. See Figure 3 for a complete description.
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(Coughlin & López-Morales 2012; van Eylen et al. 2012;
Morris et al. 2013; Esteves et al. 2015), while lying a few σ
away from other values reported in the literature (Borucki
et al. 2009; Jackson et al. 2012; Esteves et al. 2013;
Angerhausen et al. 2014). The reasons for the difference are
not immediately apparent, but likely include the smaller
amount of Kepler data analyzed in the earlier studies and
differences in detrending techniques and the handling of
correlated noise.

We use standard methods (e.g., Wong et al. 2015) to
compute an updated ephemeris for each planet using the transit
times calculated from our phase curve observations and all
previously published, independent, single-epoch transit times.
In those cases where the timing standard (UTC versus TDB)

was not indicated, we assume UTC. The updated estimates of

the orbital period P and zeroth epoch mid-transit time Tc,0 are
listed in Tables 5 and 6 for WASP-19b and HAT-P-7b,
respectively. The observed minus calculated transit times are
shown in Figures 12 and 13. We also derive an independent
estimate of the orbital period by fitting through all published
secondary eclipse times and obtain = P 0.7888385
0.0000013 (WASP-19b) and = P 2.2047436 0.0000090
(HAT-P-7b), which are consistent with the corresponding
best-fit transit periods at better than the s1 level. Using the
updated transit ephemeris values, we compute the orbital phase
of secondary eclipse for each eclipse (Figures 14 and 15) and
derive error-weighted values of 0.49967 ± 0.00043 for WASP-
19b and 0.49948 ± 0.00029 for HAT-P-7b.
We carry out an analysis of the RV measurements reported

in Knutson et al. (2014), using the updated transit ephemeris

Figure 5. Best-fit WASP-19b eclipse light curve data in the 3.6 μm ((a)–(d))
and 4.5 μm ((e)–(h)) bands with intrapixel sensitivity variations removed,
binned in five-minute intervals (black dots). The best-fit model light curves are
overplotted in red. The residuals from the best-fit solution ((c)–(d), (g)–(h)) are
shown directly below the corresponding light curve data ((a)–(b); (e)–(f)).

Figure 6. Best-fit WASP-19b transit light curve data in the 3.6 and 4.5 μm
bands with intrapixel sensitivity variations removed, binned in five-minute
intervals (black dots). The best-fit model light curves are overplotted in red.
The corresponding residuals from the best-fit solution are shown directly below
each transit light curve.

Figure 7. Best-fit HAT-P-7b eclipse light curves with intrapixel sensitivity
variations removed, binned in five-minute intervals (black dots), and the best-fit
model light curves (red lines). These light curves are derived from fitting each
eclipse event separately. See Figure 5 for a complete description of the panels.

Figure 8. Best-fit HAT-P-7b transit light curves with intrapixel sensitivity
variations removed, binned in five-minute intervals (black dots), and the best-fit
model light curves (red lines). See Figure 6 for a complete description.
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and secondary eclipse times derived from our phase curve fits
as priors; for HAT-P-7b, we have included an additional six
measurements obtained using the Keck/HIRES instrument
since the publication of Knutson et al. (2014). Comprehensive
results from our RV fits are shown in Tables 7–8 and
Figures 16−17. These fits provide new estimates of the orbital
period (Pb), center of transit time (T bconj, ), orbital eccentricity
(eb), and argument of perihelion (wb), as well as updated values
for the orbital semimajor axis and planet mass, from which we
derive new estimates of the planetary radius, density, and
surface gravity. The full lists of updated planetary parameters
are given in Tables 5 and 6.

A potential linear trend is detected in our WASP-19b RV fit
at the s2.8 level; additional measurements of this system are
needed to determine whether this trend is indicative of a stellar
or planetary companion. For the HAT-P-7 system, we find a
non-zero RV slope (significant at above the s10 level), which
indicates the presence of one or more companions in the
system. While a direct imaging survey revealed that HAT-P-7
has a stellar companion (Ngo et al. 2015), it is too small and

distant to explain the measured RV trend, which suggests that a
closer-in brown dwarf or planetary companion is likely
responsible for the observed RV trend.

Figure 9. Plot showing the dependence of the standard deviation of the
residuals on bin size for the 3.6 μm (top panel) and 4.5 μm (bottom panel)
WASP-19b data sets (black lines). The n1 dependence of white noise on bin
size is shown by the red lines for comparison. The normalization of the white
noise trends are set to match the expected (unbinned) photon noise limit. The
blue vertical line denotes the ingress/egress timescale of transit and secondary
eclipse.

Figure 10. Plot of the standard deviation of the residuals vs. bin size for the
3.6 μm (top panel) and 4.5 μm (bottom panel) HAT-P-7b data sets. See
Figure 9 for a complete description.

Figure 11. Top: plot of the phase-folded HAT-P-7b Kepler secondary eclipse
data, binned in intervals of 0.002 in phase (black dots), and the best-fit light
curve solution (red line). Bottom: the corresponding residuals from the best-fit
solution.
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4. DISCUSSION

4.1. Phase Curves

After subtracting and dividing out the brightness of the star
alone, i.e., the flux measured during secondary eclipse, we
obtain the phase variation of the relative planet–star flux ratio
(Figures 18 and 19). Tables 9 and 10 list the important
quantitative characteristics of the WASP-19b and HAT-P-7b
phase curves, respectively. By examining the properties of
these phase curves, we obtain a basic picture of the temperature
distribution across the planets’ surfaces, from which we can
begin to infer aspects of the planets’ energy balance, heat

