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Abstract: An active electrode (AE) and back-end (BE) integrated system for enhanced electrocar-
diogram (ECG)/electrode-tissue impedance (ETI) measurement is proposed. The AE consists of a
balanced current driver and a preamplifier. To increase the output impedance, the current driver
uses a matched current source and sink, which operates under negative feedback. To increase the
linear input range, a new source degeneration method is proposed. The preamplifier is realized
using a capacitively-coupled instrumentation amplifier (CCIA) with a ripple-reduction loop (RRL).
Compared to the traditional Miller compensation, active frequency feedback compensation (AFFC)
achieves bandwidth extension using the reduced size of the compensation capacitor. The BE performs
three types of signal sensing: ECG, band power (BP), and impedance (IMP) data. The BP channel is
used to detect the Q-, R-, and S-wave (QRS) complex in the ECG signal. The IMP channel measures
the resistance and reactance of the electrode-tissue. The integrated circuits for the ECG/ETI system
are realized in the 180 nm CMOS process and occupy a 1.26 mm2 area. The measured results show
that the current driver supplies a relatively high current (>600 µApp) and achieves a high output
impedance (1 MΩ at 500 kHz). The ETI system can detect resistance and capacitance in the ranges of
10 mΩ–3 kΩ and 100 nF–100 µF, respectively. The ECG/ETI system consumes 3.6 mW using a single
1.8 V supply.

Keywords: active electrode; bioimpedance; electrocardiogram; preamplifier; integrated circuit

1. Introduction

Bioimpedance sensing has been an important research topic for investigating tissue
properties, which provides valuable information for diagnosis, physiology, and pathol-
ogy [1–3]. Dry electrodes have gradually replaced wet electrodes owing to the many
advantages in personal healthcare and brain-computer interface applications [4,5]. Dry
electrodes enable long-term monitoring in a user-friendly manner; however, they are ex-
posed to relatively high variations in the electrode-tissue impedance [6]. This leads to
interference in the wires that connect the electrodes to the readout circuit, thus reducing the
signal quality. Some designs use analog buffers in the electrode [7]; this approach performs
only impedance conversion, and it still places a stringent low-noise performance on the
subsequent readout circuits. An alternative solution to this issue is using an active electrode
(AE) containing a preamplifier [8]. This approach allows the electrodes to be placed close
to the tissue. Noise interference is reduced by the short path from the electrode to the
preamplifier, which relieves the noise requirement of the subsequent back-end (BE) circuits.

However, there are several challenges that are required to be addressed for this ap-
proach to be fully compatible with the electrocardiogram (ECG)/electrode-tissue impedance
(ETI) sensing system [9,10]. The ETI system uses currents with different amplitudes and
frequencies, which are injected into the tissue to measure the impedance spectrum. The
variations in skin-electrode impedance are required to be resolved using a driver with a
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high output impedance over the bandwidth [11]. Various current drivers using the discrete
designs of the balanced Howland topology have been reported [12,13]. This approach uses
a pair of opamps and resistive networks in the feedback paths. The previous work [13]
achieves an output impedance of 750 kΩ at 10 kHz, which is reduced to 330 kΩ at 300 kHz
and eventually to 70 kΩ at 1 MHz. The maximum output current was approximately 1
mApp. However, the demand for very accurate matching of resistors makes the Howland
topology incompatible with the integrated circuit (IC) design. Second, to obtain a high-
quality signal, a preamplifier with a low-noise performance is required for AE. Moreover,
electrode polarization, which can be up to a few hundred mV, may reduce the preamplifier
headroom and saturate the output unless approaches handling the large DC offset are used.
Another issue is that these requirements should be realized using low power to extend the
battery life for portable applications.

To address the above challenges, in this work, we present a low-power AE-based inte-
grated system for ECG/ETI measurement. To increase the output impedance, the current
driver uses a matched current source and sink, operating under negative feedback. A new
source degeneration method is proposed to increase the linear input range. The measured
results show that the driver supplies a relatively high current (600 µApp) and achieves a
high output impedance (1 MΩ at 500 kHz). To meet the stringent requirement of the AE, a
preamplifier is designed using a capacitively-coupled instrumentation amplifier (CCIA)
and active feedback frequency compensation (AFFC). The proposed CCIA achieves an
excellent noise voltage density and 1/f noise corner of 65 nV/

√
Hz and 2.5 Hz, respectively.

The back-end (BE) signal processing IC consists of five channels for three types of signal
sensing, which are ECG, band power (BP), and impedance (IMP) data. The BP channel is
successfully used to detect the Q-, R-, and S-wave (QRS) complex in the ECG signal. The
IMP channel can measure the resistance and capacitance in the ranges of 10 mΩ–3 kΩ and
100 nF–100 µF. Characterization of the complete system shows successful detection of the
motion artifact while measuring the ECG/ETI.

