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SUMMARY 
We report numerical calculations for 3-D convection with variable viscosity. A 
hybrid spectral and finite difference method is used. The coupling of modes in the 
equation of motion, which is caused by lateral viscosity variations, is treated 
iteratively. Solutions for bimodal, hexagonal, square, triangular and spoke patterns 
are reported for bottom heated convection at infinite Prandtl number. The Rayleigh 
number, based on the viscosity at the mean of top and bottom temperature, is 
between critical and lo5, and temperature-induced viscosity contrasts up to 100 are 
considered (lo00 in one case). In agreement with results from laboratory experi- 
ments we find that at low Rayleigh number temperature-dependent viscosity favours 
flow patterns like squares or hexagons, where a columnar rising current is 
surrounded by sheet-like descending flow. The dichotomy in geometry between 
upwelling and sinking flow becomes more pronounced with increasing viscosity 
contrast. The temperature dependence of viscosity gives rise to a toroidal velocity 
component; however, it amounts only to a few per cent of the total velocity. In 
contrast, at the earth’s surface an approximate equipartitioning of poloidal and 
toroidal energy is found. We show that with non-Newtonian and depth-dependent 
rheology the toroidal component at the free surface can become significant, and a 
pattern reminiscent of plate motion can arise in a free convection model. Although 
these results are obtained in a parameter range which is not directly applicable to 
the earth, they support the conclusions that (i) upwelling flow in the mantle is 
unlikely to be sheet-like and will probably be in the form of columnar plumes, and 
that (ii) the toroidal motion found at the earth’s surface is due to the highly 
non-linear rheology which leads to the existence of mobile surface plates and is not 
caused by viscosity variations related to lateral temperature contrasts deeper in the 
mantle. 

Key words: convection, flow patterns, viscosity. 

1 INTRODUCTION 

Creep experiments on minerals at high temperature indicate 
that the viscosity of the mantle of the earth and other solid 
planets must be strongly dependent on temperature, 
pressure, and probably also on strain rate, i.e., the rheology 
is non-Newtonian (Kirby zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kronenberg 1987). The 
variability of viscosity plays an important role in the theory 
of mantle convection. For example, it causes the upper 
thermal boundary layer of convection to move as a nearly 
rigid but mobile plate. The consequences of variable 
viscosity for the flow pattern or the heat transport have been 
studied in various 2-D numerical model calculations 
(Turcotte, Torrance & Hsui 1973; Parmentier, Turcotte & 
Torrance 1976; Christensen 1984a, b, 1985; and many 
others). 2-D models are useful to determine at least 

qualitatively many of the properties of thermal convection 
under conditions relevant for the earth’s mantle, but 
evidently 3-D studies are needed to resolve the planform 
and full geometry of the flow pattern. 

When the viscosity is constant, 2-D (roll-like) convection 
becomes unstable at a Rayleigh number of 22600 when the 
top and bottom boundaries are rigid and a bimodal flow 
pattern emerges, with weaker cross-rolls of shorter 
wavelength superimposed at right angle onto the primary 
rolls (Busse 1%7; Frick, Busse & Clever 1983). At higher 
Rayleigh number (>lo’) more irregular and weakly 
time-dependent ‘spoke’-patterns are found in laboratory 
experiments (Whitehead & Parsons 1978). If the symmetry 
of the flow is broken, for example when one boundary is 
rigid and the other stress-free, square or hexagonal patterns 
can be found at moderate Rayleigh number, where 
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sheet-like down- or upwelling surrounds jet- or plume-like 
up (down) flow (Cserepes, Rabinowicz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Rosenberg-Borot 
1988). 3-D model calculations for convection in a spherical 
shell (Bercovici et al. 1989a, b) exhibit sheet-like 
downwelling flow, and, when at least part of the heat enters 
through the bottom, plume-like upwelling. Houseman 
(1988) obtained a similar result also for Cartesian geometry 
in partly bottom-heated cases. Even when plate-like 
movement is imposed at the surface, a preference for 
columnar upwelling and sheet-like downwelling is found 
(Cserepes & Christensen, 1990), especially in the presence 
of a low-viscosity layer near the surface. 

This difference in the geometry of up- and downwelling 
flow agrees with the scanty evidence that we have on the 
structure of mantle convection. Descending lithospheric 
slabs seem to maintain a planar structure to the maximum 
depth to which they can be observed. The only positive 
evidence for active upwelling comes from hotspots, which 
are commonly interpreted to be caused by cylindrical mantle 
plumes. Mid-ocean ridges are thought to be ‘passive’ and 
surficial features and not connected to hot rising sheets 
coming from deep in the mantle. Although columnar 
upwelling can be found in constant viscosity convection 
under a variety of conditions, these columns are still fairly 
wide features. In contrast, mantle plumes are thought to be 
narrow conduits of very rapid flow (e.g., Loper & Stacey 
1983) because of the strong decrease of viscosity with 
temperature. Thus, although temperature dependence of 
viscosity seems not to be a necessary condition for the 
formation of columnar upwelling, it may play an important 
role for determining the width and velocity of plumes. 

White (1988) has performed a careful and extensive 
laboratory study on the various planforms of convection for 
variable viscosity convection. He found that for viscosity 
ratios exceeding approximately 10 and for Rayleigh numbers 
between critical and 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo4, only squares and hexagons 
(and perhaps triangles) are stable patterns with a columnar 
upwelling in the centre and sinking sheets at the sides of the 
geometrical figure. To our knowledge, the only theoretical 
work on finite-amplitude 3-D convection with variable 
viscosity is by Busse & Frick (1985), who also showed for 
small Rayleigh number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(<5000) and moderate viscosity 
contrasts that squares become a stable form. 

Any 3-D velocity field can be split into a poloidal part, for 
which the vertical vorticity is zero, and a toroidal part, 
which has zero vertical velocity. At the earth’s surface, the 
toroidal component is manifest in the existence of transform 
faults, and the poloidal component in the presence of 
convergence and divergence, i.e. spreading and subduction 
zones. Analysing the motion of the plates, about equal 
energy is found in the toroidal and in the poloidal parts of 
the surface velocity (Hager & O’Connell 1979; Forte & 
Peltier 1987). However, for free convection at infinite 
Prandtl number in a fluid of constant viscosity or 
depth-dependent viscosity the toroidal component is 
identically zero. The only mechanism to excite toroidal flow 
is by lateral variations of viscosity due to temperature, 
composition or stress dependence, or other non-linearity of 
the rheology. Therefore convection models assuming 
constant Newtonian viscosity are unable to reproduce an 
important part of the circulation pattern found at the earth’s 
surface. Ricard & Vigny (1989) showed that by introducing 

internally rigid but mobile surface plates, which are coupled 
to the underlying buoyancy-driven flow in the mantle by 
balancing the torque between plate and mantle flow, a 
toroidal component of the correct order is obtained in the 
surface velocity field. However, their model made no direct 
reference to the kind of rheology which might produce 
surface plates. 

In this work we describe numerical calculations of 3-D 
convection with variable viscosity for Rayleigh numbers up 
to 10’. The viscosity contrast is up to one hundred in most 
cases, and in one example the contrast is increased to 1000. 
Our emphasis is put on evaluating the extent to which 
variable viscosity favours flow pattern exhibiting plume-like 
upwelling and sheet-like downwelling and on the amount 
and distribution of toroidal motion. In the following section 
the constitutive equations and the numerical method are 
treated. We present results for constant viscosity, 
temperature-dependent viscosity, and finally for strain-rate 
dependent rheology. Inferences for convection in the mantle 
of the earth are discussed in the concluding section. 

2 CONSTITUTIVE EQUATIONS A N D  
NUMERICAL METHOD 

Thermal convection in a plane layer of fluid with an infinite 
Prandtl number is studied using the Boussinesq approxi- 
mation. Top and bottom boundaries are kept at fixed 
temperatures. In most cases internal heat sources are not 
considered. All material properties are assumed to be 
constant, except for the (effective) viscosity, which may 
depend on temperature, depth, and in some cases on the 
strain rate. Using non-dimensional variables (see Table 1 for 
notation and the non-dimensionalization scheme) the 
problem is governed by the following equations: 

v . u = o ,  (1) 

-Vp + V :  zij = RaTe,, ( 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r.. = V & . .  

3,T + u * V T  = V2T + Q ,  

11 ZI’ 

&ij = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<a,u, + d , U j ) ,  

rl =f(z, T ,  &), (6) 

together with appropriate boundary conditions. The number 
of unknowns is reduced by introducing the poloidal 
potential @ and the toroidal potential (e.g. Busse & Frick 
1985), from which the velocity is obtained as 

(7) 

and the strain rate components are (operators F, G ,  A2 

defined in Table 1) 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Notation and scaling. 

