3-Connected Line Graphs of Triangular Graphs are Panconnected and 1-Hamiltonian

H. J. Broersma
H. J. Veldman
TWENTE UNIVERSITY OF TECHNOLOGY DEPARTMENT OF APPLIED MATHEMATICS
P.O. BOX 217

7500 AE ENSCHEDE
THE NETHERLANDS

Abstract

A graph is k-triangular if each edge is in at least k triangles. Triangular is a synonym for 1 -triangular. It is shown that the line graph of a triangular graph of order at least 4 is panconnected if and only if it is 3 -connected. Furthermore, the line graph of a k-triangular graph is k-hamiltonian if and only if it is ($k+2$)-connected ($k \geq 1$). These results generalize work of Clark and Wormald and of Lesniak-Foster. Related results are due to Oberly and Sumner and to Kanetkar and Rao.

1. PRELIMINARIES

We use [1] for basic terminology and notation, and consider simple graphs only. Let G be a graph. We will often identify a trail in G with the subgraph induced by its edges. Hence a subgraph T of G is a trail if and only if T is connected and at most two vertices of T have odd degree in T. An edge e of G is dominated by the trail T if e is incident with at least one vertex of $T ; B(T)$ denotes the set of edges of G dominated by T and we write $b(T)$ for $|B(T)|$. A dominating trail or D -trail of G is a trail that dominates all edges of G, while a spanning trail or S-trail contains all vertices of G. A circuit is a nontrivial
closed trail. In particular, an S-circuit is the same as a spanning eulerian subgraph; in the literature, graphs with an S-circuit are often called supereulerian. We will speak of line graphs instead of edge graphs; the line graph of G is denoted $L(G) . G$ is k-triangular if every edge of G is contained in at least k triangles $(k \geq 1)$; G is triangular if G is 1 -triangular. G is panconnected if G is connected and, for every pair (u, v) of distinct vertices of G, there exists a (u, v) -path of length k for each k with $d(u, v) \leq k \leq|V(G)|-1 . G$ is k-hamiltonian if $G-U$ is hamiltonian for every subset U of $V(G)$ with $0 \leq|U| \leq k$ ($k \geq 0$). G is locally connected (locally k-connected) if, for each vertex v of G, the neighborhood $N(v)$ induces a connected (k-connected) subgraph ($k \geq 1$).

The following characterization of hamiltonian line graphs was obtained in [4].
Theorem 1. (Harary and Nash-Williams [4]). The line graph $L(G)$ of a graph G is hamiltonian if and only if either G has a D-circuit or G is isomorphic to $K_{1, s}$ for some $s \geq 3$.

The following lemmas, including those stated without proof, are easily established.

Lemma 2. Let e and f be distinct edges of a graph G and T a trail in G connecting an end of e and an end of f such that $e, f \notin E(T)$. Then $L(G)$ contains an (e,f)-path of length k for each k with $|E(T)|+1 \leq k \leq b(T)-1$.

Lemma 3. If G is a connected and k-triangular graph, then $L(G)$ is $(k+1)$ connected ($k \geq 1$).

Proof. If G is connected and k-triangular, then G is $(k+1)$-edge-connected and hence $L(G)$ is $(k+1)$-connected.

Lemma 4. If G is a nontrivial connected triangular graph, then G contains an S-circuit.

Proof. Assuming the contrary, let C be a circuit of G of maximum order, $u v$ an edge of G with $u \notin V(C)$ and $v \in V(C)$, and D a triangle containing $u v$. Then the circuit C^{\prime} with $E\left(C^{\prime}\right)=[E(C) \cup E(D)]-[E(C) \cap E(D)]$ contradicts the choice of C.

Lemma 5. If G is a k-triangular graph, then $L(G)$ is locally k-connected ($k \geq 1$).

2. MAIN RESULTS

Theorem 6. Let G be a triangular graph of order at least 4 . Then $L(G)$ is panconnected if and only if $L(G)$ is 3-connected.