Table 5

Updated WASP-19b Planetary Parameters

Parameter Value

P (days) 0.788838989 ± 0.000000040
Tc,0 (BJDTDB) 2455708.534626 ± 0.000019

*
R Rp 0.1409 ± 0.0013

*
a R 3.46 ± 0.08
i( ) 78.78 ± 0.58
e -

+0.002 0.002
0.014

ω( ) -
+259 170
13

Mp( )MJup -
+1.069 0.037
0.038

Rp( )RJup 1.392 ± 0.040

rp (g cm−3) 0.492 ± 0.046

gp (m s−2) 13.68 ± 0.92
a (au) 0.01634 ± 0.00024

Table 6

Updated HAT-P-7b Planetary Parameters

Parameter Value

P (d) 2.2047372 ± 0.0000011
Tc,0 (BJDTDB) 2454731.68039 ± 0.00023

*
R Rp 0.07809 ± 0.00068

*
a R 4.03 ± 0.16
i( ) 82.2 ± 1.2
e -

+0.0016 0.0010
0.0034

ω( ) -
+165 66
93

Mp( )MJup -
+1.682 0.020
0.021

Rp( )RJup 1.491 ± 0.061

rp (g cm−3) 0.629 ± 0.078

gp (m s−2) 18.8 ± 1.6
a (au) 0.03676 ± 0.00019

Figure 12. Observed minus calculated WASP-19b transit times for all
published observations (red circles are previously published values; Anderson
et al. 2010; Hebb et al. 2010; Dragomir et al. 2011; Hellier et al. 2011; Abe
et al. 2013; Bean et al. 2013; Huitson et al. 2013; Lendl et al. 2013; Mancini
et al. 2013; Mandell et al. 2013; Tregloan-Reed et al. 2013; Sedaghati
et al. 2015) based on the updated ephemeris derived in Section 3. The black
diamonds denote the two transit times measured from our phase curve data.

Figure 13. Observed minus calculated HAT-P-7b transit times for all published
observations (red circles are previously published values; Pál et al. 2008; Winn
et al. 2009; Christiansen et al. 2010) based on the updated ephemeris derived in
Section 3. The black diamonds denote the two transit times measured from our
phase curve data.

Figure 14. Secondary eclipse phase of WASP-19b for all published
observations (red circles are previously published values from Gibson
et al. 2010; Burton et al. 2012; Bean et al. 2013; Mancini et al. 2013; Zhou
et al. 2014) based on the updated ephemeris calculated in Section 3. All eclipse
times have been corrected for the light travel time across the system. The black
diamonds denote the four secondary eclipse times measured from our phase
curve data. The solid and dashed lines indicate the error-weighted mean phase
value and corresponding s1 confidence bounds, respectively.
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transport, and day–night recirculation efficiency (e.g., Cowan
& Agol 2008). WASP-19b and HAT-P-7b are particularly
well-suited to a comparative phase curve study as they have
similar levels of irradiation and surface gravity, both of which
are predicted to be important factors in shaping the atmospheric
circulation patterns. Despite these similarities, their orbital
periods and corresponding synchronous rotation periods differ
by a factor of three, making these planets an interesting test
case for the importance of rotation as a driver of atmospheric
dynamics.

Theoretical studies (e.g., Showman & Guillot 2002; Cooper
& Showman 2005) and numerical models (including three-
dimensional (3D) general circulation models; e.g., Showman

et al. 2009, 2015; Lewis et al. 2010; Rauscher &
Menou 2010, 2012, 2013; Heng et al. 2011a, 2011b; Perna
et al. 2012; Dobbs-Dixon & Agol 2013; Kataria et al. 2015)
both predict that the hot spots in the dayside atmospheres of
these planets will be shifted eastward relative to the substellar
point due to the presence of a superrotating, eastward-flowing
equatorial jet. Such an eastward-shifted hot spot is manifested
in the phase curve as a planetary brightness maximum that
occurs prior to the center of eclipse time (i.e., a negative phase
offset). Since the equatorial jet transfers hot gas from the
dayside over to the unirradiated nightside, the presence of a

Figure 15. Secondary eclipse phase of HAT-P-7b for all published
observations (red circles are previously published values from Christiansen
et al. 2010) based on the updated ephemeris calculated in Section 3. All eclipse
times have been corrected for the light travel time across the system. The black
diamonds denote the four secondary eclipse times measured from our phase
curve data. The solid and dashed lines indicate the error-weighted mean phase
value and corresponding s1 confidence bounds, respectively.

Table 7

Comprehensive Results from Radial Velocity Fit for WASP-19b with Priors on
Transit Ephemeris and Eclipse Times

Parameter Value Units

Pb 0.788839164  -4.2E 08 days
T bconj, 2455777.1636  -2.3E 05 BJDTDB

eb -
+0.002 0.002
0.014

L

wb -
+259 170
13 degrees

Kb -
+241.9 4.7
4.6 m s−1

g1 - -
+35.4 7.7
7.9 m s−1

g2 76 ± 12 m s−1

g3 -
+95 21
20 m s−1

g4 112 ± 13 m s−1

ġ 0.0338 ± 0.0091 m s−1 day−1

g̈ ≡0.0 ± 0.0 m s−1 day−2

jitter ≡10.0 ± 0.0 m s−1

Notes. Radial velocity zero point offsets (g -1 4) derived from four separate RV
data sets: 1—Keck/HIRES (Knutson et al. 2014), 2—CORALIE (Hebb
et al. 2010), 3—CORALIE (Hellier et al. 2011), 4—HARPS (Hellier
et al. 2011). ġ and g̈ are the slope and curvature of the best-fit radial velocity
acceleration, respectively. Kb is the radial velocity semi-amplitude.

Table 8

Comprehensive Results from Radial Velocity Fit for HAT-P-7b with Priors on
Transit Ephemeris and Eclipse Times

Parameter Value Units

Pb 2.2047375  -1.2E 06 days
T bconj, -

+2454731.68038 0.00024
0.00023 BJDTDB

eb -
+0.0016 0.001
0.0034

L

wb -
+165 66
93 degrees

Kb -
+213.8 1.4
1.3 m s−1

γ -
+20.3 1.6
1.5 m s−1

ġ -
+0.0753 0.0013
0.0014 m s−1day−1

g̈ -6.9E 06  -1.3E 06 m s−1day−2

jitter -
+7.13 0.73
0.86 m s−1

Notes. Radial velocity zero point offset (γ) derived from the Keck/HIRES RV
data set analyzed in (Knutson et al. 2014), with six additional RV
measurements obtained by the same instrument. See the text and Table 7 for
description of other variables.

