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S Y N O P S I S

By a new method it is proved that a non-linear elliptic boundary value problem of rather general
type admits a weak solution lying between a given weak lower solution </> and a given weak upper
s o l u t i o n </> J ; <f>.

1. INTRODUCTION

In the present note we discuss the solvability of the non-linearjelliptic boundary
value problem

J(j/«X*)+j<x,tt(x),V«(x)) •=/(*)

in a bounded domain ficfi". By s£ we denote here a (linear or quasi-linear) elliptic
differential operator of second order. The functions /and g are given in Q. and on the
boundary T of Q, respectively. Assuming the existence of a weak upper solution \]/:

\^+p{.,xl>,^)^f inO
< (in a weak sense),
{ \j/^g on T

and of a weak lower solution (j> (reversed inequalities) with (j> ^ xji in il, we prove that
(D) admits a weak solution u with <j> ^ u ̂  \j/.

Our result extends numerous earlier statements. In the special case of sd being
linear uniformly elliptic, with Holder continuous coefficients, and p being Holder
continuous and independent of the first-order derivatives of u, the existence of
(classical) solutions was proved by Cohen, Keller, Shampine, Laetsch, Simpson,
Sattinger, Amann and others [cf. for example 1 and the references cited therein].
The basic tool in all these treatments is the maximum principle, applied in the con-
struction of a monotone iteration scheme.

Essential progress was made by Puel [7], who announced a corresponding result
still for linear s/, but with p possibly depending also on Vw. To problem (D) and the
given lower and upper solution he associates an elliptic variational inequality. In
order to show that a solution of this variational inequality is actually solution of
problem (D), he employs a regularity result for a specific variational inequality. For
boundary conditions others than Dirichlet's, the success of Pud's method thus
depends on the presence of regularity results for appropriate classes of variational
inequalities.
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50 Johanna Dueel and Peter Hess

In a previous note [3] the second author introduced a new approach which follows
completely the spirit of the modern theory of linear elliptic boundary value problems
(weak solutions) and does not demand any regularity assumptions at all. A refinement
of these arguments now allows to treat problem (D) in the proposed full generality.

For simplicity, and in order to emphasise the new method, we restrict attention
to the Dirichlet problem. Similarly one treats other boundary conditions, as well as
variational inequalities [thus generalising results announced in 2]. Further, our
method can be easily adapted to the study of systems and enables one to extend some
of the results by Martin [6].

2. STATEMENT OF THE RESULT

Let SI denote a bounded domain in R
N
(N ^ 1) with smooth boundary F, and let s/

be the quasi-linear elliptic second-order differential operator in divergence form:

i = 1
Afc, «(x), V«(*)), a.e.xeQ.

On the functions At (i = 1, ..., N) the following standard conditions of Leray-Lions
type are imposed [e.g. 5, Chap. II].

(Al) Each Ail QxRxf?N->£? satisfies'the Caratheodory conditions (i.e. At(x, t, 0
is measurable in x e ft for all fixed (t, Qef ix f i " and continuous in (/, £) for a.e.
fixed x). There exist constants q: l<q<ao, c0 ^ 0 and a function

koeL"\n)(q'= q/q-l)
such that

1 At(x, t, 01 ^ fcoto + CoO t r ' + \ 11""1), i = 1, ..., N,

for a.e. x e Q, V(f, QeRx R
N
.

(A2) t (At(x, t, Q-AJx, t, OX£«-3)>0 for a.e. xeCl, Vf eF, Vc, ?eP» with
i = 1

i — 1

As a consequence of (Al) the semi-linear form a:

a(u,v)= t I" ^(.,w,
i = i Jn

is defined on PF1' «(Q) x PF1' «(Q). Let further the function

p: ftxfixfi"-*R

satisfy the Caratheodory conditions. Note thatp is however not subject to any a priori
growth restriction. For a function v on Q we set

(Pv)(x) = p(x, v(x), Vi>(x)), xeQ. (1)
Finally let

/6FU(fi)
and

be given.
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Solutions of Non-linear Elliptic Boundary Value Problems 51

DEFINITION 1. A function u is a weak solution of problem (D) provided

ueW
Uq

(£l), w/r = 0 in W
1
'
1
'
9
-

9
^),

PueI3'(&),

a(u,v) + Puvdx = (/, v) Voe W£-

[We use here the notations of 5, in particular w/F denotes the trace of the function w.]
A natural extension of the classical concept of upper solution is given in

DEFINITION 2. We say that a function \j/ is a weak upper solution of problem (D) if

^g in W
l
~

llq
>

q
(T),

aty, v) +
Jn

Pxj/vdx ̂  (/, v) Vz;e W£- "(Q) with v ^ 0 in Ci.

Similarly a weak lower solution <f> is characterised by the reverse inequality signs
in the above definition.

THEOREM. Suppose (j>, \jj are weak lower and upper solution of problem (D), respect-

ively, with <j> ^ \ji in Q. Suppose further that, with a constant ct and a suitable function

\

for a.e. x e fi, Vf e Ft", W: 0(x) ^ f ^ t^x).
77zen problem (D) admits a weak solution u with </> ^ u ^ i// in Cl.

3. P R O O F OF THE THEOREM

We first associate to problem (D) and the given functions <j>, \fi a coercive boundary
value problem (D'), obtained by modifying the coefficient functions outside the
'interesting' range {v: <f> ^ v ^ i//}. We then show that any solution u of problem (D')
satisfies </> ^ u ^ if/ and thus is asserted solution of the given problem.