Symbol Quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x ,  Y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz Cartesian coordinates 

ex, ey, e, unit vectors 
a, b, h 
k wavenumber in x 
1 wavenumber in y 
I time 
v = (u, u, w )  
Eij strain rate 
rij deviatoric stress 
4 poloidal potential 
VJ toroidal potential 
T temperature 
AT temperature contrast 
Q volumetric rate of heating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tl viscosity 
Iln reference viscosity 

z positive upwards from bottom 

length, width, height 

velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ei e 
r 
S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K 

CP 
a 

viscosity parameters (equations 19, 20) 
viscosity ratio (equations 19, 20) 
viscosity ratio (equation 22) 
thermal diffusivity 
specific heat 
thermal expansion coefficient 

P density 
k! gravity acceleration 
Ra Rayleigh number 

Definition of operators: 

v2 = a,, + a,, + a,, Laplacian 
A2 = a,, + a,, horizontal Laplacian 
F =  a,, -a, 
G = a,, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

and the components of the vorticity o = V X u are 

W, = -A2W. (9c) 

For the purpose of numerical treatment the viscosity is 
split at each horizontal level into a mean part and a 
fluctuating part: 

v ( x ,  y ,  z)  = rl@) + i i (4 Y ,  z). (10) 

The equation for the toroidal potential is obtained by 
taking the z-component of the curl applied to equation (2). 
The result is then manipulated in such a way that the terms 
involving the mean viscosity are kept on the left-hand side, 
where the strain rate is resolved into the potentials by using 
equation (8), and where the poloidal potential drops out. 
The terms involving the fluctuating viscosity are written on 
the right-hand side (RHS) without resolving the strain rate: 

Taking the z-component of the curl of the curl of 
equation (2) and manipulating it accordingly provides the 

Scaling factor 

h 

K p p A  T/h2  

tl0 

Ra = a g p A T h 3 / ( ~ q o )  

equation for the poloidal potential: 

GCii GY2$ + 4 4A2(Tj 3,)A2$ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-W(ii 
-3,G(ii $,I + 312 W 2 ( i i  &zz) - 2 %y,(q k y )  
-1/2 3,F[fl(iYy - &=)I + RU A2T. (12) 

When the viscosity is a function of depth only, there is no 
source term in (11) and the toroidal potential is zero for 
homogeneous boundary conditions, while the only source 
for the poloidal potential is the buoyancy term involving the 
Rayleigh number in (12). In the general case of laterally 
varying viscosity the terms on the RHS of (11) and (12) 
describe the coupling of poloidal and toroidal motion. The 
boundary conditions at the top and bottom boundary, w = 0 
and either u = u = 0 (rigid) or txz = tyz = 0 (stress-free), 
translate into 

@ = a,$ = I) = 0 (rigid), (134 

$ = = d,ly = 0 (free), (13b) 

T(x,  y, 0) = 1 and T(x,  y, I) = 0. (134 

or 

and for the temperature the boundary conditions are 

Note: although the operator in equation (12) is of sixth 
order, it contains derivatives in z up to the fourth order 
only, therefore two conditions on each boundary are 
sufficient; the fourth-order operator in (11) has only 
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second-order derivatives in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and one condition on each side 
is enough. 

The set of equations, which are to be solved numerically, 
consists of equation (5) combined with (7a-c), equation (11) 
and (12) combined with (6), (8a-f), and 10. It is assumed 
that the solution exhibits translational symmetry (peri- 
odicity) in the Cartesian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -  and y-directions, with the 
translation vectors for a unit cell being 2a ex and 26 ey .  With 
the proper choices for a and b this allows us to study, 
besides 2-D rolls, square cells for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= b, hexagons or 
triangles for b = a / f i ,  or general bimodal flow for any 
b #a. 

A hybrid spectral and finite difference method is 
employed. The equispaced finite difference grid is defined 
for a rectangular box of the size a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx b x 1; the assumed 
symmetry of the solution is equivalent to taking reflecting 
side boundaries. The temperature equation (5) is advanced 
in time by an AD1 finite difference scheme. A 
Douglas-Brian-split (Lapidus & Pinder 1982) is used, which 
remains stable for time steps considerably larger than the 
Courant time step. This is useful when only a stationary 
solution is sought, as we did in most of the case studies. In 
these cases the time step At was typically limited by a 
criterion of the kind max (/vl At) = f ,  < 1 .  The left-hand 
sides of (1 1) and (12) are Fourier transformed in the x -  and 
y-direction. The assumed periodicity allows to use only sine 
terms for I+ and cosine terms for @ and T. A set of 
decoupled ordinary differential equations (ODES) in z for 
each spectral mode k, I is obtained: 

where ST',(. . - )  stands for the kl-mode of the spectral 
transform of the terms involving the strain rate on the RHS 
of (11) and (12), respectively. The ODES are solved by a 
finite difference method, leading to sets of tridiagonal and 
pentadiagonal matrices. When the viscosity is constant or 
only a function of depth, equation (14) can be dropped and 
the solution to (15) is immediately obtained without 
iteration, because the last term on the RHS is zero and the 
spectral modes are all decoupled. In case of variable 
viscosity, first the strain rate is calculated in each grid point 
by finite differencing the solution for @ and I+ obtained in 
the previous iteration step. In order to avoid the need for 
taking third-order differences, ax@ and ay@ are calculated in 
spectral space, inversely Fourier transformed, and then 
second-order differencing is done on the physical grid. The 
strain rate is multiplied with fj and second-order finite 
differencing of the result is performed in the physical space; 
then the result is transformed to spectral space, where the 
final differentiation with respect to x and y is done by 
multiplying with k and I, respectively, to obtain the RHS of 
equation (15). 

After each update of the temperature and viscosity, a 
subiteration is performed on equations (14) and (15) (for 
strain-rate-dependent viscosity, the viscosity is continuously 
updated during this subiteration). When we consider only 
stationary solutions, the subiteration is restricted to five 

steps rather than driving it to convergence for each instant 
of time during the transient evolution. The definition of the 
mean viscosity ?(z) is important for the iterative solution of 
the variable viscosity problem. In principle, the splitting in 
equation (10) can be done for arbitrarily defined y. Initially 
we employed the arithmetic mean, which was used for most 
results that are presented here. In this case relaxation is 
needed during the subiteration to ensure stability. 
Empirically it was found that the higher harmonics need a 
stronger relaxation and that a limited overrelaxation with 
the solution before the last one enhances convergence. 
When the superscript denotes the iterative step, the solution 
was relaxed by 

i@k/ = ( l  - qk/ + qu)i@k/ + qk/ i-l@k/ - qu i--2 @ k / j  (16a) 

qkl= qo[l- (k + I + kl)-'], qu = q0/2, (16b) 

with an expression equivalent to (16a) for Y. For qo values 
of 0.5-0.9 were chosen. For 3-D flow with rigid boundaries 
the iteration for solving the mode-coupling through lateral 
viscosity differences remains stable for a total top-to-bottom 
viscosity contrast up  to 100 for the given choice of .I. On 
fixed horizontal levels, the maximum viscosity contrast is 25 
in this case. For stress-free boundaries, the limit is reached 
already for a total variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40, which again means a 
maximum lateral variation of about 25. 

While a preliminary version of this paper was under 
review, we realized that taking the average of the maximum 
and the minimum viscosity at a given horizontal level for i j  
makes the iteration stable for perhaps unlimited viscosity 
contrasts. This choice shifts 11 to higher values compared to 
the arithmetic mean. No underrelaxation is needed [qkl = 0 
in equation (16a)], and some overrelaxation with the 
next-to-last solution speeds up the convergence (qu = 0.5). 
We have included one example with a global viscosity 
contrasts of loo0 or a maximum lateral contrast of 75. On 
the other hand the accuracy of the solution, especially 
regarding local velocity values as for example the peak 
velocity in plumes, is somewhat degraded compared to the 
case where the arithmetic mean is used for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 

As initial condition for the temperature field we took the 
conductive solution with a perturbation comprising a few 
basic modes superimposed: 

T(x,  y, z) = (1 - z )  + 2 ctlcos (knxla)  cos (Iny/b)sin (nz). 

(17) 

For stationary solutions, convergence is assumed, when the 
rms change in the temperature field from one step to the 
next has fallen below Depending on the Rayleigh 
number, and the character of the solution, convergence is 
achieved typically within 50-300 steps, faster for 2-D flow, 
but slower near stability boundaries. 