Figure 16. Top panel: phased best-fit radial velocity curve of all published
radial velocity measurements of WASP-19. The points from each data set are
color-coded: black circles—Keck/HIRES (Knutson et al. 2014), red squares—
CORALIE (Hebb et al. 2010), blue triangles—CORALIE (Hellier et al. 2011),
magenta diamonds—HARPS (Hellier et al. 2011). Bottom panel: correspond-
ing unphased residuals after the radial velocity solution for the transiting hot
Jupiter is removed. We detect a linear trend in our RV fits at the s2.8 level.
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significant hotspot offset also typically entails relatively
efficient day–night energy transport.

For WASP-19b, the planetary brightness in both Spitzer
bandpasses peaks prior to the time of secondary eclipse, which
implies the presence of an eastward-shifted hot spot on the
dayside hemisphere and relatively efficient day–night heat
transport. Similarly, the minimum flux offsets computed for
WASP-19b are also negative, indicating that the coldest region
of the atmosphere is shifted eastward from the anti-stellar point.
The maximum and minimum flux offsets in the HAT-P-7b
phase curves are both consistent with zero, suggesting that the
hotspot is located near the substellar point and that the day–
night recirculation is relatively inefficient. The best-fit planet–
star flux ratio for HAT-P-7b at 3.6 μm dips below zero on the
nightside and is consistent with zero at the s-1 2 level; this
behavior was also reported in our previous analysis of the
WASP-14b multiband Spitzer phase curves (Wong et al. 2015).
Henceforth, we place a s2 upper limit on the measured HAT-P-
7b planetary brightness on the nightside.

The HAT-P-7b Kepler phase curve was analyzed by several
authors (e.g., Borucki et al. 2009; Welsh et al. 2010; Jackson
et al. 2012; van Eylen et al. 2012; Esteves et al. 2013, 2015;
Angerhausen et al. 2014; Faigler & Mazeh 2015). It is
interesting to compare the results obtained here from the
analysis of the Spitzer infrared phase curves to those derived
from the Kepler phase curve. While infrared phase curves are
dominated by processes taking place in the planetary atmo-
sphere, namely, thermal emission and possibly also reflected
light, the visible-light phase curves contain contributions from
additional processes originating from the gravitational interac-
tion between the planet and the star, such as distortions of the
host star due to tidal interactions and the beaming effect (i.e.,
Doppler boosting; e.g., Loeb & Gaudi 2003; Zucker

et al. 2007). Therefore, gaining insight about the planetary
atmosphere from the analysis of Kepler phase curves requires
that we account for all of the aforementioned processes. As a
result, the phase variations induced by the planetary atmo-
sphere alone cannot typically be viewed directly (but see
Shporer & Hu 2015, for a few cases where this is possible).
Esteves et al. (2015) identified an eastward atmospheric

phase shift of 6.97 ± 0.30 deg in the Kepler data, while Faigler
& Mazeh (2015) measured it to be 8.0 ± 2.0 deg and 5.4 ± 1.5
deg for the two models they used. Although small in value,
those results are statistically significant and consistent with
each other, suggesting that the visible-light phase shift may be
caused by thermal emission from an eastward-shifted hot spot.
This is consistent with the relatively high temperature of this
exoplanet’s dayside atmosphere (Esteves et al. 2015).
We note that the best-fit infrared maximum flux offsets from

our HAT-P-7b Spitzer phase curve analysis are in the opposite
(i.e., westward) direction (see Table 10), but the uncertainties
are 4 times larger than those reported above for the visible-
light Kepler phase shift, which makes all of the infrared phase
shifts consistent with zero. In addition, the measured infrared
phase shifts are all within s-1 2 of the visible-light phase
shifts reported in the literature. Furthermore, the Kepler
bandpass typically probes deeper pressures than the Spitzer
bandpasses where the radiative timescale is longer, and so it is
possible that the visible-light phase curve shows an eastward
hotspot offset, while the infrared phase curves are consistent
with no phase offset. Although a measurement of a phase shift
in the infrared could, in principle, have shown that the eastward
phase shift seen in the visible phase curves is due to thermal
emission from an offset hotspot, the infrared data are not
sensitive enough to confirm or refute this.

4.2. Brightness Temperature

Assuming zero albedo, the predicted dayside equilibrium
temperature of WASP-19b is 2520 K if the incident energy
from the star is re-radiated from the dayside only and 2120 K if
the planet re-radiates uniformly over its entire surface. A higher
theoretical upper limit for the dayside temperature is obtained
in the case of zero albedo and zero recirculation when we
assume that each region on the dayside is a blackbody in local
equilibrium with the incident stellar flux: 2710 K (Cowan &
Agol 2011). From the measured secondary eclipse depths and
interpolated PHOENIX spectra for the host star (Husser
et al. 2013), we obtain best-fit dayside brightness temperatures
of -

+2384 57
41K at 3.6 μm and 2357 ± 64 K at 4.5 μm. We also

find that the dayside planetary brightnesses in both bands are
well-fit by a single blackbody with an effective temperature of
= -

+T 2372eff 60
59 K. The brightness temperatures from our

blackbody fits lie intermediate to the theoretical limits given
above, suggesting that WASP-19b has relatively efficient day–
night recirculation at the pressures probed by the Spitzer
bandpasses, which is consistent with the previously noted
detection of a significant hotspot offset in the dayside
atmosphere.
An analogous calculation for HAT-P-7b yields brightness

temperatures of 2632 ± 77 and 2682 ± 49 at 3.6 and 4.5 μm,
respectively. We also find that the dayside planetary bright-
nesses in both bands are well-fit by a single blackbody with an
effective temperature of = T 2667 57eff K. The predicted
equilibrium temperatures assuming zero albedo are 2700 and
2270 K in the cases of zero and complete day–night

Figure 17. Top panel: phased radial velocity curve of radial velocity
measurements of HAT-P-7 published in Knutson et al. (2014), with six
additional measurements obtained using the Keck/HIRES instrument. Bottom
panel: corresponding unphased residuals after the radial velocity solution for
the transiting hot Jupiter is removed. The robust detection of an acceleration in
the radial velocity data suggests the presence of a brown dwarf or planetary
companion.
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recirculation, respectively. If we assume local equilibrium in
the zero-albedo, no-recirculation limit, then we obtain a
predicted dayside temperature of 2900 K. Our measured
effective dayside temperature for HAT-P-7b is closer to the
theoretical upper limit than for WASP-19b, which suggests that
HAT-P-7b has less efficient day–night recirculation than
WASP-19b, which is in agreement with the non-detection of
a significant phase offset in the HAT-P-7b phase curves.