The paper is organized as follows. Section 2 describes the system architecture. Section 3
presents the design of the AE. Section 4 explains the design of the BE signal processing IC.
Section 5 presents the measured results, and Section 6 draws the conclusion.

2. System Architecture

Figure 1 shows a block diagram of the proposed ECG/ETI system. The AE consists of
a current driver and a preamplifier. The current driver includes matched current source and
sink. The preamplifier, which is realized using CCIA, consists of two gain stages (Gm1, Gm2).
The output ripple is suppressed using a ripple-reduction loop (RRL). The BE consists of five
channels for three types of signal (ECG, BP, and IMP) sensing. To handle the in-phase and
quadrature components, two sub-channels are used for BP and IMP measurement. The QRS
complex in the ECG signal is detected using the BP channel. The IMP channel reads out the
resistance and reactance, providing information on the electrode-tissue contact conditions.
The ECG/ETI system is realized using a one-poly six-metal (1P6M) 180 nm CMOS process.
The analog circuits are implemented using thick-oxide (3.3 V) transistors, which are tolerant
up to 5 V. The digital circuits are realized using thin-oxide (1.8 V) transistors.

Figure 2 shows the schematic of the ETI measurement system. The current driver
injects a balanced current into the tissue through the electrodes, which can be represented
as i(t) = |I|cos(ωt), where the angular frequency is ω = 2πf. The corresponding voltages
measured by the active electrodes (AE1 and AE2) can be written as v(t) = |V|cos(ωt + θ).
Then, we can obtain the in-phase and quadrature components as

v(t) = |V| cos θ cos(ωt)− |V| sin θ sin(ωt)
= R(t) cos(ωt)− X(t) sin(ωt)

. (1)
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Figure 2. Schematic of electrode-tissue impedance (ETI) measurement.

The signals are further processed using different phases to obtain resistance
R(t) = |V|cos(θ)/|I| and reactance X(t) = |V|sin(θ)/|I|. Using the output of the in-
phase and quadrature components, the spectral band power ϕ(f ) of the BP channel can be
expressed as

ϕ( f ) =

∣∣∣∣∣∣
∞∫
−∞

R(t)w(t)[cos(2π f t)]dt

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∞∫
−∞

X(t)w(t)[sin(2π f t)]dt

∣∣∣∣∣∣
2

(2)

where w(t) is the windowing function [14].

3. Active Electrode IC
3.1. Current Driver

Figure 3 shows the schematic of the current driver. It consists of two identical sub-
drivers to generate a balanced output. One is used for sinking current, and the other is
used for sourcing current. This configuration can reject the common-mode (CM) voltage
across the load caused by the mismatch in the transconductor (Gmc1,2) and sensing resistors
(RS1,S2). Each sub-driver consists of a differential difference amplifier (DDA1,2) followed by
the transconductor, which performs the voltage-to-current conversion. The RS1,S2 is used to
monitor the output current, and the voltage across the resistor is fed back to the DDA1,2
through a pair of voltage buffers (VB1,2 and VB3,4), forming a negative-feedback loop.
To accommodate a wide output swing, the buffers are designed to achieve a rail-to-rail
output [11].

Source degeneration is used to extend the linear range. Figure 4a shows the previous
approach of source degeneration [11], where the equivalent resistance of M3A,3B increases
the input range. The current sources provide DC biasing to set the quiescent point on
which the input AC signal is superimposed. M1 and M2 provide transconductance for the
input voltage to current conversion. The current is converted to a voltage by the output
resistance. The limitation of this approach is that it requires a relatively large input for
M3A,3B to operate in the triode region.
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Figure 4b shows the proposed approach where the control voltage of M3A,3B is pro-
vided by voltage Vb through a resistor Rb1,b2. This method allows the source degeneration
to be controlled independently of the input level. Additionally, the gate of M3A,3B is con-
nected to the input terminal through a small capacitor Cb1,b2, which allows tracking of
the input variations. When the input (Vi1a+, Vi1a−) changes, Cb1,b2 senses the voltage and
converts it to current. Then, the current charging the gate capacitance of M3A,3B creates
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the control voltage, which modulates the on-resistance for source degeneration. Figure 4c
shows the comparison of the transfer characteristic obtained using the output and input
signal amplitudes, which indicates the improved linearity of the proposed approach.

Figure 5 shows the schematic of DDA. M1,2 and M4,5 form the differential pair for the
input transconductor. M3A,3B and M6A,6B provide source degeneration. The currents from
the transconductors are summed at the drain of M7 and M9. M13A and M13B operating in
the triode region provide the CM feedback control. The differential output voltage, (Vo1+
− Vo1−), can be written as

Vo1+ −Vo1− ∼= gm1,4
(
ro8||ro11)(Vi1a+ + Vi1b−

)
− gm2,5

(
ro10||ro12)(Vi1a− + Vi1b+

)
= gm1

(
ro8||ro11

)
[(Vi1a+ −Vi1a−)− (Vi1b+ −Vi1b−)]

(3)

where gmi and roi represent the transconductance and output resistance of transistor Mi,
respectively.
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Figure 5. Schematic of the differential difference amplifier. Circuits for source degeneration is shown
in blue color. (W/L)3A,3B = (W/L)6A,6B = 1 µm/0.7 µm. Rb1,b2 is realized using a diode-connected
transistor having a size of (W/L) = 0.9 µm /0.7 µm. Cb1,b2 = 0.32 pF.