For constant viscosity the numerical method has been 
verified by comparison with published results (see next 
section), and with results obtained by Cserepes (personal 
communication 1989) with a similar numerical method. For 
roll-type solutions with variable viscosity, a comparison has 
been done with the results from well-established and precise 
2-D codes, with good agreement being found. In the only 
published numerical work on 3-D variable viscosity 
convection by Busse & Frick (1985) no quantitative values 
are listed, but their contour plot for the vertical velocity at 
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mid-depth for a square cell flow at a viscosity contrast of 11 
is found to be in satisfactory agreement with our result. 

In addition to these comparisons an internal consistency 
check is performed on the code, by comparing the total 
frictional energy dissipation with the Nusselt number Nu, 
for which the following relation exists (Parmentier et al. 
1976): 

NU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 = (Ra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAab)-' dV. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
The equality is fulfilled to within 5 per cent in all cases, and 
the misfit drops to less than 1 per cent when higher 
resolution is employed. Comparisons of results obtained on 
successively finer grids confirm a second-order convergence 
of the method. 

3 RESULTS 

3.1 Constant viscosity 

In order to verify the numerical method a comparison has 
been done with results obtained by Frick et al. (1983) with a 
Galerkin method for bimodal convection between rigid 
boundaries. For a half-wavelength of the .primary roll of 
a = 1.0079 the existence of bimodal solutions is investigated 
for various wavenumbers of the secondary cross-roll at 
Rayleigh numbers of 26000 and 30000. A grid of 
16 X 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 32 points has been used for the calculations. Our 
results are in satisfactory agreement with the parameter 
range that Frick et al. determined for the existence of 
bimodal solutions (Fig. l ) ,  the only difference being that in 
our case the range seems to be shifted very slightly towards 
higher wavenumber of the secondary roll. A quantitative 
comparison of the Nusselt number for a bimodal case with 
the data by Frick et al. is found in Table 2. Trials with 
different grids suggest that a high resolution in the 
z-direction is more important than in the horizontal 
direction. Jarvis & Mitrovica (1989) found the same rule for 
determining the Nusselt number from finite difference 
solutions of 2-D convection. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

20,000~ ' ' I '  ' " I '  ' " ' ' " ' ' I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.0 1.5 5.0 n/b 5.5 

Figure 1. Existence of bimodal convection with constant viscosity. 
0: bimodal solution, x : no bimodal solution. The broken line is 
the limit of existence according to Frick el al. (1983), the full line 
their limit of stability. 

Table 2. Convergence test. 

3.2 Temperature-dependent viscosity 

We take an Arrhenius-type law for the temperature 
dependence of viscosity. Equation (6) takes the form 

t) = exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[B/ (O + T) - B / ( O  + 0.5)]. (19) 

The reference viscosity q,, (for which the non-dimensional 
value is t) = 1) is the value at the mean of the top and 
bottom temperatures and the Rayleigh number is defined 
with this viscosity value, as it has become a standard 
convention for bottom heated convection with variable 
viscosity (Booker 1976; Richter, Nataf & Daly 1983). In 
order to reduce the number of free parameters in (19), the 
following expressions are adopted: 

B = 225/1n ( r )  - 0.25 In ( r ) ,  (20) 
where r is the ratio of the viscosities at the minimum and 
maximum temperatures. This leads for a given r to a 
viscosity dependence very similar to that which applies for 
fluids with strongly temperature-dependent viscosity, such as 
corn syrup or glycerol, which have been used in laboratory 
experiments on convection. 

0 = 15/ln ( r )  - 0.5, 

3.2.1 Stability of square cell convection 

A square pattern of convection, where a columnar upwelling 
is surrounded by descending sheet-like flow, becomes stable 
when the viscosity is temperature dependent (Busse & Frick 
1985). White (1988) has performed a very detailed and 
systematic laboratory investigation of the stability of rolls, 
squares, and other planforms of convection, using corn 
syrup as a working fluid. Partially in order to test our code, 
we tried to reproduce White's stability diagram, by 
calculating solutions in a cube (a  = b = 1) with rigid top and 
bottom boundaries (abbreviated RR). Cases with identical 
parameters were started from two different initial 
conditions, a nearly roll-like initial perturbation as c , ~  = 0.1, 
cnl = 0.001 in equation (17), and a nearly square condition 
like cln=O.l, cnl =0.099. As a rule, during the iteration 
there was first convergence towards the initialized pattern, 
but, if this pattern was unstable, a transient stage of 
divergence is found until the system finally settles into the 
preferred stable stationary pattern. The complete evolution 
into the final pattern was only followed in a few cases when 
the intialized planform turned out to be unstable, and often 
only the growth of the perturbation was recorded. Of 
course, this is only a partial test of stability, as only such 
perturbations are possible which fit the assumed periodicity. 
In the case of a cube basically squares or rolls are possible, 
when excluding a type of bimodal flow where the 
wavelength is the same in both directions but the amplitudes 
differ. 

We find that squares become stable at viscosity contrasts 

IZa = 30.000 const RR a=1.007Y b=0.62X3 bimodal flow 

[;rick cl al .  Illis wnrk 
niodcs Nu grid Nu Vrms gr id  Nu vriiis 

X 3.652 x x x x x  4.39 47.5 8 x 8 ~ 1 6  not bimodal 
10 3.5117 16x16~16 3.786 42.67 1 6 x 1 6 ~ 3 2  3.562 41.39 
12 3.563 32x32132 3.S97 41.27 3 2 ~ 3 2 x 6 4  3.544 40.97 
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ZX1o4- 

loL: 

5000 - 

2000- 

1000 - 

a = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = 1  

3 x 10‘ 

e a  Ra 
FF a = b = l  

’ a) 

squares 
unstable squares zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt rolls 

e . 8 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

rolls 
a unstable 1000 - unstable 

I 1 I 1 1 1 1 1 1  I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI *  I , , I 1 1 1 1 1  I I I l I r l l l l *  

- 3  

2x10L- 

loL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
- 
- 

squares 
unstable 

5000 - 

2000 - 2000 - 

1000- 1000 - 
I , 1 I L I I I I  I I o *  

conduction 

loo0 ’ i i i ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“ Y o  ’ 20 io ‘ ;o‘ ‘rb 

Figure 2. Stability of squares with rigid boundaries and variable 
viscosity. W: squares stable in respect to decay into rolls, 0: roll 
stable with respect to transition into square, 0: roll transforms to 
square, 0: square changes into roll. The dashed line is the stability 
limit for squares according to White (1988), the dot-dashed his 
limit for rolls. 

between 5 and 8, depending on the Rayleigh number (Fig. 
2). For Rayleigh numbers up to 6000 this is in fair 
agreement with White’s (1988) experimental results. At 
higher Rayleigh number and r ( l O  White found that 
squares break down into a bimodal flow pattern. In our 
computational setting bimodal flow would only be possible 

squares 
unstable 

up-squares 

conduction 
I , 1 1 1 1 1 1 1  I I 1 I I * 

with a half-wavelength of 0.5 for the secondary roll, but 
such a pattern did not occur even when an appropriate 
perturbation was imposed on the temperature. White (1988) 
found a half-wavelength of about 0.8 for the secondary roll. 
As such a bimodal flow is not possible in our case, the 
stability limit (which is actually the limit for the breakdown 
of squares into rolls) diverges from White’s boundary. Our 
limit for the breakdown of rolls into squares, however, is 
completely different compared to White’s result (Fig. 2). At 
Rayleigh numbers above 7000 and r > 10 White found that 
rolis first become bimodal before they subsequently 
transform into squares. This may explain why we find rolls , 

to be stable in this range. The range Racrit < Ra < 3000 and 
5<r<30, where we find break-down of rolls into squares, 
whereas White marks it as region of stable rolls, was 
actually not covered by a laboratory experiment. Still, there 
remains a discrepancy in the range Ra = 3000-6000 and 
r>20,  where the laboratory data indicate a direct 
transformation from rolls to squares, whereas we find rolls 
to be stable. It is not clear at the moment how to explain 
this disagreement. However, we note that our diagram is in 
agreement with the principal geometry of stability regions as 
found by Busse & Frick (1985) for temperature-dependent 
viscosity. Their boundaries are shifted towards lower 
viscosity ratios compared to ours, which is undoubtedly due 
to the difference in the viscosity law, because they used a 
linear dependence of viscosity on temperature. 