Proof. Let G be a triangular graph with $|V(G)| \geq 4$. It is well known that every panconnected graph of order at least 4 is 3-connected. Hence, if $L(G)$ is panconnected, then, since $|V[L(G)]| \geq 4, L(G)$ is 3 -connected.

Conversely, assume $L(G)$ is 3 -connected, but not panconnected. Then, by Lemma 2, there exists a pair (e, f) of distinct edges of G and a smallest integer m with $d_{L(G)}(e, f) \leq m \leq|E(G)|-1$ such that
(1) There is no trail T^{\prime} between an end of e and an end of f with $\left|E\left(T^{\prime}\right)\right|+$ $1 \leq m \leq b\left(T^{\prime}\right)-1$ and $e, f \notin E\left(T^{\prime}\right)$.

Obviously, $m>d_{L(G)}(e, f)$ and there is a trail T between an end of e and an end of f with $|E(T)|+1 \leq m-1=b(T)-1$ and $e, f \in E(T)$. We additionally assume that
(2) T has maximum length under the given conditions.

Let $e=u_{1} u_{2}$ and $f=v_{1} v_{2}$, where u_{1} is the origin of T and v_{1} the terminus of T. We make a number of observations.
(3) If exactly one of the edges e and f has both ends on T, then no triangle of G contains both e and f.

Assuming the contrary to (3), suppose, e.g., there is a triangle D of G with $V(D)=\left\{u_{1}, u_{2}, v_{2}\right\}$, where $u_{1}, u_{2} \in V(T), v_{2} \notin V(T)$ and $v_{1}=u_{i}$ for $i=1$ or $i=2$. If v_{2} is incident with an edge in $E(G)-B(T)$, then the trail T^{\prime} with $E\left(T^{\prime}\right)=E(T) \cup\left\{u_{3-i} v_{2}\right\}$ contradicts (1), while otherwise T^{\prime} contradicts (2).
(4) G has no triangle D containing at most one of the edges e and f and satisfying $V(D) \cap V(T) \neq \emptyset$ and $E(D) \cap E(T)=\emptyset$.

Assuming the contrary to (4), the trail T^{\prime} with $E\left(T^{\prime}\right)=[E(T) \cup E(D)]$ $-[E(D) \cap\{e, f\}]$ contradicts (1) or (2).
(5) G has no triangle containing neither of the edges e and f and exactly one edge of T.

Assuming the contrary to (5), let D be a triangle of G with $E(D) \cap\{e, f\}=\emptyset$ and $E(D) \cap E(T)=\{g\}$. Then the trail T^{\prime} with $E\left(T^{\prime}\right)=(E(T) \cup E(D))-\{g\}$ contradicts (1) or (2).
(6) If some triangle of G contains
(a) a vertex incident with an edge in $E(G)-B(T)$, and
(b) an edge g of T, and
(c) exactly one of the edges e and f, then g is a cut-edge of T.

Assuming the contrary to (6), suppose, e.g., there is a triangle D of G with $V(D)=\left\{u_{1}, u_{2}, u\right\}$, where u_{2} is incident with an edge in $E(G)-B(T)$, $u_{1} u \in E(T), u_{2} u \neq f$ and $u_{1} u$ is not a cut-edge of T. Then the trail T^{\prime} with $E\left(T^{\prime}\right)=\left[E(T) \cup\left\{u_{2} u\right\}\right]-\left\{u_{1} u\right\}$ contradicts (1).
(7) T is nontrivial.

Assume that T is trivial, so that $u_{1}=v_{1}$. Let D be a triangle containing u_{1}. By (4), D contains both e and f, and is hence uniquely determined. It follows that $d\left(u_{1}\right)=2$ and $u_{2} v_{2} \in E(G)$. But then the trail $u_{2} v_{2}$ contradicts (1).

Since $b(T)=m \leq|E(G)|-1, G-V(T)$ contains a nontrivial component H. By (7) and the fact that $L(G)$ is 3-connected, the edge cut $[V(H), V(T)]$ contains at least three edges. Let g be an edge in $[V(H), V(T)]$ with $g \notin\{e, f\}$ and D a triangle containing g. By (3), D does not contain both e and f. Hence, by (4), D contains an edge h of T. By (5), therefore, D contains exactly one of the edges e and f. Now (6) implies that h is a cut edge of T.