Figure 6 shows the schematic of the transconductor (Gmc1,2). It is implemented using
the operational transconductance amplifier (OTA) with three current mirrors, which is
similar to the one reported in [11]. In this work, the device sizing is modified to be
compatible with the supply voltage VDD = 1.8 V. The circuit is fully symmetric, and a
simple current mirror is used for reduced overdrive voltage. M16A and M16B, which operate
in the triode mode, are used to set the DC bias. We use VRef1 in the secondary current
mirror so that M15A and M15B working in the triode region provide additional means of
stabilizing the output DC level.
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Figure 6. Schematic of the transconductor.

3.2. Instrumentation Amplifier

Figure 7 shows the schematic of the preamplifier. It consists of two gain stages. The
first stage (Gm1) is realized using a folded-cascode differential amplifier [15]. The second
stage (Gm2) is implemented using a common-source amplifier to increase the output swing.
Feedback loops are used to set the mid-band gain through Cfb1,2 and the bias of the input
node through pseudo-resistors. To suppress the output ripple, the RRL forms another
feedback loop. For the RRL, continuous-time implementation is used because the discrete-
time approach based on sampling increases the in-band noise through noise folding [16].
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Figure 7. Schematic of the CCIA using active feedback frequency compensation (AFFC) and ripple-
reduction loop (RRL). Cin1,2 = 15 pF, Cfb1,2 = 0.14 pF.

The input signal is upconverted by the chopper CH1, operating at the chopping fre-
quency f CH. The signal is amplified by Gm1, and the output is downconverted by the
chopper CH2. The offset at the input of Gm1 is upconverted and filtered out by the low-pass
characteristic of the amplifier. A capacitive coupling consisting of the input (Cin1,2) and
feedback capacitors (Cfb1,2) is built around the two-stage opamp (Gm1 and Gm2). The combi-
nation of CH1 and Cin1,2 creates an equivalent input resistance of (1/2f CHCin1,2). Similarly,
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CH3 and Cfb1,2 create an equivalent resistance of (1/2f CHCfb1,2). The two resistances form a
feedback loop around the opamp.

Nested Miller compensation has been used to achieve stability under a wide range
of capacitive loads [15]; however, for stability, the size of the compensation capacitor
should be increased in proportion to the load capacitance. Moreover, this approach suffers
from bandwidth reduction. In this work, we use AFFC, which has the advantage of
extending the bandwidth using a small compensation capacitor. The AFFC is implemented
using a cascode Miller (gma and Cm1) in parallel with a Miller capacitor (Cm2) [17]. The
cascode Miller, which is implemented using a common-gate transconductor, blocks the
feedforward signal that exists in the traditional Miller compensation. Compared to the
passive compensation, the gain provided by gma reduces the size of Cm1. Cm2 is used to
control the Q-factor for stability. The noise power contribution of the AFFC to the input-
referred noise is relatively small when divided by (AV1)2, where AV1 ≈ 60 dB is the voltage
gain of the first stage.

Figure 8 shows the schematic of the folded-cascode differential amplifier (Gm1). Two
additional sets of choppers are embedded in the amplifier. One chopper is placed at the
output of the cascode transistors to demodulate the signal down to the baseband while
modulating the input offsets to the f CH band. Another one is placed at the drain of the
current source to upmodulate the flicker noise. At the output of the amplifier, the signal
returns to the baseband while the offset and flicker noise is modulated to high frequency,
which is filtered by the second stage. The common-mode feedback (CMFB) loop is realized
using the two differential pairs. The CMFB loop may have poles of higher frequency than
that of the differential-mode (DM) loop. Therefore, we design the CMFB loop to have a
smaller unity-gain frequency than the DM loop. Considering the frequency response, we
determine the sizing of the two differential pairs.
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Figure 8. Schematic of the folded-cascode amplifier with common-mode feedback.

Figure 9 shows the equivalent small-signal model of the amplifier. Because the open-
loop gain is calculated, we obtain the model by removing the feedback loops in Figure 7.
It includes transconductances (gm1, gm2, and gma) and Miller capacitors (Cm1, Cm2). R1
and C1 are the output resistance and capacitance of the first gain stage, respectively. R1 is
determined by the output resistance of the cascode stage, and C1 is the sum of capacitance
at the output. The RL and CL are the load resistor and capacitor, respectively.
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Using the circuit model, the open-loop gain of the amplifier can be expressed as.