The stability diagrams for stress-free upper and lower 

b )  

Figure 3. Stability diagram for squares with free and mixed boundary conditions. See Fig. 2 for symbols. (a) Free boundaries, cubic cell. (b) 
Free boundaries, sue a = b = 1.5. (c) Upper boundary rigid, lower boundary free, cubic cell. (d) Upper boundary free, lower boundary rigid, 
cubic cell. 
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boundaries (abbreviated FF) are shown in Fig. 3. Besides 
the case with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= b = 1, also that for a = b = 1.5 has been 
studied, which is close to the critical wavelength at the onset 
of convection for variable viscosity (Stengel, Oliver & 
Booker 1982). In the latter case squares become stable 
already for a viscosity contrast of two at Rayleigh numbers 
in the range of 5OOO-lOOOO. Contrary to the case of rigid 
boundaries, however, we find that above Ra = 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA000 
increasingly higher viscosity ratios are needed to prevent the 
breakdown of squares into rolls. The boundary for the 
instability of rolls is similar as in the rigid case. 

When the upper boundary is rigid and the lower boundary 
is free (RF, Fig. 3c), a square pattern is stable even for 
constant viscosity, when the Rayleigh number exceeds about 
30000 (for a = b = l), in agreement with the results of 
Cserepes et al. (1988). At low Rayleigh number a viscosity 
contrast of up to 12 is needed to stabilize the square pattern. 
For the upper boundary rigid and the lower one free (FR, 
Fig. 3d) the diagram looks generally similar to the FF case, 
except for a slight shift of the stability field of squares 
towards higher viscosity ratios. Besides squares with a 
rising columnar plume ('up-squares') found at high viscosity 
contrasts, squares with a sinking columnar jet ('down- 
squares') are stable at Ru>35000  and very weak or 

vanishing viscosity variation as a consequence of the rigid 
boundary condition on the side of the hot boundary layer. 
The influence of temperature-dependent viscosity, which 
favours upsquares, acts to destabilize the down-squares. 

To summarize the results: squares are a stable flow 
pattern with respect to the decay into rolls (but not 
necessarily against other 3-D pattern, like bimodal, 
hexagonal, or spoke pattern) for modest viscosity contrasts 
of the order 10 or higher, especially for a rigid upper 
boundary condition. Higher Rayleigh numbers, in excess of 
lo4, have an adverse influence on the stability of squares 
when the upper boundary is stress-free. 

3.2.2 Properties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof square cell convection 

Solutions for square cell convection with rigid top and 
bottom boundaries have been calculated in the range 
between lo4 and lo5 for the Rayleigh number and viscosity 
ratios from 5 to 100. For most of the calculations a grid of 
16 X 16 X 32 has been employed. Convergence tests in a few 
cases suggest that this gives adequate resolution for 
Rayleigh numbers of the order of 3X lo4, whereas at 
Ra = 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOOO a grid of 32 x 32 x 64 is necessary to keep the 
errors at a tolerable level (Table 3). Although with rigid 

Table 3. Properties of squares with rigid boundaries. 
r NU <T> vrms vl[%l w U  Wd Rw 

10 2.60 
70 2.51 
51) 2 47 
100 2.41 

5 3.20 
10 3.14 
20 3.07 
30 3.03 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 0  2.97 
75 2.93 
1011 2.90 

5 *  3.49 
11) 3.42 
10' 3.40 
31) 3.35 
1111) 3 20 
100* 3.18 
i o n * *  3.17 
i n o n  2 Y X  
i n o o *  2.06 
11100** 2 9 5  

3 0  4.49 

5 4.10 
111 3.91 
3 0  3.78 
5 0  3.70 
It10 3.61 

10 4.64 
I ( ] *  4.54 
10" 4.52 
30 4.54 
S O  4.50 
101) 4.43 

100" 4.27 
ion*  4.31 

,536 
557 
,566 
.578 

,518 
,536 
.553 
S63 
574 
.5x2 
.S88 

514 
,530 
,529 
,563 
.5Y 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.5x9 
.58X 
,634 
,629 
, 628  

Ra = 
.747 

503 
,527 
,562 
,576 
.5YX 

, 5 3 3  
. 5  I9 
,517 
,596 
,624 
,655 
,637 
,628 

Ra=10.000 
21.4 1.4 1.9 3.46 1.63 0.40 
22.4 1.6 2.4 3.76 1.34 0.55 
23.0 1.6 2.5 3.87 1.21 0.63 
24.0 1.5 2.4 4.01 1.06 0.73 
Ra=20.000 
33.8 0.9 4.1 1 2.07 0.34 

35.7 1.3 2.3 4.67 1.67 0.47 
36.5 1.4 2.5 4.81 1.56 0.53 
37.7 1.5 2.7 5.00 1.46 0.56 
38.7 1.5 2.8 5.11  1.37 0.62 
39.5 1.5 2.9 5.19 1.29 0.65 
Ra = 30.000 
42.5 0.7 1.5 4.63 2.21 0.33 
42.5 0.9 1.7 4.85 2.03 0.38 

34.6 1 . 1  1.9 4.42 1 . 8 8  0.40 

42.0 1.0 1.7 4.83 2.02 0.38 
47.5 1.2 2.4 5 . 5 1  1.73 n.50 

51.0 1.5 2.9 6.04 1.4s 0.60 

61.0 1.7 3.3 5 .32  1.21 0.73 

51.6 1 .52 .8  5.91 1.45 0.61 

50.7 1.5 2.8 6.09 1.44 0.59 

60.X 1.73.3 5.91 1.16 0.75 
60.8 1 . 7 3 . 3  6.21 1.14 0.75 

50.9 1.8 3.7 3.54 2.75 0.63 
Ra = S(1.000 

61.2 0.8 1.5 5.91 2.19 0.38 
65.1 1 . 1  2.3 6.34 1.92 0.47 
67.5 1.3 2.7 6.45 1.81 0.52 
71.2 1 .53 .3  6.42 1.70 0.56 

93.1 0.8 1.7 6.23 2.41 0 3 9  
90.3 0.6 1.4 6.93 2.37 0.38 
89.6 0.6 1.4 7.05 2.37 0.38 
101.3 1.9 .3.7 5.42 2.34 0.39 
106.2 2.7 4.7 4.96 2.39 0.36 
1 1 3 . 5  3.5 6.2 4.60 2.47 0.32 
110.3 2.8 5.2 5.28 2.27 0.36 
108.8 2.6 4.Y 5.61 2.19 0.38 

30,000 with intcrnal hcating Q=3 

64.0 0.5 1 . 3  5.74 2.44 0.33 

~a = ioo.ono 

(<l> - mcan tcnipcraturc; v i  - ratio 01 loroidal to tolal vclocily (rms-valucs). 
lirsl nunibcr is global ratio. sccond lor horizontal lcvcl with max. valuc; wu 
- max. rising. wd - max. sinking vclocity at ~ 0 . 5  rclalivc lo global rnms-vclo- 
city; R, - ratio of niin. 10 max. vclocity in dcsccnding shccls at ~ = 0 . 5 :  
is lhxlhx32. cxccpl whcrc indicatcd by (*) [24x24~481 or by (**) [32x32~641) 

lllc grid 
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Figure 4. Isotherms and contours of vertical velocity (w) for square 
cell convection in a horizontal plane at z = 0.5. Rigid boundaries, 
a = 6 = 1, Ra = 30000. The actual calculation was performed on 
one quarter of the figure shown, which was then. completed 
according to the assumed symmetry. (a) r = 5 ,  w =  - 8 O e . .  
(+20). . . + 180, (b) r = 5, T = 0.20. . . (+0.05). . .0.85, (c) r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
100, w = -60. . . (+20). . . + 300, (d) = 100, T = 0.35. . . 
(+0.05). . .0.90. 

boundaries squares are actually unstable to spoke-flow for 
Ra>25000 (White 1988), it could give some insight to 
compare the change in properties for a well-defined flow 
pattern over a sufficiently large range of Rayleigh numbers. 