Assume, e.g., that $V(D)=\left\{u_{1}, u_{2}, u\right\}$, so that $g=u_{2} u$ and $h=u_{1} u$. In particular, e has exactly one end on T. We make another observation.
(8) f has exactly one end on T.

Assuming that f has both ends on $T,[V(H), V(T)]$ contains an edge $g^{\prime} \notin\{\rho, g\}$. Let D^{\prime} be a triangle containing g^{\prime}. Just like D, D^{\prime} contains e and an edge of T, h^{\prime} say, which is a cut-edge of T. But then the origin u_{1} of T is incident with two cut-edges of T, which is impossible.

Let T_{1} be the component of $T-h$ containing u_{1} and let T_{2} be the other component of $T-h$, so that the unique vertex of T incident with f is in T_{2}. We make one more observation.
(9) There exists no edge $v u_{1}$ with $v \in V(G)-\left[V(T) \cup\left\{u_{2}\right\} \mid\right.$.

Assuming the contrary to (9), let D^{\prime} be a triangle containing $v u_{1}$. By (4), D^{\prime} contains an edge of T. Hence $e \notin E\left(D^{\prime}\right)$ and, by (5), $f \in E\left(D^{\prime}\right)$. It follows that $V\left(D^{\prime}\right)=\left\{v, u_{1}, u\right\}$ and $f=u v$. But then the trail T^{\prime} with $E\left(T^{\prime}\right)=E(T)$ $\cup\left\{u_{2} u, u_{1} v\right\}$ contradicts (1).
T_{1} cannot be trivial, otherwise, in view of (9), the trail T^{\prime} with $E\left(T^{\prime}\right)=$ $\left[E(T) \cup\left\{u_{2} u\right\}\right]-\left\{u_{1} u\right\}$ contradicts (1). Hence T_{1} is a circuit. Since $\left|V\left(T_{1}\right)\right| \neq$ $1 \neq\left|\overline{V\left(T_{1}\right)}\right|$ and $L(G)$ is 3-connected, $\left|\left[V\left(T_{1}\right), \overline{V\left(T_{1}\right)}\right)\right| \geq 3$. Hence $\left[V\left(T_{1}\right), \overline{V\left(T_{1}\right)}\right]$ contains an edge $x y$ with $x \in V\left(T_{1}\right)$ and $x y \notin\left\{u_{1} u, u_{1} u_{2}\right\}$. Since h is a cut-edge of $T, x y \notin E(T)$. Let D^{\prime} be a triangle containing $x y$. We now establish the theorem by deriving contradictions in all possible cases.

Case 1. $x \neq u_{1}$.
Then x is incident with neither of the edges e and f, so that D^{\prime} contains at most one of the edges e and f. By (4) and (8), $f \in E\left(D^{\prime}\right)$. Two possibilities remain.

Case 1.1. $e \in E\left(D^{\prime}\right)$.
Then $V\left(D^{\prime}\right)=\left\{x, u_{1}, u_{2}\right\}$ and, by (4), $x u_{1} \in E\left(T_{1}\right)$. (6) now implies that $x u_{1}$ is a cut-edge of T, contradicting the fact that T_{1}, being a circuit, is 2 -edgeconnected.

Case 1.2. $e \notin E\left(D^{\prime}\right)$.
Then, by (4) and (5), $\left|E\left(D^{\prime}\right) \cap E(T)\right|=2$. It follows that $V\left(D^{\prime}\right)=\left\{x, u_{1}, u\right\}$ and $x u_{1} \in E\left(T_{1}\right)$. Now the trail T^{\prime} with $E\left(T^{\prime}\right)=\left(E(T) \cup\left\{u_{2} u, u x\right\}\right)-\left\{x u_{1}\right\}$ contradicts (1).

Case 2. $x=u_{1}$.
Then, by (9), $y \in V\left(T_{2}\right)$. By (4) and (8), it is impossible that D^{\prime} contains exactly one of the edges e and f. Two possibilities remain.