AV(s) ∼=
ADC(1 + sCm1/gma)gma(1− sCm2/gm2)

s3R1RLCm1Cm2CL + s2R1RLCm2(gmaCL + gm2Cm1) + sR1RLgm2gma(Cm1 + Cm2) + gma
(4)

where ADC = (gm1gm2R1RL) is the low-frequency gain. AFFC creates a left-hand plane
(LHP) zero, extending the amplifier bandwidth. Assuming the conditions of (CL, Cm1, and
Cm2) >> C1, (gm1R1, gm2RL) >> 1, and (gmaCL) >> (gm2Cm1), we obtain two zeros (z0 and z1)
and three poles (p0, p1, and p2) as

z0 = zLHP = − gma

Cm1
z1 = zRHP =

gm2

Cm2
,p0 ∼=

1
R1RLgm2(Cm1 + Cm2)

, p1
∼= −

gm2(Cm1 + Cm2)

Cm2CL
, p2 ∼= −

gma

Cm1
. (5)

The 3-dB frequency is determined by p0, resulting in the gain-bandwidth product
of GBW = gm1/(Cm1 + Cm2). The right half plane (RHP) zero introduces the phase lag
(−tan−1(GBW/zRHP)) similar to the pole (−tan−1(GBW/p0,1,2)), which reduces the phase
margin (PM). The extra phase shift caused by the RHP zero degrades the amplifier stability,
and the Miller capacitor (Cm2) is used for frequency compensation.

To realize a maximally flat frequency response for stability, the Q-factor can be set to
0.7 [18]. Owing to the positive phase shift provided by LHP zero (zLHP), AFFC can extend
the bandwidth of the single-stage amplifier by more than two times [19]. Therefore, when
p1 is placed close to twice the value of GBW, the amplifier stability can still be achieved as

|p1| ∼= 2GBW = 2
gm1

(Cm1 + Cm2)
. (6)

To compensate for the negative phase shift caused by p1, the location of z0 is selected
as

|z0| =
gma

Cm1
=
√

2|p1| (7)

Using Equations (6) and (7), we obtain the expression for gma as

gma = 2
√

2
gm1Cm1

Cm1 + Cm2
(8)

To obtain the expression for Cm1, we substitute p1 of Equation (5) into Equation (7).
Using the expression for gma given by Equation (8), we obtain

Cm1 =

√
2gm1Cm2CL

gm2
− Cm2 (9)

where we use relatively small capacitors of Cm1 = 0.8 pF and Cm2 = 0.2 pF. The gma is
implemented using a common-gate transistor having a size of (W/L) = 0.9 µm/0.7 µm. The
PM of the amplifier with pole-zero cancellation can be expressed as

PM = 90◦ − tan−1

 GBW/p1,2

Q
(

1− (GBW/p1,2)
2
)
+ tan−1(

GBW
z0

) (10)
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where the quality factor is expressed as Q = |p1,2|/(2|Re{p1,2}|) in case when complex
poles are formed for p1 and p2 [20]. A detailed derivation of the complex poles and the
Q-factor can be found in the Appendix A.

Figure 10 shows the comparison of the open-loop gain of the amplifier using AFFC
and conventional Miller compensation. The bandwidth is extended by the LHP zero
available in the AFFC. The PM is reduced from 82.2◦ to 60◦; it guarantees stable operation.
Figure 11 explains the operation of the RRL, and its implementation is similar to the
previous work [21]. The process variation creates offsets. Gm1 and Gm2 are associated with
the offset voltages VOS1 and VOS2, respectively. The VOS2 is not chopped but suppressed
by the open-loop gain (AOL1) of the preceding stage (Gm1). Therefore, the input-referred
offset can be written as (VOS1 + VOS2/AOL1). The system offset amplified by Gm1 creates
the offset current. The current is up-converted to f CH by CH2, and integrated by Gm2 and
Cm2, producing the output ripple Vout,ripple. At the output, a sense capacitor CS1 converts
Vout,ripple to a current IAC,ripple. The current demodulated by the chopper CH3 is converted
to IDC,ripple. The current integrated by Gm3 and Cint generates the integrator output Vint,
which is converted to the voltage VRRL by Gm4. To cancel the offset current generated by
VOS, the VRRL is input to Gm1.
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4. Back-End Signal Processing IC

Figure 12 shows a block diagram of the BE signal processing IC. It consists of five
channels for three types of measurements (ECG, BP, and IMP). Each channel includes an
instrumentation amplifier (IA), a programmable gain amplifier (PGA), and a low-pass
filter (LPF). The IC includes a multiphase clock generator, a bias generator/bandgap, and a
multiplexer. The bias voltages are generated from the internal bandgap. The multiplexed
outputs are digitized using a 12-b analog-to-digital converter (ADC) [22]. The ADC is
implemented on a separate test board. The QRS peak detection and BP calculation are
performed using a field programmable gate array (FPGA).
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Figure 12. Block diagram of the back-end signal processing IC. The spectrums of the ECG and IMP
channels are shown in the inset.