Figure 4 shows horizontal cross-sections through square 
cells at mid-depth for viscosity contrasts of r = 5 and 100 at a 
Rayleigh number of 30000. In both cases, the upwelling 
flow takes the form of a plume and the descending flow is 
sheet-like. At the lower viscosity ratio, the descending flow 
has a stronger tendency to concentrate in falling jets at the 
crossing points of the sheets, and the plume shows 
significant deviation from circularity. With increasing 
viscosity contrast, the velocity in the sheets becomes more 
uniform, and also the plume approaches more closely a 
circular geometry. In general the descending sheets are 
more uniform at shallow depth, whereas they tend to 
concentrate into jets near the bottom (see also Bercovici et 

al. 1989a). 
Some properties of interest are listed in Table 3 for RR 

conditions and in Table 4 for stress-free or mixed boundary 
conditions. The principal effect of variable viscosity seems to 
be independent of the type of boundary condition. The 
Nusselt number is weakly decreasing with the viscosity ratio 
and the mean temperature in the cell rises, in accord with 
the experimental results by Booker (1976) and Richter et al. 
(1983). With increasing r ,  generally the maximum 
descending velocity decreases, whereas the ratio of 
minimum to maximum velocity R ,  in the descending sheets 
rises to values closer to unity. At mid-depth the maximum 
velocity in the ascending plume is about 4-6 times the rrns 
velocity of the flow. It is found to increase only weakly with 
the global viscosity contrast in the range 5 < r < 1000 
(Tables 3 and 4). The reason is that the difference between 
the viscosity in the centre of the plume and the mean 

Table 4. Squares with stress-free and mixed boundaries. 
r Nu <T> v r m ~  v t [ % ]  w u  wd Rw 

FF a=b=l R a  = 20.000 
30 5.58 ,560 66.6 1.4 3.2 4.62 1.43 0.24 

IT a=b=1.5 Ra = 2O.ooO 
3 5.75 ,448 75.5 0.4 0.7 4.33 1.74 0.40 
10 5.59 ,469 73.5 0.8 1.5 5.17 1.35 0.45 
20 5.41 ,487 72.0 0.9 1.8 5.62 1.17 0.50 
30 5.28 ,501 71.2 0.9 1.8 5.83 1.07 0.53 
40  5.18 3 1 3  70.6 0.9 1.8 5.95 1.00 0.55 

RF a=b=l Ra = 20,ooO 
3 4.10 ,598 48.8 0.5 1.0 3.32 2.32 0.28 
20 3.69 ,635 53.2 1.2 2.6 4.00 1.71 0.47 
50 3.51 ,651 56.5 1 . 4 3 . 0  4.23 1.49 0.57 

FR a=b=l Ra = 15.000 
5 0  3.82 ,497 37.1 1 . 7 3 . 1  4.94 1.21 0.33 

(SCC Tablc 3 for explanations) 

viscosity at the same z-level rises only from 2 to 3 between 
r = 10 and 100 (at Ra = 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA000). The viscosity difference is 
so weak because (i) with the assumed viscosity law a given 
A T  will produce less viscosity variation at high temperature 
than at low temperature, and (ii) because the temperature in 
the core of the convection cell rises with increasing r, which 
reduces the temperature difference across the lower 
boundary layer and consequently also between plume and 
ambient fluid. The rising columns in the centre of the square 
cells are therefore still different from the narrow 
conduit-like structures envisaged for plumes in the mantle. 

For Rayleigh-numbers exceeding 5 X lo4 and high 
viscosity ratio, the solution changes its character in the RR 
case (other boundary conditions were not studied at such 
high Rayleigh numbers). The ascending plume is no longer 
circular, but becomes clover-shaped (Fig. 5). In the 
descending sheets additional knots of concentrated down- 
welling occur. The maximum ascending velocity now rather 
decreases with increasing r (Table 3). The solution has some 

w 

a 

-m- 

b 
Figure 5. Isotherms and contours of vertical velocity for square cell 
convection in a horizontal plane at z = 0.5. Ro = 1OOooO, r = 100, 
RR, a = 6 = l .  (a) w=-200 . . . (+50) . - . 550 ,  (b) T = 0  .40...(+ 
0.05). . . + 0.85. 
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attributes of the spoke-type flow (see below), but which are 
forced here to fit the square periodicity. Therefore we do 
not consider this pattern as representative for square-cell 
convection. 

A single square case with a finite rate of internal heating 
Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3 has been calculated. The bottom temperature was 
fixed as usual, and about 213 of the total heat was supplied 
by the internal souces (Ra = 30 OOO; r = 30; RR, a = b = 1). 
A stable square cell was found. The velocity in the rising 
plume is less than in the purely bottom-heated case, as 
expected, but there is no higher tendency for the descending 
sheet to concentrate into jets, i.e. no decrease of R,  
compared to the purely bottom-heated case (Table 3). With 
stress-free boundaries no stationary solution could be 
obtained. This single result suggests that partial heating 
from within has no adverse influence on the principal 
configuration of rising plumes and sinking sheets, as it was 
also found for constant viscosity convection in a spherical 
shell (Bercovici et al. 1989b). 

3.2.3 Comparison zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof various flow patterns 

Besides squares, several other flow patterns observed by 
White 1988) were reproduced. In a cell .of dimensions 
b = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa /  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ 3 a hexagonal pattern can be obtained for an initial 
condition with cl,  =A#O in equation (17) (setting 
czO = A/2 will enhance convergence), whereas a triangle 
can be obtained with cll  = -A, czO = -A/2, coz = A/2 and 
cjl = -A/2. One model cell contains the quarter parts of 
two different hexagons, or two half triangles, respectively. 
Triangles seem to be less stable (White 1988); for a = 2.0 or 
smaller no triangular solution could be obtained, and rather 
a hexagon was finally formed when starting from the 
‘triangular’ initial state. Therefore triangles and hexagons 
where calculated for a = 2.4 at Ra = 25 OOO and r = 50 (Fig. 
6) and compared with the square (a = b  = 1.2) and roll 

U 

figure 6. Isotherms in horizontal plane z = 0.5. Ra = 25 OOO, 
r=50 ,  RR, a =2.4, b =2.4/fi .  (a) Hexagonal cell, T =  
0.35.. . (+0.05). . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.0.90, (b) triangular cell, T = 0.25. . . (+ 
0.05). . .0.90. 

Table 5. Comparison of various flow patterns. 
NU <T> v r m ~  v i [ % ]  w u  wd R, 

Rn =25.000 RR r = 50 
roll 2.90 .61 1 39.6 0.0 0.0 2.20 1.63 1.0 
squarc 3.03 ,580 42.7 1.8 3.2 5.05 1.50 0.63 
hcxagon 3.01 ,577 42.7 0.9 1.2 5.55 1.40 0.72 
trianglc 3.11 ,574 42.6 2 . 0 4 . 3  4.95 1.50 0.50 

Ra = 30,000 RR -20 a=1.0 b 0 . 7 5  
bimodal 3.41 .593 45.3 2.7 5.2 3.90 2.30 - 

Ra = 50.000 RR r=30 a=4.0 b=4.0 
spokc 3.88 ,598 64.3 3 . 3 6 . 3  -4.1 -2.0 - 

( scc Tablc 3 lor explanations) 

(a = 1.2) solution. The three 3-D patterns share the 
principal configuration of a rising jet and sinking sheet-like 
flow. Their Nusselt numbers, mean velocities and 
temperatures turn out to very similar, whereas for the roll 
they are more different (Table 5). Comparing the degree of 
variation of the descending velocity, i.e. the values of R,, 
the hexagon has the most pronounced sheet-like character 
and at the same time the highest velocity in the ascending 
plume. 

A bimodal solution has been calculated for a = 1, b = 0.75 
at Ra = 30 OOO and r = 20. It exhibits the typical cross-roll 
character known from the bimodal pattern at constant 
viscosity (Fig. 7). The ratio of maximum ascending to 
maximum descending velocity (at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 0.5) is 1.7, somewhat 
higher than for a roll of similar viscosity variation, where it 
is 1.35, but much less than for squares, hexagons, or 
triangles, where it is in the range of 3-4. 

White (1988) found that at Ra > 25 000 the only stable 
form was a spoke pattern when there was significant 
viscosity variation. For constant viscosity convection spokes 
occur only at Rayleigh numbers of lo5 or more. We did one 
experiment in a rather large cell with a = b  = 4  for 
Ra =5OOOO and r =30, starting with red noise as initial 
perturbation of the temperature field, and employing a grid 
of 64 X 64 x 32. After about 50 pseudo-time steps (At  was 16 
times the Courant step) a fairly stable geometric pattern was 
established, but it did not converge to steady state, which is 
not surprising, as the spoke pattern is known to be time 
dependent. Our of fear that the large pseudo-time step 
would introduce some unphysical features into an 
unconverged unsteady solution, we continued the iteration 
for about one overturn time with At limited by the Courant 
criterion. Only some minor rearrangement of the flow 
pattern was observed during this time interval. At 314 of the 

Figure 7. Isotherms in horizontal plane z = 0.5 for bimodal flow 
pattern, Ra=30000, r=20,  RR, a = l ,  b=0.75;  T = 0 . 3 5 . - . ( +  

0.05). . .0.90. 
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+ 

+ -  + + -  + 
(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Isotherms in horizontal planes for spoke-pattern zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow. 
R a = 5 0 0 0 0 , r = 3 0 ,  R R , a = b = 4 .  (a)z=0.25, (b )z=0 .75 .  

layer height (Fig. 8b) an irregular polygonal network of 
descending sheets is found, while the ascending flow is 
plume-like in the centre of the polygons. At 1/4 height (Fig. 
8a), the cold regions have contracted into falling jets with 
only weak traces of the connecting sheets remaining, 
whereas the warm rising regions are now partly connected 
(viewed in 3-D they form a system of ridges, and the peaks 
in this 'mountain chain' are the base of rising jets). For 
constant viscosity such a pattern has recently been described 
by Travis, Weinstein & Olson (1990) and by Houseman 
(1990). While for constant viscosity there must in principal 
be (anti)symmetry between warm and cold features, here 
the rising flow exhibits a higher tendency towards jet-like 
character and the descending flow towards sheet-like flow. 
At mid-depth the ratio of maximum rising to maximum 
sinking velocity is about 2.1, which is intermediate between 
the ratios for rolls or bimodal flow on one side and for 
squares or hexagons on the other side. It is expected that for 
stronger viscosity variation the asymmetry between rising 
and sinking flow will become more pronounced. 