We use the Kepler eclipse depth ( = d 71.80 0.32Kep ppm)

to derive independent estimates of the dayside brightness
temperature of HAT-P-7b, following the methods described in
Shporer et al. (2014). Since the optical eclipse depth includes
the contributions from the planet’s emission as well as reflected
starlight, the brightness temperature estimate depends on the
assumed geometric albedo. An upper bound of 3160 ± 10 K is
obtained when assuming zero albedo. On the cold end, the
contribution of thermal emission to the eclipse depth becomes
negligible as the geometric albedo asymptotically approaches
0.55. At brightness temperatures below 2320 K, thermal

emission contributes less than 10% to the eclipse depth, and
the geometric albedo becomes larger than 0.50; below 1815 K,
the contribution is less than 1%, placing the geometric albedo
at the 0.55 limit. The dayside brightness temperatures derived
above from the infrared Spitzer eclipse depths lie between these
bounds. Figure 20 shows the dependence of the Kepler-derived
brightness temperature on the assumed geometric albedo.
We can also use the derived planetary fluxes at the time of

transit to estimate the brightness temperature of the nightside
atmospheres. For WASP-19b, the best-fit nightside brightness
temperatures at 3.6 and 4.5 μm are 890 K, with s1 upper limits
of 1170 K and -

+1130 130
240 K, respectively; the lower limit on the

planetary flux at 3.6 μm dips below zero. The nightside
planetary fluxes are also consistent with a single blackbody
with an effective temperature of -

+1090 250
190 K. For HAT-P-7b,

the nightside planetary brightness drops below detectable levels
in the 3.6 μm bandpass, and so we use the s2 upper limit to
calculate a corresponding brightness temperature of 1360 K. At
4.5 μm, the brightness temperature is 1710 ± 180 K.

Figure 18. Left: the best-fit WASP-19b 3.6 μm relative planet brightness phase curve and s1 brightness bounds (solid and dotted lines). The predicted phase curves
from the no TiO/VO SPARC models with ´1 solar and ´5 solar atmospheric metallicity are plotted with blue squares and green circles, respectively. Right:
analogous plot for the 4.5 μm bandpass.

Figure 19. Left: the best-fit HAT-P-7b 3.6 μm relative planet brightness ratio phase curve and s1 brightness bounds (solid and dotted lines). The predicted phase
curves from the SPARC models with and without TiO/VO are plotted with red circles and blue squares, respectively. Both models assume solar metallicity. Right:
analogous plot for the 4.5 μm bandpass.
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4.3. Comparison with Theoretical Models

As in our previous study of WASP-14b (Wong et al. 2015),
we compare the results from our phase curve analysis with light
curves generated from the 3D Substellar and Planetary
Atmospheric Radiation and Circulation (SPARC) GCM
(Showman et al. 2009) and theoretical spectra produced by
the 1D radiative transfer atmospheric model described in
Burrows et al. (2008). The details of the models are
summarized in Wong et al. (2015) and references therein.

4.3.1. Three-dimensional GCM Light Curves

The models we consider in this paper assume local
thermochemical equilibrium and solar composition both with
and without the incorporation of the strong optical absorbers
TiO and VO (hereafter, “with TiO/VO” and “no TiO/VO,”
respectively), which are responsible for developing a dayside
temperature inversion (Fortney et al. 2008a). In the case of
WASP-19b, we also explore a model with enhanced
metallicity.
Figures 18 and 19 compare the measured phase curves we

obtained from fitting the Spitzer data in each bandpass with the
band-averaged theoretical light curves generated from the
SPARC model using the methods of Fortney et al. (2006). The
model-predicted maximum and minimum flux ratios and time
offsets are listed in Tables 9 and 10 for comparison with the
corresponding values derived from our phase curve fits. Model-
generated dayside and nightside spectra are shown in Figures 21
and 22, with the measured flux ratios overplotted. We have
included the measured eclipse depth in the Kepler bandpass for
HAT-P-7b. The corresponding model-generated temperature–
pressure profiles are shown in Figures 23 and 24.
For WASP-19b, we average the eclipse depths computed in

the present work with previously published values from
Anderson et al. (2013; consistent with our values at better
than the s1 level; Section 3) to arrive at 0.484% 0.017% and

0.578% 0.021% in the 3.6 and 4.5 μm bandpasses, respec-
tively. We also include the measured 5.8 and 8.0 μm eclipse
depths ( 0.65% 0.11% and 0.73% 0.12%, respectively)
from Anderson et al. (2013). In light of the secondary eclipse
analysis in Anderson et al. (2013), which using one-dimen-
sional atmospheric models found that the dayside planetary

Table 9

WASP-19b Phase Curve Comparison

Source 3.6 μm 4.5 μm

Maximum flux ratio [%]

Measured -
+0.492 0.024
0.028

-
+0.590 0.034
0.037

´1 solar metal. modela 0.456 0.557
´5 solar metal. modela 0.479 0.577
Minimum flux ratio [%]

