

3-Coloring in time O(1.3446n):
a no-MIS algorithm

Richard Beigel

and

David Eppstein

1

Why try to solve graph coloring exactly?

• With fast computers we can do
exponential-time computations of
moderate and increasing size

• Algorithmic improvements are even more
important than in polynomial-time arena

• Graph coloring is useful e.g. for
register allocation and parallel scheduling

• Approximate coloring algorithms have
poor approximation ratios

• Interesting gap between theory and practice

2

Previous 3-coloring methods

• Color vertices one at a time,
ordered by fewest available choices:

2n [folklore?]

• For each maximal independent set
test if remaining graph is bipartite:

3n/3 ≈ 1.4422n [Lawler 1976]

• Use maximal independent sets to increase
vertex degree or split into subproblems:

1.415n [Schiermeyer 1994]

3

Our method

• Replace by a more general problem:
symbol system satisfiability (3,2)-SSS

Idea: more flexibility for local reductions to

stay within the same problem class

• Solve (3,2)-SSS by finding unavoidable set of
reducible local configurations

Idea: similar strategy to proof of 4-color theorem

Result: 1.3803n

• Improved reduction 3-coloring⇒ (3,2)-SSS

Idea: choose colors for a few high-degree vertices

then solve remaining (3,2)-SSS problem

Result: 1.3446n

4

What is (3,2)-SSS?

5

(3,2)-SSS

• Set of vertices (variables)

• Three colors (values) per vertex

• Edges (constraints) between
incompatible pairs of colors

• Color all vertices without incompatibilities

6

3-coloring⇒ (3,2)-SSS
7

3-list-coloring⇒ (3,2)-SSS
8

u v w

(t ∨ u ∨ v) (¬ u ∨ v ∨ ¬ w) (¬ v ∨ w ∨ x)

(t ∨ u ∨ v) (¬ u ∨ v ∨ ¬ w) (¬ v ∨ w ∨ x)

3-SAT⇒ (3,2)-SSS

9

How do we solve (3,2)-SSS?

10

Vertices w/only two colors are free!

11

Simple 2n/2 algorithm

• Randomly restrict two adjacent vertices

• Four possible restrictions using exactly one of
the two incompatible colors

• 50% chance of preserving consistent coloring

• Reduces problem size by two vertices

12

Deterministic 1.3803n algorithm

• Messy case analysis

• Main case: some vertex has a color with
at least three neighbors

• Restricting to remaining colors
removes one vertex

• Using that color removes four vertices

• T(n) = T(n− 1) + T(n− 4) = 1.3803n

13

Remaining Cases

• Colors with multiple neighbors
in the same neighboring vertex

• Colors with only a single neighbor

• Long chains of degree-two colors

• Short cycles of colors

• If all other cases exhausted,
only triangles of colors remain—
solvable by Hall’s Theorem!

14

Bushy Forests

or,

reducing 3-coloring to (3,2)-SSS

15

Idea:

• Find set S of high degree vertices

• Choose a color for each member of S

• Treat remaining vertices as (3,2)-SSS problem

• Each neighbor of S is restricted
to two colors and eliminated

• If S small but N(S) large,
cost of coloring S more than
made up by savings of eliminating N(S)

16

Basic Reduction Technique

• Find maximal set of vertices
with no shared neighbors

• Forest of shortest paths to set has height two

• Color each tree root and degree-≥ 3 child

• Worst case: three children, six grandchildren

• Choosing root color eliminates four vertices

• Remaining six grandchildren⇒ (3,2)-SSS

• Cost per vertex: (3 · 1.38036)1/10 ≈ 1.3542

17

Improved Reduction Technique
for three children, two w/degree ≥ 2

• Color two children in each of nine ways

• If children have different colors
color of tree root is forced
and third child is eliminated

• If same color, third child⇒ (3,2)-SSS

• Same worst case:

• Cost per vertex:
(6 · 1.38032 + 3 · 1.38033)1/10 ≈ 1.3446

18

Improved Reduction Technique
for other trees

• Color root and bushy children as before

• Worst case: tree with four grandchildren

• Cost per vertex: (3 · 1.38034)1/8 ≈ 1.3478

• Eliminate these bad trees
(local improvement, messy case analysis,
complicated potential function)

• Worst remaining tree: three grandchildren
cost = (3 · 1.38033)1/7 ≈ 1.3432

19

Conclusions

• New faster algorithm for 3-coloring

• Some improvement possible by
more complicated case analyses

• Is cn the right form of time bound?

• How can we find the right value for c?

20