3.2.4 Excitation of toroidal motion 

In Tables 3-5 the relative fraction of toroidal motion is 
indicated, both globally and for the z-level with the 
maximum toroidal velocity. The toroidal contribution is of 
the order of a few per cent only, and does not strongly 
depend on the viscosity ratio for r > 5. For example, for 
squares at Ra = 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOOO the maximum lateral viscosity 
contrast at a given z-level increases by a factor of 14 
between r =  10 and 1000, while the toroidal velocity 
increases by a factor of less than 2. For a given value of r ,  

the toroidal contribution is found to decrease slightly with 
increasing Rayleigh number, when excluding the case of 
Ra = 100OO0, for which a change in the character of the 
solution was found. For a Rayleigh number near critical and 
weak viscosity perturbation, Bolton & Ribe (1989) 
determined that the toroidal-to-poloidal ratio should 
increase with the square of the amplitude of the flow and 
linearly with r. Obviously, saturation of the toroidal motion 
is nearly reached at fairly moderate viscosity variation and 
Rayleigh number. The maxima in the depth distribution of 
toroidal velocity are found in the thermal boundary layers, 
and usually (but not always) the absolute maximum is found 
in the upper boundary layer (Fig. 9). When the boundary 
condition is rigid, the maximum toroidal motion occurs at 
the bottom of the upper boundary layer. Among the various zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

0 20 LO i_:l ,.'v,xlO 

'... .,., 1; 
10 1 1 

0 50 100 

i +lo 
.... .... 

10 1 
log Q 

Figure 9. Total rms velocity (full line), toroidal rms velocity 
(broken), and maximum-to-minimum lateral viscosity variation p 

(dotted) as a function of depth for square cell Row. Note the tenfold 
enhancement of scale for the toroidal velocity. (a) Ra = 30000, 

r = l O O , R R , a = b = l . ( b ) R a = 2 0 0 0 0 , r = 3 O , F F , a = b = 1 . 5 .  

flow geometries, the toroidal-to-poloidal ratio is found to 
increase in the order roll-hexagon-square-triangle- 
bimodal-spoke pattern, reaching for the spoke pattern a 
maximum value of 6.3 per cent at the bottom of the upper 
boundary layer. Squares are not as efficient in exciting 
toroidal flow as the bimodal pattern for example, because 
the lowest toroidal mode with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = I  = 1, which plays the 
dominant role in the bimodal case, must be zero for 
symmetry reasons in the square case. 

Obviously not every flow pattern comprises toroidal 
motion when there are lateral viscosity differences. For 
example roll-like and axisymmetric flow have zero toroidal 
motion. Out of the various 3-D pattern that we studied, the 
hexagon is the closest approximation to axisymmetric flow, 
and consequently it exhibits the weakest degree of toroidal 
flow. Squares deviate more strongly from axisymmetry, and 
triangles even more. Probably lateral viscosity differences 
are inefficient to generate toroidal motion when they align 
with the direction of the flow, and viscosity gradients 
perpendicular to the flow direction are needed. Ricard & 
Vigny (1989) present an expression where the source term 
for the vertical vorticity depends on the cross product of 
pressure gradient and viscosity gradient. Although their 
formula is an approximation, the implied idea may be 
correct. For temperature-dependent viscosity, where tem- 
perature controls both the driving buoyancy forces and the 
rheology, strong horizontal viscosity changes will roughly 
(but not perfectly) align with the horizontal flow direction, 
and thus only a weak toroidal component can be expected. 

Although the toroidal component is very weak by itself, it 
may play a role in an indirect way. When the toroidal 
motion is suppressed, i.e. set to zero, but otherwise 
iterated for I#J and T in the usual way, the geometry of the 
rising plume differs appreciably from the complete solution, 
especially near the bottom (Fig. 10). Suppressing the 
toroidal motion is artificial, as no longer the physical 
equations of fluid flow are solved, but it highlights the role 
of even a weak toroidal velocity component, which feeds 
back on the poloidal component and the temperature field. 

3.4 Non-Newtonian rheology 

According to the reasoning in the last section, lateral 
viscosity variations, which are not directly related to the 
cause of buoyancy forces, would be more efficient to obtain 
strong toroidal motion. The simplest kind of rheology which 
fulfills this condition is a non-Newtonian stress- (or 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
4
/1

/2
1
3
/5

6
9
1
0
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2
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Figure 10. Isotherms at horizontal plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0.25 for square cell 
with Ra = 30000; r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100, RR, a = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = 1. (a) Complete solution, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) toroidal modes suppressed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
strain-rate-) dependent viscosity. The existence of internally 
figid surface plates can lead to a strong toroidal component 
(Ricard & Vigny 1989), and undoubtedly plate-like 
behaviour must be due to non-linear creep properties, which 
facilitate deformation at plate boundaries while keeping the 
interior of plates nearly rigid. 

We have adopted a creep law of the form 

where qnew is the Newtonian viscosity, n the stress 
exponent in the related Stress-strain rate dependence 
(& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa tn), i (without indices) stands for the second invariant 
of the tensor, and &, is a reference value, which is chosen to 
be approximately the mean strain rate for a particular case. 
The introduction of i,, makes the choice of parameter values 
non-unique, because there is a trade-off between the 
reference strain rate and the Rayleigh number, but it 
facilitates the comparison between non-Newtonian cases and 
their Newtonian counterpart. Because the strain-rate 
dependence may produce extreme lateral viscosity varia- 
tions, for example singularities with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr]  = m  where i =0, 

3 - 0  convection with variable viscosity 223 

which would be difficult for the numerical scheme to cope 
with, the viscosity is bounded by minimum and maximum 
values (equation 21b). 

A case study for square cell convection with temperature- 
dependent non-linear viscosity with n = 3 did not reveal a 
strong enhancement in toroidal motion compared to the 
purely temperature-dependent case. The square symmetry 
of the solution may be unfavourable for strong toroidal flow, 
as discussed in the last section. The same is true for a 
hexagonal case with free boundaries ( r  = 30, Ra = 20 OOO). 
Here the maximum fraction of toroidal flow in the lower 
boundary layer increased from 1.5 per cent for n = 1 to no 
more than 2.5 per cent for n = 3. A case, which was devised 
as a crude analogue to a lithospheric plate overlying the 
asthenosphere, turned out to be more interesting. In the 
Newtonian reference case the viscosity was simply depth 
dependent: 

The size of the cell was chosen to allow for the hexagonal 
symmetry with a = 2.4 and b = 2.4/* and the boundaries 
are stress-free. For most of the following cases a grid of 
32 X 16 X 32 was employed, which provides sufficient 
resolution, as one control case with 48 x 24 x 48 suggested. 
Starting from an initial perturbation of the conductive 
solution with cll ZO, a ‘down-hexagon’ was formed with 
Newtonian rheology, where the downwelling flow occurred 
as a jet surrounded by rising sheets; Fig. 11 shows the 
Newtonian case for r = 2 5 ,  1,=0.15, and Ra=30OOO, 
where the Rayleigh number refers to the viscosity below 
the high-viscosity lid. With non-Newtonian rheology and 
starting from the same initial condition, the hexagonal 
symmetry appeared only for a stress exponent of n = 2. As 
in the non-Newtonian cases with temperature-dependent 
rheology, the toroidal component is insignificant here (Table 
6). For n 2 3 ,  however, a stationary flow pattern emerged 
which, at the surface, vaguely reminds of two plates moving 
in anti-parallel direction. In Fig. 12 the case with n = 6 is 
displayed (the highest value of n for which a stable 
stationary solution was found), with i, = 80, vmin = 0.5, 
vmax=50, and other parameters as above. In the centre, 