Measured -
+0.020 0.038
0.048

-
+0.114 0.052
0.053

´1 solar metal. model 0.138 0.157
´5 solar metal. model 0.112 0.110
Phase curve amplitude [%]

b

Measured -
+0.472 0.036
0.033

-
+0.476 0.040
0.046

´1 solar metal. model 0.318 0.400
´5 solar metal. model 0.367 0.467
Maximum flux offset [hr]c

Measured −0.55 ± 0.21 −0.68 ± 0.19
´1 solar metal. model −0.95 −0.95
´5 solar metal. model −0.38 −0.38
Minimum flux offset [hr]c

Measured - -
+0.55 0.35
0.24 - -

+0.70 0.30
0.24

´1 solar metal. model −1.26 −1.26
´5 solar metal. model −0.76 −0.76

Notes.
a Both models here have no TiO or VO.
b Difference between maximum and minimum flux ratios.
c The maximum and minimum flux offsets are measured relative to the center
of secondary eclipse time and center of transit time, respectively. Negative time
offsets indicate an eastward shift in the location of the hot or cold region in the
planet’s atmosphere.

Table 10

HAT-P-7b Phase Curve Comparison

Source 3.6 μm 4.5 μm

Maximum flux ratio [%]

Measured -
+0.158 0.017
0.019 0.195 ± 0.007

With TiO/VO modela 0.160 0.193
No TiO/VO modela 0.131 0.150
Minimum flux ratio [%]

Measured <0.030b 0.079 ± 0.019
With TiO/VO model 0.039 0.042
No TiO/VO model 0.044 0.045
Phase curve amplitude [%]

c

Measured >0.128b -
+0.116 0.019
0.018

With TiO/VO model 0.121 0.151
No TiO/VO model 0.089 0.105
Maximum flux offset [hr]d

Measured 1.0 ± 1.1 0.6 ± 1.1
With TiO/VO model −1.1 −1.1
No TiO/VO model −3.2 −3.2
Minimum flux offset [hr]d

Measured -
+1.1 1.6
1.5

-
+0.6 1.7
1.5

With TiO/VO model −3.2 −2.1
No TiO/VO model −5.3 −4.2

Notes.
a Both models for HAT-P-7b assume solar metallicity.
b Based on a s2 upper limit of the minimum flux ratio.
c Difference between maximum and minimum flux ratios.
d The maximum and minimum flux offsets are measured relative to the center
of secondary eclipse time and center of transit time, respectively. Negative time
offsets indicate an eastward shift in the location of the hot or cold region in the
planet’s atmosphere.

Figure 20. Plot showing the relationship between the brightness temperature of
HAT-P-7b derived from the optical Kepler eclipse depth and the assumed
geometric albedo.
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emission is inconsistent with the presence of a temperature
inversion, we only compare our WASP-19b data with the no
TiO/VO SPARC model. For HAT-P-7b, we include the
measured 5.8 and 8.0 μm eclipse depths ( 0.245% 0.031%
and 0.225% 0.052%, respectively) from Christiansen et al.
(2010), but do not average our 3.6 and 4.5 μm eclipse depths
( 0.156% 0.009% and 0.190% 0.006%, respectively) with
their values, which differ significantly from ours (see
Section 3).

From Figure 21, we see that the measured dayside planetary
emission of WASP-19b is in good agreement with the
theoretical spectrum generated from the solar metallicity no
TiO/VO model in all bandpasses except 3.6 μm, where the
model somewhat underestimates the planetary flux. On the
nightside, the same model overestimates the flux in both the 3.6

and the 4.5 μm bandpasses. Comparing the overall shape of the
best-fit phase curves with that of the model-generated light
curves (Figures 18 and Table 9), we find that the calculated
maximum and minimum flux offsets are overestimated by the
´1 solar no TiO/VO model; in other words, the SPARC model
predicts a larger eastward shift in the location of the hot and
cold regions in the planet’s dayside and nightside atmosphere,
respectively. The phase curve amplitude at 4.5 μm is well
matched by the model, while the amplitude at 3.6 μm is
overestimated.
One explanation for the lower-than-predicted nightside

planetary emission on WASP-19b is the presence of high-
altitude clouds in or above the photosphere. A thick cloud
would block the outgoing planetary flux from deeper, warmer

Figure 21. Comparison of the error-weighted average measured dayside and
nightside relative planetary brightnesses (filled black circles) for WASP-19b
with SPARC model emission spectra at the time of secondary eclipse and the
time of transit. The previously published 5.8 and 8.0 μm eclipse depths
reported in Anderson et al. (2013) are also included. The solid blue and green
lines indicate the model-generated spectra for models with no TiO/VO,
assuming ´1 solar and ´5 solar metallicities, respectively. The corresponding
band-averaged fluxes are overplotted as filled points of the same color. The
black lines at the bottom represent the photometric band transmission profiles
in arbitrary units. All of the measured dayside planetary fluxes are well-
matched by both SPARC model spectra. Meanwhile, the measured nightside
planetary fluxes are most consistent with the ´5 solar metallicty model, with
the 3.6 μm emission being overestimated by both models.

Figure 22. Comparison of the measured dayside and nightside relative
planetary brightnesses (filled black circles) for HAT-P-7b with SPARC model
emission spectra. At 3.6 μm, the s2 upper limit on the planetary brightness is
shown. The previously published 5.8 and 8.0 μm eclipse depths reported in
Christiansen et al. (2010) are also included. The model-generated spectra for
the with TiO/VO and no TiO/VO models are shown by the red and blue lines,
respectively. Both models assume solar metallicity. The inset in the dayside
comparison plot shows the measured eclipse depth in the Kepler bandpass. The
corresponding band-averaged fluxes are overplotted as filled points of the same
color. The black lines at the bottom represent the photometric band
transmission profiles in arbitrary units. The measured dayside planetary fluxes
in infrared wavelengths are reasonably well-matched by the model spectrum
with TiO/VO, while the nightside fluxes are not consistent with either model.
The measured planetary brightness in the optical lies intermediate between the
two models.
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levels, thereby suppressing the measured planetary emission at
all wavelengths. In this case, the detected emission would
resemble blackbody radiation from the cold cloud tops. Indeed,
as discussed in Section 4.2, we find that the measured nightside
spectrum for WASP-19b is well described by a single
blackbody with an effective temperature of -

+1063 250
195 K. The

presence of clouds also means that observations of the
nightside atmosphere would primarily probe higher altitudes
in the atmosphere than in the cloud-free case. At these lower
pressure levels, the radiative timescales are shorter, correspond-
ing to less efficient day–night recirculation and a smaller
predicted eastward offset in the location of minimum flux.
Since our sinusoidal phase curve model forces the maximum
and minimum fluxes to have the same phase offset (c2), this
scenario may cause the overall phase curve solution to predict
smaller flux offsets than in the cloud-free case.