Case 2.1. D^{\prime} contains both e and f.
Then $V\left(D^{\prime}\right)=\left\{u_{1}, u_{2}, y\right\}$ and $f=y u_{2}$. Now the trail T^{\prime} with $E\left(T^{\prime}\right)=\mid E(T) \cup$ $\left.\left\{u_{2} u, y u_{1}\right\}\right]-\left\{u u_{1}\right\}$ contradicts (1).

Case 2.2. D^{\prime} contains neither e nor f.
Then, by (4) and (5), $\left|E\left(D^{\prime}\right) \cap E(T)\right|=2$. It follows that $V\left(D^{\prime}\right)=\left\{u_{1}, u, y\right\}$ and $u y \in E\left(T_{2}\right)$. Now the trail T^{\prime} with $E\left(T^{\prime}\right)=\left\{E(T) \cup\left\{u_{2} u, u_{1} y\right\}\right]-\left\{u_{y}\right\}$ contradicts (1).

Corollary 7. (Clark and Wormald [3]). If G is a connected 2-triangular graph, then $L(G)$ is panconnected.

Proof Combine Lemma 3 and Theorem 6.
Corollary 8. (Clark and Wormald [3]). If G is a 2 -connected triangular graph, then $L(G)$ is panconnected.

Proof. Let $[S, \bar{S}]$ be an edge-cut of G with $|S| \neq 1 \neq|\bar{S}|$. Since G is 2connected, $[S, \bar{S}]$ contains two nonadjacent edges. Since G is triangular, $[S, \bar{S}]$ must contain a third edge. It follows that $L(G)$ is 3 -connected and we are done by Theorem 6 .

Let G be a connected graph with $\delta(G) \geq 3$. Then $L(G)$ is triangular. Furthermore, it is easily shown that $L[L(G)]$ is 3 -connected if and only if G has no cut vertex of degree 3 (cf. [6]). Thus Theorem 6 has the following consequence also:

Corollary 9. Let G be a connected graph with $\delta(G) \geq 3$. Then $L[L(G)]$ is panconnected if and only if G contains no cut vertex of degree 3 .

The next result shows that, in Theorem 6, "panconnected" may be replaced by "1-hamiltonian."

Theorem 10. Let G be a k-triangular graph $(k \geq 1)$. Then $L(G)$ is k-hamiltonian if and only if $L(G)$ is $(k+2)$-connected.

Proof. It suffices to prove the theorem for $k=1$; the proof is then completed by induction on k, using Theorem 1 and Lemma 4. Since 1 -hamiltonian graphs are necessarily 3 -connected, it remains to establish sufficiency.

Let G be a triangular graph and assume $L(G)$ is 3-connected, but not 1hamiltonian. By Theorem 1 and Lemma $4, L(G)$ is hamiltonian, so there is a vertex e of $L(G)$ such that $L(G)-e$ is nonhamiltonian. e is an edge of G and, by Theorem 1, $G-e$ has no D-circuit. Let C be a circuit of $G-e$ such that
(10) C has maximum order among all circuits of $G-e$.

We make the following observation:
(11) $G-e$ has no cycle C_{0} satisfying
$V\left(C_{0}\right) \cap V(C) \neq \emptyset \neq V\left(C_{0}\right) \cap[V(G)-V(C)]$ and $\left|E\left(C_{0}\right) \cap E(C)\right| \leq 1$.
Assuming the contrary to (11), the circuit C^{\prime} with $E\left(C^{\prime}\right)=\left[E(C) \cup E\left(C_{0}\right)\right]$ - $\left[E(C) \cap E\left(C_{0}\right)\right]$ contradicts (10).

Since C is not a D-circuit, $G-V(C)$ has a nontrivial component H. Since $L(G)$ is 3-connected, $|[V(H), V(C)]| \geq 3$. Hence there exist two distinct triangles D_{1} and D_{2} with $E\left(D_{i}\right) \cap[V(H), V(C)] \neq \emptyset(i=1,2)$. By (11), both D_{1} and D_{2} contain e. $\left(D_{1} \cup D_{2}\right)-e$ is a cycle of length 4 , which, by (11), has two edges in common with C. It follows that e has exactly one end on C, v say. Let u be the other end of e and v_{i} the unique vertex in $V\left(D_{i}\right)-\{u, v\}$, so that $v v_{i} \in E(C)(i=1,2)$.