The BP channel extracts the information related to the QRS complex using the in-phase
and quadrature chopping frequencies of f BPI = (f CH + ∆f )(0◦) and f BPQ = (f CH + ∆f )(90◦), re-
spectively. The offset ∆f is used to compensate for the channel delay. The IMP channel uses
the in-phase and quadrature chopping frequencies of f IMPI = f AC(0◦) and f IMPQ = f AC(90◦),
respectively, where f AC is the AC frequency of the current driver. The non-overlapping
clocks are generated from the clock divider and multiphase clock generator. Because there
is no input chopper in the IMP channel, the ECG signal is upmodulated to f AC at the
IA output of the IMP channel, which is suppressed by the LPF [8]. If f AC = 4 kHz and
f CH = 2 kHz is chosen, the signal input to the ECG and BP channels experiences two times
frequency modulation, and the residual signals at 4 kHz and 8 kHz can be suppressed by
the LPF.

Figure 13 shows the schematic of the IA using capacitive coupling. It consists of a
folded-cascode amplifier (Gm5), re-used from the preamplifier (Figure 8) without the RRL
input. The input and feedback capacitors (Cin1,2 and Cfb1,2) determine the closed-loop gain
(Cin1,2/Cfb1,2), and the pseudo-resistors define the CM voltage.

Figure 14 shows the schematic of PGA. It consists of an operational transconductance
amplifier (OTA), switches, and an array of capacitors. The first stage of the OTA uses a dif-
ferential amplifier with internal positive feedback for gain boosting [15]. The second stage
uses a common-source amplifier for increased output swing. The CMFB is implemented
using a switched-capacitor (SC) network clocked by ϕ1 and ϕ2 [23]. When ϕ1 is high (ϕ2 is
low), the amplifier operates in the negative feedback mode using the input capacitor (CIN)
and the feedback capacitor (CFB). When ϕ2 is high (ϕ1 is low), it operates in CMFB mode
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using the CM input (VICM) and the output (VOCM). The low-frequency closed-loop gain
(ACL) can be expressed as

ACL =
AOL

1 + (CFB/CIN)AOL
∼=

CIN

CFB
(11)

where AOL is the open-loop gain of the OTA. The feedback capacitor is given by CFB = CU =
100 fF. The CIN is the capacitor sum connected to the input, which is determined by closed
switches (S0–S2). The ACL is variable from 1 to 15 (v/v) by controlling the three switches.
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Figure 14. Schematic of the PGA.

Figure 15 shows the schematic of the LPF. Using the unit capacitor C = 100 fF, the
states of the switches (S3–S6) determine the cutoff frequency. The number of SC stages
determines the order of the filter. Figure 16 shows the simulated frequency responses of the
LPFs. The ECG channel uses the first-order LPF to set the cutoff frequency close to 1.5 kHz.
The IMP and BP channels use the second and third-order LPF to set the cutoff frequency at
60 Hz and 50 Hz, respectively.
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5. Measured Results

Figure 17 shows the fabricated ICs for ECG/ETI system using the 180 nm CMOS
process. The core size of the current driver and the preamplifier are 0.065 mm2 and
0.29 mm2, respectively. The core area of the BE signal processing IC is 0.9 mm2. The
chips are mounted on three test boards for individual characterization using the chip-on-
board (COB) technique. After functional testing, they are assembled for the ECG/ETI
system characterization.
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Figure 18 shows the measured transconductances of the current driver at 10 kHz using
a load of (1 kΩ || 20 pF). The transconductance is relatively constant over the input range
from −90 mV to +90 mV. Figure 19a shows the schematic of characterizing the output
impedance ZOUT of the current driver. The differential input of the driver is generated
using the Keysight 33500B with a high stability time base option. The output current is
set to 200 µA by adjusting the input. The ZOUT value is obtained using two resistances
(RL1 = 100 Ω, RL2 = 4.7 kΩ) and recording the change in the output voltage. The magnitude
of ZOUT can be expressed as

|ZOUT| =
∣∣∣∣ VL2 −VL1

(VL2/RL2)− (VL1/RL1)

∣∣∣∣ (12)

where VL1 and VL2 are measured voltages using RL1 and RL2, respectively [24]. The
measured |ZOUT| is kept constant at 1 MΩ up to 500 kHz, reducing to 300 kΩ at 1 MHz.
Figure 19b shows the measured output current as a function of frequency for three inputs.
The injected current is measured using the voltage across a 100 Ω resistor, which is in series
with the output load of (1 kΩ || 20 pF). For the input of 80 mVpp, the output current is
relatively constant, up to 10 kHz, with a maximum error of 0.63%. The driver can operate
up to 1 MHz, where the current is reduced to 0.13 mVpp. Figure 19c shows the output
current as a function of load impedance. The data are measured at 100 Hz, and a current
up to 600 µApp can be injected into the low impedance load using 120 mVpp.
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Figure 18. Measure transconductances as a function of input voltage.