Another possible mechanism for producing lower nightside
planetary fluxes is a higher atmospheric metallicity. The
original SPARC models of Showman et al. (2009) explored
´5 and ´10 solar atmospheric metallicities for HD 189733b
and showed that high metallicity implies larger day–night
temperature differences compared to the ´1 solar case due to
the higher optical opacity of high-metallicity atmospheres (e.g.,
Fortney et al. 2008b). Lewis et al. (2010) ran atmospheric

circulation models for the hot Neptune GJ 436b and also found
that high-metallicity models exhibit stronger day–night tem-
perature contrasts than low-metallicity models. High-metalli-
city models were found to provide a better match to the near-
infrared spectroscopic phase curves of WASP-43b (Kataria
et al. 2015).
To explore the effects of high atmospheric metallicity on the

planetary emission of WASP-19b, we compare our observa-
tions to a circulation model assuming ´5 solar elemental ratios
of heavy elements. As shown in Figures 18 and 21, the high-
metallicity model provides a very good match with the
measured dayside planetary emission spectrum across all
bandpasses. Meanwhile, the same model predicts lower
nighttime planetary fluxes than the no TiO/VO model
assuming solar metallicity: the high-metallicity model matches
the measured nightside emission at 4.5 μm, while still
overestimating the emission at 3.6 μm, albeit less severely
than the case of solar metallicity. Comparing the shapes of the
model light curves with those of our best-fit phase curve
solutions, we find that the high-metallicity SPARC model
predicts flux maxima, phase curve amplitudes, and flux offsets
that are consistent with the corresponding values from the data
in both bandpasses (at better than the s2 level in all cases; see
Table 9). Overall, the model with no TiO/VO and ´5 solar

Figure 23. SPARC model-generated temperature–pressure profiles for WASP-
19b, corresponding to the emission spectra in Figure 21.

Figure 24. SPARC model-generated temperature–pressure profiles for HAT-P-
7b, corresponding to the emission spectra in Figure 22.
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atmospheric metallicity yields a better match to the data than
the no TiO/VO model with solar metallicity.

For HAT-P-7b, the calculated dayside emission across all
infrared bands is well-matched by the predicted spectrum from
the SPARC model with TiO/VO, which suggests the presence
of a dayside temperature inversion (Figure 22). As shown in
Figure 19 and Table 10, our best-fit maximum and minimum
flux offsets are consistent with zero, while both models with
and without TiO/VO yield significant eastward shifts on the
hotspot relative to the substellar point. The with TiO/VO
model yields a less severe overestimate of the maximum and
minimum flux offsets, with an overall phase curve shape that is
more consistent with the Spitzer data than the no TiO/VO
model.

The measured HAT-P-7b nightside emission is highly
discrepant from the predictions of both SPARC models. At
3.6 μm, the observed nightside flux is very low, consistent with
zero, while the 4.5 μm nightside planetary flux is higher than
either of the models. This behavior is identical to that reported
in our analysis of the 3.6 and 4.5 μm phase curves of the highly
irradiated hot Jupiter WASP-14b (Wong et al. 2015) as well as
in previous observations of HAT-P-2b (Lewis et al. 2013).
Lewis et al. (2014) suggested that an enhanced C/O ratio might
explain this discrepancy for HAT-P-2b, and in Wong et al.
(2015) we made a similar argument for WASP-14b. Here, we
invoke the same interpretation that was described in detail in
Wong et al. (2015) and propose that a high atmospheric C/O
ratio can explain both of these trends. Increasing the C/O ratio
above solar values leads to a relative excess of CH4 and a
corresponding depletion of CO (Moses et al. 2013). As a result,
the atmospheric opacity is enhanced at 3.6 μm and simulta-
neously reduced at 4.5 μm. A higher-than-predicted atmo-
spheric opacity results in a lower-than-predicted planetary
brightness at the corresponding wavelengths (and vice versa).

A high atmospheric C/O ratio may also lead to a relative
depletion of water. However, unlike in the case of CO and
CH4, the absorption cross-section of water does not vary
significantly across the 3.6 and 4.5 μm Spitzer bandpasses.
Therefore, a reduction in water would cause an overall
reduction in the atmospheric opacity in both bands and cannot
explain both the lower-than-predicted 3.6 μm planetary flux
and the higher-than-predicted 4.5 μm planetary flux.

4.3.2. One-dimensional Model Spectra

For each planet, we run a suite of models following the
methods of Burrows et al. (2008) with a range of high-altitude
optical absorber abundances (parametrized by ke, with units of
cm2 g−1) and day–night energy recirculation efficiencies
(parametrized by Pn, where =P 0.5n indicates complete day–
night redistribution and =P 0n corresponds to re-redistribution
on the dayside only.) Figure 25 compares the model spectra for
WASP-19b with the measured planetary emission; the
corresponding temperature–pressure profile is shown in
Figure 26. We see that the k = 0.005e and =P 0.3n model
spectrum provides an excellent fit to the dayside data at all
wavelengths. This indicates that WASP-19b has no thermal
inversion in the dayside atmosphere and relatively efficient
day–night heat transport, which is consistent with the
conclusions from our comparison with 3D SPARC models.
Meanwhile, on the nightside, the 3.6 and 4.5 μm flux ratios are
not well-matched by either the =P 0.1n or =P 0.3n model.
Here, we can once again invoke the presence of high silicate

clouds on the nightside to explain the data, which are consistent
with colder-than-predicted blackbody emission from the
cloud tops.
The comparison between model spectra and planetary

brightness data for HAT-P-7b is shown in Figure 27, with
the corresponding temperature–pressure profile shown in
Figure 28. The k = 0.2e and =P 0.1n model spectrum yields
the best agreement with the measured dayside fluxes, which
demonstrates that HAT-P-7b has a dayside temperature
inversion and relatively poor day–night recirculation. These
results match the conclusions from the SPARC model
comparisons, as well as a previous comparison of the eclipse
depths reported in Christiansen et al. (2010) and 1D model
spectra similar to the ones presented here (Spiegel &
Burrows 2010). None of the 1D models reproduce both the