We now show that D_{1} and D_{2} are the only triangles of G containing edges of $D_{1} \cup D_{2}$. It then follows that every nontrivial component of $G-$ $\left[E\left(D_{1}\right) \cup E\left(D_{2}\right)\right]$ is triangular and hence, by Lemma 4 , contains an S-circuit. The proof is then completed by noting that the union of $\left(D_{1} \cup D_{2}\right)-e$ with Scircuits of the nontrivial components of $G-\left[E\left(D_{1}\right) \cup E\left(D_{2}\right)\right]$ is an S-circuit of $G-e$, contradicting the fact that not even $G-e$ has a D-circuit.

Suppose G contains a triangle D with $D \neq D_{1}, D_{2}$ and $E(D) \cap\left[E\left(D_{1}\right) \cup\right.$ $\left.E\left(D_{2}\right)\right] \neq \emptyset$. By (11), D contains neither of the edges $u v_{1}$ and $u v_{2}$. We derive contradictions in two cases.

Case 1. D contains e.

Let v_{3} be the vertex in $V(D)-\{u, v\}$. From (11) we deduce that $v v_{3} \in E(C)$. Let $F=\left\{v v_{1}, v v_{2}, v v_{3}\right\} . F$ contains two edges f and g such that $C-\{f, g\}$ is a connected subgraph of G : if all edges of F belong to the same block of C, then f and g are arbitrarily chosen from F, whereas in the opposite case f and g are chosen in different blocks of C. If, e.g., $f=v v_{1}$ and $g=v v_{2}$, then it follows that the subgraph C^{\prime} of G with $V\left(C^{\prime}\right)=V(C) \cup\{u\}$ and $E\left(C^{\prime}\right)=[E(C) \cup$ $\left.\left\{u v_{1}, u v_{2}\right\}\right]-\left\{v v_{1}, v v_{2}\right\}$ is a circuit that contradicts (10).

Case 2. D contains $v \nu_{1}$ or $v v_{2}$.
Suppose, e.g., D contains $v v_{1}$. By (11), v_{1} and v_{2} are nonadjacent, so D contains a vertex w with $w \notin V\left(D_{1}\right) \cup V\left(D_{2}\right)$. Again by (11), at least one of the edges $v w$ and $v_{1} w$ is in $E(C)$. If $v w \in E(C)$ and $\nu_{1} w \notin E(C)$, then the circuit with edge set $\left(E(C) \cup\left\{u v_{1}, u v_{2}, v_{1} w\right\}\right)-\left\{v v_{2}, v w\right\}$ contradicts (10). If $\nu w \notin E(C)$ and $v_{1} w \in E(C)$, then the circuit with edge set $[E(C) \cup$ $\left.\left\{u v_{1}, u v_{2}, v w\right\}\right]-\left\{v v_{2}, v_{1} w\right\}$ contradicts (10). Finally, if $v w \in E(C)$ and $v_{1} w \in$ $E(C)$, then (10) is violated by the circuit with edge set $[E(C) \cup$ $\left.\left\{u v_{1}, u v_{2}\right\}\right]-\left\{v v_{1}, v v_{2}\right\}$.

Corollary 11. (Lesniak-Foster [6]). Let G be a connected graph with $\delta(G) \geq 3$. Then $L[L(G)]$ is $(\delta(G)-3$)-hamiltonian.

Proof. $L(G)$ is connected and $[\delta(G)-2]$-triangular, so that, by Lemma 3, $L[L(G)]$ is $[\delta(G)-1]$-connected. The proof is completed by applying Theorem 1 and Lemma 4 in case $\delta(G)=3$ and Theorem 10 in case $\delta(G) \geq 4$.