Figure 20a shows the gain response (single-ended) of the preamplifier measured using
a Keysight 35670A signal analyzer. The mid-band gain is 39.4 dB (differential) at 100 Hz
by consuming 0.56 µA (including bias circuit) from VDD = 1.8 V. The mid-band common-
mode rejection ratio (CMRR) and power-supply rejection ratio (PSRR) are 61 dB and 66 dB,
respectively. Figure 20b shows the measured noise spectral density using f CH = 2 kHz.
The input noise voltage density is 65 nV/

√
Hz with a 1/f corner frequency of 2.5 Hz. The

integrated noise from 0.5 to 100 Hz is 1.14 µVrms.
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Figure 19. (a) Schematic of characterizing the output impedance. (b) Measured output current as
a function of frequency under different inputs. (c) Measured output current as a function of load
impedance under different inputs.
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Figure 20. (a) Measured gain of the CCIA, (b) measured input-referred noise voltage spectral density
of the CCIA for the active electrode.

Next, we present the measured result of BE signal processing IC. Figure 21 shows the
measured gain control of the ECG channel. When all the switches of the PGA are in the OFF
state, the mid-band gain is 20 dB. When all the switches are in the ON state, the PGA gain
is 23 dB, which leads to an overall gain of 43 dB. Figure 22 shows the input noise density
of the ECG channel measured using 40 dB gain by consuming 0.4 µA at 1.8 V. When the
chopper is turned on, 1/f noise is effectively suppressed, resulting in a corner frequency of
2 Hz and noise density of 70 nV/

√
Hz. Figure 23 shows the amplified ECG signal for the

input cardiac signal having Vpp = 12 mV (differential), generated from a function generator
Keysight 33500B. The output shows Vpp = 600 mV (single-ended), indicating a 40 dB gain.
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Figure 21. Measured frequency response of the ECG channel for eight gain settings. 
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Figure 21. Measured frequency response of the ECG channel for eight gain settings.

Figure 24 shows the measured results of the in-phase and quadrature IMP channels.
The result is obtained by injecting current at three frequencies (f AC = 1, 4, and 5 kHz). The
baseband output is observed when the demodulation chopper frequency is set to 5 kHz.
The measured waveforms show that the output amplitude decreases with the increase in
the capacitance value from 15 to 330 pF. Figure 25 shows the measured range of the ETI
system. A resistor and a capacitor under the test are connected between the inputs of two
AEs. When we use a sinusoidal current of 88 µApp at 1 kHz, the detection range using 69
dB channel gain is from 100 mΩ to 120 Ω. When the injected current is reduced to 215
nApp with the minimum PGA gain setting, the maximum range can be extended to 3 kΩ.
The minimum range is extended to 10 mΩ using the maximum PGA gain. The simulated
results agree well with the value of the reference resistance over the range. In the case
of capacitance, the detection of the minimum value is limited by the parasitics of wiring
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capacitance in the test board. The measured linear range of capacitance is from 100 nF to
100 µF.
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Figure 24. Measured result of the impedance channel. The current driver injects input at three
frequencies (1 kHz, 4 kHz, and 5 kHz). The demodulation is performed at 5 kHz.
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Figure 25. Measured range of the ETI system for (a) differential resistance and (b) differential
capacitance. The values of the injected current are also shown.

Figure 26 shows the measured results of the BP channels using a gain of 43 dB,
f CH = 2 kHz, and ∆f = 50 Hz. The input cardiac signal having Vpp = 20 mV is generated
using a function generator. Figure 27 shows the measured waveforms of the ECG and
IMP channels. The electrodes attached to the wrists are connected to the current driver. A
differential current of 303 µApp is injected into the electrode. Other sets of electrodes are
connected between the body and test boards (AE and BE), thus amplifying the biopotential
signal using 45 dB gain. The environmental noise is suppressed using a filtering function
of the Keysight MSO-X oscilloscope. The motion artifact is induced by applying a hard
push to the electrode. The result shows a successful operation of the proposed ETI system
in vivo, where the ECG signals are measured while ETI is monitored.

Figure 28 shows the block diagram of the peak detection method based on Pan and
Tompkins [25]. The magnitude of the signal derivative is processed through a moving-
average filter. The detection threshold is set using the measured BP signal. The threshold
detects the region of the QRS complexes. Additionally, a time domain search is performed
around the detected beat to enhance the accuracy of locating the peak. Figure 29 shows the
output of the processed waveform, indicating the successful detection of the ECG peaks.
The power breakdown given in Table 1 shows that power consumption is dominated by
the current driver. Table 2 shows the performance summary. The proposed ETI system is
realized using a 1.26 mm2 (excluding ADC) consuming 3.6 mW from a 1.8 V single power
supply.
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Figure 29. Waveforms of the ECG signal and detected peaks.