Figure 25. Comparison of the error-weighted average dayside and nightside
planet–star ratio (filled black circles) for WASP-19b with one-dimensional
atmosphere model spectra following Burrows et al. (2008). The previously
published 5.8 and 8.0 μm eclipse depths reported in Anderson et al. (2013) are
also included. Solid colored lines indicate the model-generated spectra, with
corresponding band-averaged points overplotted in the same color. The black
lines at the bottom represent the photometric band transmission profiles in
arbitrary units. The measured dayside planetary fluxes are consistent with the
model with k = 0.005e and =P 0.3n , indicating that WASP-19b has no
dayside thermal inversion and relatively efficient day–night recirculation. On
the nightside, the measured nightside planetary fluxes in the 3.6 and 4.5 μm
bands are not well-described by either the =P 0.1n or =P 0.3n model. See the
text for a description of model parameters.
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very low measured 3.6 μm emission and the higher 4.5 μm flux
ratio on the nightside. The nature of this discrepancy is
identical to that of the mismatch between the SPARC model
light curves and the observed nightside emission, as well as
similar deviations between the 1D model spectra and the
measured nightside planetary brightness reported for WASP-
14b in Wong et al. (2015), which provides support to the
aforementioned hypothesis of an enhanced atmospheric C/O
ratio on HAT-P-7b.

4.4. Albedo

We derive estimates for the albedo and recirculation using
our best-fit eclipse depths and phase curve amplitudes.
Following the methods described in Schwartz & Cowan
(2015), we correct for contamination due to reflected starlight
and solve for the Bond albedo AB and day–night heat transport
efficiency ò, where ò is defined such that  = 0 indicates no
heat recirculation to the nightside and  = 1 signifies complete
redistribution. For WASP-19b, we find = A 0.38 0.06B and
 = 0.09 0.06, while for HAT-P-7b, we obtain =A 0B

(<0.08 at s1 ) and  = 0.15 0.11. Figure 29 shows the
location of WASP-19b and HAT-P-7b in albedo-recirculation

space along with the seven other exoplanets with measured
thermal phase curves. The relatively low day–night heat
transport efficiencies and relatively high irradiation tempera-
tures of WASP-19b and HAT-P-7b fit within the general
observed trend that the efficiency of day–night recirculation is
anti-correlated with the level of irradiation (Cowan &
Agol 2011; Perez-Becker & Showman 2013).
From Figure 29, two groupings in albedo space are apparent.

This bifurcation was first reported in Wong et al. (2015), at
which point the low-albedo group was populated by WASP-
14b and WASP-18b. Those planets are both significantly more
massive (7–10 versus~ M1 Jup) and have higher surface gravity
than the other planets in the sample. The low albedo of high-
gravity planets may be due to less clouds or hazes at the
pressures probed by the Spitzer bandpasses: the Stokes settling
velocity is proportional to g, while the scale height is inversely
proportional to g, so that the time required for a particle of a

Figure 26. Plot of temperature–pressure profiles for WASP-19b computed by
the one-dimensional radiative transfer model used to generate the dayside and
nightside emission spectra in Figure 25.

Figure 27. Comparison of the broadband dayside and nightside planetary
emission (filled black circles) for HAT-P-7b with one-dimensional atmosphere
model spectra following Burrows et al. (2008). At 3.6 μm, the s2 upper limit
on the planetary brightness is shown. The previously published 5.8 and 8.0 μm
eclipse depths reported in Christiansen et al. (2010) are also included. Solid
colored lines indicate the model-generated spectra, with corresponding band-
averaged points overplotted in the same color. The inset in the dayside
comparison plot shows the measured eclipse depth in the Kepler bandpass. The
black lines at the bottom represent the photometric band transmission profiles
in arbitrary units. The measured dayside planetary fluxes are most consistent
with the model with k = 0.2e and =P 0.1n , indicating that HAT-P-7b has
dayside thermal inversion and relatively inefficient day–night recirculation. On
the nightside, the measured nightside planetary fluxes in the 3.6 and 4.5 μm
bands are not well described by either the =P 0.1n or =P 0.3n model. See the
text for a description of the model parameters.
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given size to gravitationally settle over a scale height scales as
-g 2. In addition, both WASP-14b and WASP-18b are relatively
young, and so we suggested in Wong et al. (2015) that this
additional internal flux may be due to significant residual heat
of formation.

With the inclusion of HAT-P-7b in the low-albedo group,
these simple interpretations are no longer tenable. HAT-P-7b
has a mass of  M1.671 0.026 Jup, which is comparable to the
masses of planets in the higher-albedo group. Moreover, the
age of the HAT-P-7 system is estimated at -

+2.07 0.23
0.28 Gyr (Lund

et al. 2014), making it older than most of the planets in the
plotted sample. Although HAT-P-7b is not as massive as
WASP-14b or WASP-18b, it is still possible that the
bifurcation in albedo is indicative of divergent thermal
evolution histories for these three systems as compared to the
rest of the hot Jupiter sample. We also note that there is some
evidence from the Kepler sample of hot Jupiters for a bimodal
albedo distribution in the optical bandpass (Heng & Dem-
ory 2013), as well as for spatially inhomogeneous clouds
(Demory et al. 2013; Hu et al. 2015; Shporer & Hu 2015).
The presence of clouds can suppress the infrared emission at
the corresponding phases and affect our estimates of the albedo
and recirculation from simple thermal energy budget con-
siderations. We note that a recent modeling of HAT-P-b’s
optical phase curve inferred a higher Bond albedo in the range

0.11 < AB < 0.72 (von Paris et al. 2015), consistent with the
calculated albedo values for planets in the higher-albedo group.
Ultimately, the albedos of hot Jupiters are likely the result of a
complex interplay between characteristics of the planet and/or
the host star, atmospheric chemistry and dynamics, as well as
different formation/migration histories.