Ra = 30 000, free boundaries, a = 2.4, b = 2.4/fi. To complete the Figure 11. Hexagonal flow with depth-dependent viscosity (s = 25) a1 . /  

hexagon, take mirror images about the lower right or upper left comer. (a) Velocity at surface (sample arrow indicates u = 40). (b) Isotherms 
at mid-depth, T = 0.15 .. (+0.05)- . .0.90. (c) Contours of surface divergence, diu = - 110. .. (+lo). . .  + 40. (d) Vertical vorticity at surface. 
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Table 6. Convection with non-Newtonian rheology. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I d - h c x a g o n  
4 u - h c x a g o n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I d - l i c x a g o n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 d - l i c x a g o n  
3 'platcs' 
4 'pla1cs' 
6 'plolcs' 

4 'plalcb' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h ' , , latca' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Nu v r m s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<T> v ~ [ % ]  

Ka=zn.nnn, S=IO, qmai=sn 
3.90 40.4 .6s6 0.0 0.0 
5 1 8  57.4 ,525 n 7 1.3 

Ra=3Q.OnO. s=25. q,,,=sn 
3.35 39.4 ASS 0.0 0.0 
3.94 46.3 . 6 7 ~  0.3 0.4 
4.18 50.1 ,659 5.7 17.7 

4 60 56.2 ,638 7.0 20.1 

Ra=60.00n. s=sn. qmar= ion 
4.23 68.3 ,691 5.3 24.0 
4 44 72.4 AXS 6.n z6.n 

4.39 52.9 .646 6.8 20.3 

v s u r f  

0.58 
0.79 

0.38 
0.5 1 

0.55 
n.57 

0.53 

0.37 
0 . 3 ~  

(al l  CPSCS with to= RO. qmin=0.5. a=2.4. b=2.4/33; u=up. d=down. vsur l  i s  thc niis 
vclocily at tlic frcc surlacc normal i i cd  with thc global rms-vcloci ly. For 
lul t l lcr cxplanations scc Tab. 3)  

between the two 'plates', a broad zone of intense horizontal 
shear is found. The distribution of surface divergence and 
convergence is more localized than in the Newtonian 
counterpart, and a significant component of vertical vorticity 
is found at the surface. The toroidal velocity component is 
20 per cent of the total velocity at the surface, and globally 
it amounts to 7 per cent, which is a threefold enhancement 
compared to the maximum values found for any of the cases 
with temperature-dependent viscosity. The toroidal velocity 
is mainly excited in the surface lid and decays with depth 
(Fig. 13), as it is the case in models where plate motion is 
imposed as a velocity boundary condition at the surface 
(Gable, O'Connell & Travis 1988). A secondary maximum 
is excited in the lower thermal boundary layer. 

In the range n =3-6, no substantial change in the 
qualitative pattern, or in quantitative parameter values is 
found (Table 6). The amount of toroidal energy as function 
of the exponent n seems to have saturated at n = 6 in the 
example with s = 25. When the depth-dependent viscosity 
contrast is increased to s =50 (equation 24) and the 
Rayleigh number to 60000, a slight enhancement of the 
toroidal-to-poloidal ratio is found at the surface, reaching 
now 26 per cent for n = 6 (Table 6 ) .  A model where the 
surface lid is formed due to the temperature dependence of 

0 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 60 v 0 20 40 60 v 

2 

Figure l3. Total rms velocity (full line) and toroidal rms velocity 
(broken) as function of depth for the non-Newtonian case shown in 
Fig. 12. 

viscosity rather than by an imposed ad hoc depth 
dependence would appear to be more realistic. The reason 
why the case with temperature-dependent non-Newtonian 
rheology exhibited the hexagonal flow pattern and not the 
'plate' pattern is probably that the viscosity difference 
between the lid and the underlying cell was too weak. The 
temperature-dependent ratio of r = 30 means a viscosity 
difference of the order of only 10 between the maximum at 
the surface and the value in the core of the cell. In a model 
with depth-dependent viscosity where the contrast s is only 
10, a hexagonal solution was obtained for either Newtonian 

+ . . . . . . . . . . . . . .  + 
+ 0 * 4 + 4 . . * * * . . , , , *  

+ .  . . . . . . . . . . . . .  - +  

I 

Figure U. Flow with depth-dependent non-Newtonian rheology, n = 6 and other parameters as in Fig. 11. (a) Velocity at surface, sample 
arrow indicates u = 80. (b) Isotherms at mid-depth, T = 0.20. . .  (+0.15). . .0.90. (c) Surface divergence, diu = -260. . .  (+20). .. + 180. (d) 
Vertical vorticity at surface, o, = -40. .. (+lo).  . .  0. 
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or non-linear rheology, although there is a change from 
descending jet-like flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 to an ascending jet with n = 4 
(Table 6). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 CONCLUSIONS 

Our numerical calculations are done in a parameter range 
which is quite removed from appropriate parameters for 
convection in the earth’s mantle. The viscosity contrasts are 
too moderate, and the Rayleigh numbers too small. 
Nonetheless, for Ra > lo4 the boundary layer structure, 
which is typical for high Rayleigh number convection, is 
already present, and the trends observed in our study may 
give a hint to what could be expected for the mantle 
convection. 

The temperature dependence of viscosity leads at low 
Rayleigh number to the stabilization of regular 3-D flow 
patterns, like squares or hexagons, which exhibit plume-like 
ascending flow, while the descending flow becomes 
progressively more similar to a sheet as the viscosity contrast 
rises. This has been known before for rigid boundaries, and 
is shown here to apply as well for stress-free boundaries. 
The decay of 2-D rolls into squares was found only for low 
Rayleigh number and high viscosity differences, in contrast 
to previous experimental work. An explanation could be 
that the imposed symmetry in the numerical study does not 
allow for the transition mechanisms which act in a large 
plane layer. At Rayleigh numbers >30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOOO, an irregular and 
time-dependent spoke pattern had previously been found to 
be the preferred solution with variable viscosity. Here, we 
find a network of sinking sheets at shallow depth breaking 
up into single falling jets at greater depth. In contrast to 
the regular flow patterns (squares, etc.), also the rising flow 
forms a system of connected sheets or ‘ridges’ near the 
bottom, which at greater height breaks apart into isolated 
plumes. However, the temperature dependence of viscosity 
causes an asymmetry, making the jet-like character more 
prominent for the ascending flow and the sheet-like 
character more pronounced for the sinking flow. This 
dichotomy will probably become stronger for increased 
viscosity differences. 

These results strengthen the case that in the earth’s 
mantle plumes should be the preferred mode of upwelling, 
and sheets the pattern of downwelling. Thus a variety of 
circumstances, which are all relevant for mantle convection, 
favour this particular scenario: spherical geometry (Ber- 
covici et al. 1989a, b), a low-viscosity layer in the uppermost 
mantle due to the pressure-dependence of viscosity or due 
to partial melt (Cserepes & Christensen 1990), and the 
temperature-dependence of viscosity (Busse & Frick 1985; 
White 1988; and this work). In the case of upper mantle 
convection limited by the 670 km discontinuity the sphericity 
would be much less important than for whole mantle 
convection, but for the two last-named reasons rising plumes 
and sinking sheets would still be expected. Considering that 
the spoke pattern is favoured by both high Rayleigh number 
and by variable viscosity, it appears possible that mantle 
plumes are connected by a network of sheets or ‘ridges’ near 
the base of the convecting layer. This possible geometry 
should for example be considered when trying to interpret 
the laterally heterogeneous seismic velocity structure of the 
D layer at the core-mantle boundary (e.g. Haddon & 

Buchbinder 1987). A recent discussion of this particular flow 
geometry is also given by Houseman (1990). 

The ratio of the velocity in the rising plume to the mean 
velocity increases only slightly with increasing temperature 
dependence of viscosity in our case studies, because the 
difference in viscosity between the plume and its exterior 
never exceeded a factor of 3. Therefore these plumes are 
still fairly wide columns unlike the envisaged narrow and 
fast low-viscosity conduits which are considered for mantle 
plumes (Loper & Stacey 1983; Olson & Christensen 1986), 
and which exhibit interesting phenomena, like propagation 
of disturbances as solitary waves. Although in our numerical 
calculations the temperature dependence of viscosity is still 
weak compared to that anticipated for the mantle, it will 
remain a problem to obtain a viscosity contrast of several 
orders of magnitude between plume and ambient mantle 
(e.g. Nataf 1990), because the AT across the lower 
boundary layer from which plumes arise is bound to remain 
fairly small due to the drop in viscosity. The A T  could be 
increased and thus plumes could be made relatively hotter, 
faster, and narrower when the viscosity above the boundary 
layer was very high, for example because of a strong 
pressure dependence of viscosity (Christensen 1985) or by 
the presence of very cold descended slab material (Nataf 
1990). 