(i) Let § e W
lt9

(Q) denote an extension of the function g to Q, i.e. cjIT = g in
p^i-i/4, q^y ^ e m a v cnoose § in such a way that </> ^ § ^ i]/ in fi. Performing the
change of variable u»*u-§ we reduce the problem to the case § = 0 (possibly per-
turbing the right-hand side of (A3) by unessential lower order terms in | t, |). We thus

assume in future that g = 0 and <j> ^ 0 ^ \J/ in Q, and search for a solution

ueV = Wo'«(D).

(ii) F o r / = 1, ..., JVlet

^(x, flx), 0 t«t>{x)

K, t,O = i At(x, t, 0 ftx) ^ t ^
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52 Johanna Deuel and Peter Hess

(a.e. xeQ, V(f, Z)eRx.lR
N
). The functions At still satisfy conditions (A1-A3).

Let jaT be the differential operator deduced from stf by replacing the functions At

by At, and let a denote the related form

N r *

i = 1 J n dxt

(iii) For u e W
1
' «(fi) let TM be the truncated function

(Tu)(x) =

<Kx) u(x)«Kx)

u(x) <Kx)^u(x)

(a.e. x e fi). It is known that TueW
1
' »(fi) [e.g. 8, §1]. We need the slightly stronger

LEMMA. The truncation mapping T is bounded and continuous from W
1
'
 9(Q) to itself.

A proof of this lemma is provided at the end of this paper.
As a consequence of (2) the mapping P [defined by (1)] is bounded and continuous

from the subset K = {v e W
1
- «(fi): <j> g v g ^} of W

1
- «(Q) to L

q
'(Q) [e.g. 4]. Thus

the corresponding mapping P°T: W
1
'
9
(Q)-*L

q
'(£l) is bounded and continuous.

Further, an estimate of the form

II (P o Tu)vdx g(c2+c3

Jn

holds for all u,ve W
u «(Q) (|| . ||t>q denotes the norm in W

k
- «(fi)).

(iv) Let the function y: Q x R^f? be given by

t«Kx)

^ f ^ \j/(x)y(x, 0 =

(a.e. x e Q, Vt e R). It is readily verified that y satisfies the Caratheodory conditions.
Moreover y(., v)eL

9
'(Q) and

L J. , - c 4
Jn

(v) We now define the semi-linear form b by

fc(u, t>) = a(u, u)+ (P o Tu)vdx + P y(., u)vdx
Jn Jn

(M, i ieK) . Here jS denotes a fixed positive number which is large enough to ensure that
b is coercive:

._> +oo
II » l l i . «

B y [ 5 , T h e o r e m I I . 2 . 8 ] J t h e r e e x i s t s ueVsuch t h a t

b(u, v) = (f,v) VveV. (3)
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Solutions of Non-linear Elliptic Boundary Value Problems 53

This means that the modified problem

(s?u+P°Tu+p-y(.,u)=f inft

I u = 0 on T

admits a weak solution u. To complete our proof it suffices to show that <f> ^ u ̂  ifr

in SI, since then
•s/u = jrfu, Tu = u, y(., u) = 0.

(vi) Let u e V be solution of (3). We prove that u g ^ in Q, the proof of <f> ^ w
being accomplished similarly. In (3) we set

v = (u-i//)
+ = m a x { u - t M } (e F):

*(«, (« - * )
+
) = (/,(« -«A)

+
). (4)

Since

1la
it follows from (4) that

f
Jn

1
I

{u-W\\o.q- (5)
Jn

As an immediate consequence of the definition of T,

j (P o Tu-Pil/)(u-ij/)
+
dx = 0. (6)

Jn

Since ij/ is weak upper solution and (u—i//)* S; 0 in Q,

u-\jj)
+
). (7)

f
JnJn

By [(5), (6) and (7)] we thus obtain

0 ^ a(u, (u-t)
+
)-a(>lr, (u-ijf)

+
)+p Ku-^)

+
\\0>q. (8)

With the notation D+ = {xe Q: u(x)>4/(x)},

= f i
Jn t = i

= f I
Jn+ ' =

u, V«)-

^ 0 (by hypothesis A2).

We conclude from (8) that

( u - i / 0 + = 0 in H(Q);

hence u ^ ip in Q.

dx
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54 Johanna Deuel and Peter Hess

(vii) We now provide a proof of the lemma. The boundedness of the mapping T

is clear. To prove the continuity of T, it suffices for a given sequence {«„} with un-*u

inW
u «(Q) to show that for a suitable subsequence, Tunk-*Tu in W

1
 • «(Q). In the follow-

ing we omit the change of notation by passing to subsequences.

Since L*-convergence implies convergence a.e. for a subsequence, we may assume

wn->u j

6un du \
 a- e- i n Q. for » = 1» —» N

-

~dx~t "* dx~t\

There exist further subsequences and L*-functions w,wt(i=l,..., N) such that

I «n(*)| ^ w(x)

3w.
^ W;(X)

for a.e. xeQ , V«

[cf. the standard proof of completeness of Z/'-spaces; e.g. 9, pp .107-108]. Since

Tun-+Tu a.e. in Q. and

|(TMn)(x)| ^ | un(x)|,

Lebesgue's theorem on dominated convergence guarantees that

Tun-+Tu in

Also

(d(Tun),,

»->{x) (x) V/i,

for a.e. x e Q and i = 1, ..., N. Thus, again by the Lebesgue theorem,

d(Tun) tdjTu) .r

5X; 3X(
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