Table 1. Power breakdown.

Current driver 1.98 mA @ 1.8 V = 3.56 mW
Preamplifier 0.4 µA (core), 0.16 µA (bias) @ 1.8 V = 1 µW

Back-end 3.7 µA @ 1.8 V= 6.6 µW (ECG: 0.5 µA, ETI: 1.1 µA, BP: 1.1 µA)

Total 3.6 mW
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Table 2. Performance Summary.

Process 0.18 µm CMOS

Active
electrode

Current driver
Frequency 1 MHz (max)
Amplitude 600 µApp

Size 0.065 mm2

Preamplifier

Gain 39.4 dB (differential)
Input noise density 65 nV/

√
Hz

Integrated noise 1.14 µVrms (100 Hz)
Size 0.29 mm2

Back-end

Number of channels 5
Gain 23–43 dB

Bandwidth 0.5–1 kHz
Input noise density 70 nV/

√
Hz

Size 0.9 mm2

Table 3 shows a comparison of the current drivers reported in the previous
works [11,24,26–28]. In [26], electrical impedance tomography (EIT) for hand prosthe-
sis control is proposed for the human-machine interface. The implemented IC uses a fully
differential current driver and a current feedback IA, achieving a maximum output current
of up to 1 mApp; however, the bandwidth (500 kHz) is lower than ours, and the THD
(−42 dB or 0.79%) performance needs further improvement. Work [27] presents a current-
conveyor-based current driver for EIT, achieving a wide bandwidth of up to 10 MHz.
Targeted for EIT prostate and breast cancer detection, this work shows a high drive current
of up to 1.2 mApp; however, the output impedance (101 kΩ) at 1 MHz is lower than ours.
The two works [24,27] use a high supply (18 V and 3.3 V), increasing power consumption.
Work [28] presents a current driver IC for a portable EIT system, achieving a relatively high
output impedance (1 MΩ at 1 MHz) using a 1.2 V supply; however, the maximum output
current is limited to 400 µApp with relatively high THD. The proposed driver features a
high output impedance (1 MΩ) and operates at a low supply (1.8 V) suitable for portable
system applications.

Table 3. Comparison of the current driver.

[11] [24] [26] [27] [28] This Work

Bandwidth 1 MHz 500 kHz 500 kHz 10 MHz 1 MHz 1 MHz

Output
impedance

1 MΩ
@ 500 kHz/

360 kΩ
@ 1 MHz

1 MΩ
@ 100 kHz/

500 kΩ
@ 500 kHz

750 kΩ
@ 500 kHz

101 kΩ
@ 1 MHz/

19.5 kΩ
@ 10 MHz

1 MΩ
@1 MHz

1 MΩ
@ 500 kHz/

300 kΩ
@ 1 MHz

Max. output
current 1 mApp 5 mApp 1 mApp 1.2 mApp 400 µApp >500 µApp

THD <0.1% *
@ 1 mApp

0.69%
@ 5 mApp

0.79%
@ 3.97 mApp

0.14% *
@ 1.2 mApp

<0.5%
@ 400 µApp

0.29% **
@ 303 µApp

Supply ±2.5 V 18 V ±1.65 V 3.3 V 1.2 V 1.8 V
* Increases to 0.68% at 10 MHz. ** Measured using driver current less than maximum value at 50 kHz.

Table 4 shows a comparison of the system with other works [29–32]. Work [29]
presents a low-power (0.221 mW) readout IC using a digital-assisted baseline impedance
cancellation technique, providing an extended frequency (1 MHz) measurement; however,
the impedance range and resolution are lower than ours. In [30], a six-channel EIT system
for portable breast cancer detection is proposed and validated in a wearable setting. The
system provides a good signal-to-noise (SNR) of up to 90 dB; however, the impedance
range is not shown, and it consumes a relatively high power (53.4 mW). Work [31] presents
a high input impedance, low noise ETI sensor system using a current mismatch cancellation
technique, achieving a relatively good resolution (0.5 mΩ) and low power (0.128 mW);
however, the current is limited to 100 µApp demanding a high gain, high power preamplifier.
Work [32] is a commercial system with a balanced impedance range, resolution, and
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power consumption. Compared to other works, the proposed system achieves the lowest
minimum impedance value, a relatively good resolution, and a high driver current. The
system is realized using 3.6 mW power suitable for portable applications.

Table 4. Comparison of system performance.