For a variety of 3-D flow patterns the proportion of 
toroidal motion in the velocity field is found to remain at a 
level of only a few per cent with temperature-dependent 
viscosity. For Rayleigh numbers >lo4 and viscosity contrasts 
greater than 10 it does not strongly depend on either 
viscosity contrast or Rayleigh number. Therefore we expect 
that the variation of viscosity due to temperature differences 
is unlikely to excite a significant toroidal flow in the mantle, 
and certainly it will be insufficient to create the strong 
toroidal component found at the earth’s surface. On the 
other hand, we have shown that the introduction of a 
non-Newtonian stress dependence in the creep law can lead 
to appreciable toroidal velocity in some cases. Although in 
our models the toroidal component did not reach quite the 
same size as the poloidal component at the free surface, the 
observed trend suggests that an equipartioning could be 
achieved for a higher Rayleigh number and/or stronger 
depth or temperature dependence of viscosity than we 
employed, in conjunction with a strong non-linearity of the 
creep law. In our models with a high-viscosity lid, the 
toroidal flow is mainly excited in the lid. At the same time 
the zones of surface divergence and convergence become 
narrower than they are for Newtonian rheology, which was 
already found in 2-D models with non-linear rheology 
(Christensen 1984a). The vertical vorticity, on the other 
hand, was less localized in our models. 

These results support the assumption (Forte & Peltier 
1987; Gable et al. 1988) that the toroidal motion at the 
earth’s surface is a consequence of the plate-like character 
of the lithosphere, and that the toroidal part of the velocity 
field should decrease with depth in the mantle. The strong 
rheological non-linearity plays the key role for creating 
mobile plates and to generate the toroidal flow component. 
While a strong stress dependence acts to localize zones of 
surface divergence and convergence, it is not clear if it 
would be sufficient to localize also zones of horizontal 
simple shear, i.e. lead to the formation of transform faults. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
4
/1

/2
1
3
/5

6
9
1
0
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



226 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Christensen and H. Harder zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Some other kind of non-Newtonian behaviour may also be 
required to this end, for example viscous anisotropy or 
creep mechanisms with memory t o  the past straining history. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ACKNOWLEDGMENTS 

We thank D. Moore for his efficient real-valued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFFT 
transform adapted to vector processing. Shuxia Zhang 
helped with some of the calculations. We gratefully 
acknowledge financial support by the Deutsche 
Forschungsgemeinschaft zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

REFERENCES 
Bercovici, D., Schubert, G., Glatzmeier, G. A. & Zebib, A., 

1989a. Three-dimensional convection in a spherical shell, J.  

Fluid Mech., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA206, 75-104. 
Bercovici, D., Schubert, G. & Glatzmeier, G. A., 1989b. Influence 

of heating mode on three-dimensional mantle convection, 
Geophys. Res. Len., 16, 617-620. 

Bolton, E. & Ribe, N., 1989. Square cell convection in a fluid with 
temperature-dependence viscosity (abstract), EOS, Trans. Am.  

geophys. Un., 43, 1333. 
Booker, J. R., 1976. Thermal convection with strongly 

temperature-dependent viscosity, J. Fluid Mech. ,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA76, 741-754. 
Busse, F. H., 1%7. On the stability of two-dimensional convection 

in a layer heated from below, J.  Math. Phys., 46, 140-150. 
Busse, F. H. & Frick, H., 1985. Square-pattern convection in fluids 

with strongly temperature-dependent viscosity, J.  Fluid Mech., 

Christensen, U., 1984a. Convection with pressure- and 
temperature-dependent non-Newtonian rheology, Geophys. J .  

Christensen, U., 1984b. Heat transport by variable viscosity 
convection and implications for the earths thermal evolution, 
Phys. Earth planet. Inter., 35, 264-282. 

Christensen, U., 1985. Heat transport by variable viscosity 
convection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11: pressure influence, nowNewtonian rheology, 
and decaying heat sources, Phys. Earth planet. Inter., 37, 

Cserepes, L. & Christensen, U., 1990. Three-dimensional 
convection under drifting plates. Geophys. Res. Len., in press. 

Cserepes, L., Rabinowicz, M. & Rosenberg-Borot, C., 1988. 
Three-dimensional infinite Prandtl-number convection in one 
and two layers and implications for the earths gravity field, J .  
geophys. Res., 93, 12009-12025. 

Forte, A. M. & Peltier, W. R., 1987. Plate tectonics and aspherical 
earth structure: The importance of poloidal-toroidal coupling, 
J. geophys. Res., 92, 3645-3680. 

Frick, H., Busse, F. H. & Clever, R. M., 1983. Steady 
threedimensional convection at high Prandtl-number, J .  Fluid 
Mech., 127, 141-153. 

Gable, C. W., O’Connell, R. J. & Travis, B., 1988. Plate motion in 
models of 3-D convection with layered viscosity: implications 

150,451-465. 

R. SOC., 7,343-384. 

183-205. 

for mantle flow (abstract), EOS, Trans. Am.  geophys. Un., 69, 
1414. 

Haddon, R. A. W. & Buchbinder, G. C. R., 1987. S-wave- 
scattering by 3-D heterogeneities at the base of the mantle, 
Geophys. Res. Lett., 14, 891-894. 

Hager, B. H. & O’Connell, R. J., 1979. Kinematic models of 
large-scale flow in the earth’s mantle, J .  geophys. Res., 84, 

Houseman, G . ,  1988. The dependence of convection planform on 
the mode of heating, Nature, 332, 346-349. 

Houseman, G., 1990. The thermal structure of mantle plumes: 
axisymmetric or triple-junction?, Geophys. J .  Inr., 102, 15-24. 

Jarvis, G. T. & Mitrovica, J. X., 1989. On Nusselt numbers and 
relative resolution of plumes and boundary layers in mantle 
convection, Geophys. 1. lnt., 99,497-510. 

Kirby, S. H. & Kronenberg, A. K., 1987. Rheology of the 
lithosphere: selected topics, in US National Report ro 
International Union of Geodesy and Geophysics 1983-1 986, 

Contributions in Tectonophysics, pp. 1219-1244, American 
Geophysical Union, Washington, DC. 

Lapidus, L. & Pinder, C. F., 1982. Numerical Solution of Partial 
Differenfial Equations in Science and Engineering. J. Wiley, 
New York. 

Loper, D. & Stacey, F. D., 1983. The dynamical and thermal 
structure of deep mantle plumes, Phys. Earth planet. Inter., 33, 

Nataf, H.-C., 1990. Mantle convection, plates, and hotspots, 
Tectonophysics, in press. 

Olson, P. & Christensen, U., 1986. Solitary wave propagation in a 
fluid conduit within a viscous matrix, J. geophys. Rex, 91, 

Parmentier, E. M., Turcotte, D. L. & Torrance, K. E., 1976. 
Studies of finite amplitude non-Newtonian thermal copection 
with application to convection in the earth’s mantle, J. 
geophys. Res., 81, 1839-1846. 

Ricard, Y. & Vigny, C., 1989. Mantle dynamics with induced plate 
tectonics, 1. geophys. Res., 94, 17 543-17 560. 

Richter, F. M., Nataf, H.-C. & Daly, S. F., 1983. Heat transfer and 
horizontally averaged temperature of convection with large 
viscosity variations. J .  Fluid Mech., U9, 173-192. 

Stengel, K. C., Oliver, D. S. & Booker, J. R., 1982. Onset of 
convection in a variable viscosity fluid, J. Fluid Mech., w), 

Travis, B., Weinstein, S. & Olson, P., 1990. Three-dimensional 
convection planforms with internal heat generation, Geophys. 
Res. Lett., 17, 243-246. 

Turcotte, D. L., Torrance, K. E. & Hsui, A. T., 1973. Convection 
in the earths mantle, Meth. comp. Phys., W, 431-454. 

White, D., 1988. The planforms and onset of convection with a 
temperature-dependent viscosity, 1. Fluid Mech., 191, 247- 
286. 

Whitehead, J. A. & Parsons, B., 1W8. Observations of convection 
at Rayleigh numbers up to 760,000 in a fluid with large Prandtl 
number, Geophys. Astrophys. Fluid Dyn., 9,201-217. 

1031-1048. 

304-317. 

6367-6374. 

411-431. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
4
/1

/2
1
3
/5

6
9
1
0
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