Note that Theorem 10 also implies that, if G is a connected graph with $\delta(G) \geq 3$ such that $L[L(G)]$ is not $[\delta(G)-2]$-hamiltonian, then $L[L(G)]$ is not $\delta(G)$-connected.

The next consequence of Theorem 10 is completely analogous to Corollary 9.
Corollary 12. (Lesniak-Foster [6]). Let G be a connected graph with $\delta(G) \geq 3$. Then $L[L(G)]$ is 1 -hamiltonian if and only if G contains no cut vertex of degree 3 .

Via a trivial variation on the proof of Theorem 10 we obtain the following result:

Theorem 13. Let G be a k-triangular graph ($k \geq 1$). Then the following statements are equivalent:
(i) $G-F$ contains an S-circuit for every subset F of $E(G)$ with $0 \leq$ $|F| \leq k$;
(ii) G is $(k+2)$-edge-connected.

3. RELATED RESULTS AND CONJECTURES

Oberly and Sumner [7] have shown that every connected, locally connected graph of order at least 3 containing no induced $K_{1,3}$ is hamiltonian. Via induction on k one immediately obtains the following generalization:

Theorem 14. If G is a connected, locally k-connected graph of order at least 3 containing no induced $K_{1.3}$, then G is $(k-1)$-hamiltonian ($k \geq 1$).

In view of Lemma 5 and the fact that no line graph contains an induced $K_{1,3}$, Corollary 11 is a consequence of Theorem 14 , too. Likewise, Corollary 7 is also implied by the following result:

Theorem 15. (Kanetkar and Rao [5]). If G is a connected, locally 2-connected graph containing no induced $K_{1,3}$, then G is panconnected.

By Lemma 5, Theorem 6 is a special case of the following conjectured improvement on Theorem 15:

Conjecture 16. Let G be a connected, locally connected graph of order at least 4 containing no induced $K_{1,3}$. Then G is panconnected if and only if G is 3connected.

The next conjecture is analogous to Conjecture 16.
Conjecture 17. Let G be a connected, locally k-connected graph containing no induced $K_{1,3}(k \geq 1)$. Then G is k-hamiltonian if and only if G is $(k+2)$ connected.

Conjecture 17 is more general than Theorem 10. In [2] it was shown that every connected, locally k-connected graph is $(k+1)$-connected $(k \geq 1)$. Hence Conjecture 17 also generalizes Theorem 14 for $k \geq 2$. Again, it suffices to prove Conjecture 17 for $k=1$.

Finally, consider the following statement:
${ }^{*}$) Let G be a k-triangular graph ($k \geq 1$). Then $L(G)$ is s-hamiltonian if and only if $L(G)$ is $(s+2)$-connected.

By Theorem $10,\left(^{*}\right)$ is true for $s \leq k$. For given k, it would be interesting to know for which values of $s\left(^{*}\right)$ holds. If, e.g., it were shown that, for each $k \geq 2$, (*) holds for $s=2 k$, then the following result of Lesniak-Foster [6] would be generalized: if G is a 2 -connected graph with $\delta(G) \geq 4$, then $L[L(G)]$ is $[2 \delta(G)-4]$-hamiltonian. Similarly, improvements on Conjecture 17 may be possible.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. Macmillan, London, and Elsevier, New York (1976).
[2] G. Chartrand, R. J. Gould, and A. D. Polimeni, A note on locally connected and Hamiltonian-connected graphs. Isr. J. Math. 33 (1979) 5-8.
[3] L. H. Clark and N. C. Wormald, Hamiltonian-like indices of graphs. Ars Combinat. 15 (1983) 131-148.
[4] F. Harary and C. St. J. A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs. Canad. Math. Bull. 8 (1965) 701-710.
[5] S. V. Kanetkar and P. R. Rao, Connected, locally 2-connected, K 1.3 -free graphs are panconnected. J. Graph Theory 8 (1984) 347-353.
[6] L. Lesniak-Foster, On n-hamiltonian line graphs. J. Combin. Theory (B) 22 (1977) 263-273.
[7] D. J. Oberly and D. P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is hamiltonian. J. Graph Theory 3 (1979) 351-356.