5. CONCLUSIONS

In this paper, we present an analysis of full-orbit 3.6 and
4.5 μm phase curve observations of the highly irradiated hot
Jupiters WASP-19b and HAT-P-7b. For WASP-19b, we obtain
error-weighted average best-fit secondary eclipse depths of

0.485% 0.024% and 0.584% 0.029% at 3.6 and 4.5 μm.
The dayside atmospheric brightness in the two bands is well fit
by a single blackbody with an effective temperature of

-
+2372 60
59 K. For HAT-P-7b, we find that the best-fit 3.6 and

4.5 μm eclipse depths of 0.156% 0.009% and
0.190% 0.006%, respectively, are consistent with a single

blackbody with an effective temperature of 2667 ± 57 K. Our
global phase curve fits and RV analyses produce improved
estimates of the planets’ orbital and physical parameters,
including more precise estimates of the orbital periods:
= P 0.788838989 0.000000040 days (WASP-19b) and
= P 2.2047372 0.0000011 (HAT-P-7b).
We compare the results of our phase curve analysis with

model spectra and light curves generated from both one-
dimensional radiative transfer models and three-dimensional
general circulation models (GCMs). The measured dayside
planetary fluxes for WASP-19b suggest the absence of a
temperature inversion as well as relatively efficient day–night
heat transport; we detect a significant eastward shift in the
hotspot relative to the substellar point, which is consistent with

Figure 28. Same as Figure 26, for HAT-P-7b.

Figure 29. Plot of s1 Bond albedo and recirculation efficiency confidence
regions for all planets with published thermal phase curve observations,
following the methods of Schwartz & Cowan (2015). The irradiation
temperature is denoted by the color of the bounding curves. Both WASP-
19b and HAT-P-7b have intermediate day–night heat transport, like other hot
Jupiters of similar temperature. Two groups in albedo space are evident, with
WASP-19b located in the higher-albedo group and HAT-P-7b lying in the
lower-albedo group.

19

The Astrophysical Journal, 823:122 (21pp), 2016 June 1 Wong et al.



the predictions of the GCMs and indicative of a superrotating
equatorial jet. The nightside planet–star flux ratios are not well-
described by the solar thermochemical equilibrium composi-
tion models. Instead, they match the emission from a single
blackbody with an effective temperature of -

+1090 250
190 K. This

may be indicative of the presence of high-altitude silicate
clouds in the nightside atmosphere and/or an enhanced
atmospheric metallicity. Pursuing the latter idea, we show that
a GCM with ´5 solar metallicity provides better agreement
with the measured dayside emission spectrum and overall
phase curve shape than the case of solar metallicity.

In contrast with WASP-19b, the dayside planetary emission
for HAT-P-7b derived from Spitzer data is consistent with a
temperature inversion in the dayside atmosphere and relatively
inefficient day–night recirculation. From the calculated max-
imum and minimum flux offsets, we do not detect any eastward
shift in the hotspot from the substellar point. Meanwhile, the
measured nightside planetary emission at 3.6 and 4.5 μm
differs from both the one-dimensional and three-dimensional
models in a manner similar to that reported for WASP-14b in
Wong et al. (2015). Specifically, the very low 3.6 μm nightside
planetary flux indicates a significantly higher atmospheric
opacity at that wavelength than is predicted by the models and
suggests an enhanced C/O ratio.

While it is not possible to measure the C/O ratio of hot
Jupiter atmospheres directly with current telescope facilities,
one can instead obtain measurements of the host star’s C/O
ratio as a proxy. HAT-P-7 has an intermediate measured C/O
ratio of 0.42 ± 0.14 (Teske et al. 2014), which is consistent
with solar. Nevertheless, the detailed formation and migration
history of hot Jupiters in general can result in a wide range of
C/O ratios, which is primarily determined by the region of the
gas disk from which most of the atmosphere is accreted (e.g.,
Öberg et al. 2011; Ali-Dib et al. 2014; Helling et al. 2014;
Madhusudhan et al. 2014). Further observations of HAT-P-7b
at different wavelengths, possibly with the Hubble Space

Telescopeʼs Wide Field Camera 3, may offer important
additional constraints on the atmospheric composition. In the
context of theoretical and numerical studies, the question of
non-solar C/O ratios and how they affect the global circulation
patterns has not yet been addressed in current three-
dimensional GCMs and merits further exploration. More
broadly, the burgeoning body of phase curve studies has
revealed a wide diversity of observed behaviors, many of
which diverge from the predictions of current models and may
require a more in-depth consideration of phenomena such as
clouds and disequilibrium chemistry to adequately explain.

We use a simple thermal balance model to place WASP-19b
and HAT-P-7b in the context of other planets with full-orbit
thermal measurements and find that both of these highly
irradiated atmospheres have relatively low recirculation
efficiencies when compared with cooler planets. The emerging
bimodality seen in the distribution of Bond albedos remains an
open question; both WASP-19b and HAT-P-7b have similar
masses and irradiation temperatures, yet their albedos are
notably discrepant, refuting the correlation between low albedo
and high planet mass posited in Wong et al. (2015). Further
study into the formation and evolution models for hot Jupiter
atmospheres of various chemical compositions promises to
expand our knowledge of the relevant planetary and/or stellar
properties that determine a planet’s albedo.
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