This Work [29] [30] [31] [32]

Frequency (kHz) 100 1–1000 100 100 150
IMP range (Ω) 0.01–3 k 100–2 k - 20–4 k 2.8 k

Resolution
(mΩrms) 3.5 2–14 4.9 0.5 14.9

Current (µApp) 600 100 400 100 667
Modulation Sine Square Sine Square Pseudo-sine
Power (mW) 3.6 0.221 53.4 0.128 2.9

6. Conclusions

This paper presents an active-electrode ECG/ETI sensor system using a wideband
low-noise IA and a high-impedance current driver. The balanced current driver uses a
matched current source and sink, which operate under negative feedback to increase the
output impedance. To increase the linear input range, a new source degeneration method
is proposed. The measured output impedance of the driver is 1 MΩ and 300 kΩ at 500 kHz
and 1 MHz, respectively. The AFFC technique is applied for the preamplifier to achieve a
wide bandwidth using a small Miller compensation capacitor. The proposed IA achieves
a noise density and 1/f noise corner of 65 nV/

√
Hz and 2.5 Hz, respectively. The BE

signal processing IC is designed for three types of signal monitoring (ECG, BP, and IMP).
The measured results show that the output of the BP channel is successfully used for
real-time detection of the QRS complex in the ECG signal. Using the gain programmability,
the detection range of the IMP channel is increased from 25 to 43 dB. The resistance
detection range is from 10 mΩ to 3 kΩ, and the capacitive range is from 100 nF to 100 µF.
Characterizing the complete system shows successful detection of the motion artifact while
measuring the ECG/ETI using 3.6 mW.
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Appendix A

We consider the denominator of Equation (4) to find the poles as

s3R1RLCm1Cm2CL + s2R1RLCm2(CLgma + Cm1gm2) + sR1RLgm2gma(Cm1 + Cm2) + gma = 0. (A1)

Case 1: in the case of (CLgma << Cm1gm2), Equation (A1) can be written as

s3R1RLCm1Cm2CL + s2R1RLCm2Cm1gm2 + sR1RLgm2gma(Cm1 + Cm2) + gma = 0, (A2)
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where the three poles can be expressed as

p0 ≈ −
d0

d1
=

1
R1RLgm2(Cm1 + Cm2)

, (A3)

p1 ≈ −
d1

d2
= −R1RLgm2gma(Cm1 + Cm2)

R1RLCm2Cm1gm2
= − gma(Cm1 + Cm2)

Cm2Cm1
, (A4)

p2 ≈ −
d2

d3
= −R1RLCm2Cm1gm2

R1RLCm1Cm2CL
= − gm2

CL
. (A5)

Case 2: In the case of (CLgma >> Cm1gm2), Equation (A1) can be written as

s3R1RLCm1Cm2CL + s2R1RLCm2CLgma + sR1RLgm2gma(Cm1 + Cm2) + gma = 0. (A6)

where the three poles can be expressed as

p0 ≈ −
d0

d1
=

1
R1RLgm2(Cm1 + Cm2)

, (A7)

p1 ≈ −
d1

d2
= −R1RLgm2gma(Cm1 + Cm2)

R1RLCm2CLgma
= − gm2(Cm1 + Cm2)

Cm2CL
, (A8)

p2 ≈ −
d2

d3
= − R1RLCm2CLgma

R1RLCm1Cm2CL
= − gma

Cm1
. (A9)

The expression of p1 given by Equation (A8) is proportional to the root mean square of
the current. When the load current changes, increasing p1 can affect the value of p2, creating
complex poles. We assume |s|>>|p1| when considering the non-dominant poles, p1 and
p2. Then, the approximate values of p1 and p2 can be obtained by solving the following
equation as

s2R1RLCm1Cm2CL + sR1RLCm2CLgma + R1RLgm2gma(Cm1 + Cm2) = 0. (A10)

The above result can be further simplified as

s2Cm1Cm2CL + sCm2CLgma + gm2gma(Cm1 + Cm2) = 0. (A11)

with the determinant of

∆ = Cm2CLgma[Cm2CLgma − 4Cm1gm2(Cm1 + Cm2)] (A12)

and we obtain the expression for complex conjugate poles as

p1,2 = s =
−Cm2CLgma ± j

√
Cm2CLgma[Cm2CLgma − 4Cm1gm2(Cm1 + Cm2)]

2Cm1Cm2CL
. (A13)

The above result can be further simplified as

p1,2 = s = − gma

2Cm1
± j

√
gma[Cm2CLgma − 4Cm1gm2(Cm1 + Cm2)]

4Cm1
2Cm2CL

. (A14)

The Q-factor of the non-dominant poles is obtained as

Q =
|p1,2|

2|Re{p1,2}|
=

√
1
4
+

Cm2CLgma − 4Cm1gm2(Cm1 + Cm2)

4Cm2CLgma
(A15)
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where the magnitude can be expressed as

|p1,2| =

√
gma2

4Cm1
2 +

gma[Cm2CLgma − 4Cm1gm2(Cm1 + Cm2)]

4Cm1
2Cm2CL

. (A16)
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