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Abstract 
A machine vision algorithm to find the longest common subcurve of two 3-D curves is presented. 
The curves axe represented by splines fitted through sequences of sample points extracted from dense 
range data. The approximated 3-D curves are transformed into 1-D numerical strings of rotation and 
translation invariant shape signatures, based on a multi-resolution representation of the curvature 
and torsion values of the space curves. The shape signature strings are matched using an efficient 
hashing technique that finds longest matching substrings. The results of the string matching stage 
axe later verified by a robust, least-squares, 3-D curve matching technique, which also recovers 
the Euclidean transformation between the curves being matched. This algorithm is of average 
complexity O(n) where n is the number of the sample points on the two curves. The algorithm 
has applications in assembly and object recognitio~i tasks. Results of assembly experiments are 
included. 

1 I n t r o d u c t i o n  

Curves in 3-space carry a large amount of information about the scenes they appear in, and can 
successfully characterize objects drawn from large sets of candidates. The curves can either be 
'painted curves' (i.e. curves that correspond to changes of reflectivity without any rapid local 
depth changes), curves of intersection between two surfaces (either convex or concave), curves of 
occlusion (i.e. object boundaries), or curves of maximum curvature ('ridges'). The data required to 
characterize objects by this method reduces to a small group of curves extracted from the object, 
and is is extremely compact as compared to the full 2-D surface specification. Matching algorithms 
based on 3-D curves are simpler and more efficient than surface matching algorithms, because the 
points that represent a 3-D curve are naturally ordered as a sequence. 

Schwartz and Sharir ([2]) developed a matching algorithm which finds the position and orienta- 
tion of an observed curve best matching (in the least squares sense) a previously stored model curve. 
This algorithm was proven to be robust for practical applications, and was extended to support 
cases in which several subcurves had to be simultaneously matched against the same curve (see [1] 
for extended bibliography). 

The algorithra by Schwartz and Sharir requires the observed curve to be a proper sub-segment 
of the stored model curve. Such prior segmentation is not always available in composite scenes of 
overlapping objects. This problem is particularly evident for assembly tasks, where two objects 
match along a common boundary without any obvious start point and end point for the common 
subcurve (see figure 1). Thus we were motivated to develop a general curve matching algorithm 
that solves the following problem: 
Given two curves, find the longest matching subcurve which appears in both curves. 

We reduce the 3-D curve matching task into a 1-D string matching problem, find the proper 
matching substrings, transform the problem back to the 3-D domain, and match the appropriate 
subcurves. Specifically, the 3-D curves axe transformed into sequences of local, rotationalIy, and 
translationally invariant shape signatures. We then apply a hashing technique to find long matching 
substrings. Finally, we apply the least squares algorithm to select the best candidate. As a by- 
product we obtain the Euclidean transformation aligning both curves along their longest matching 
subpart. 
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Figure 1: (left) A plastic ball (right) The 'broken' ball assembled from the 
separate pieces 

2 Shape Signatures 

In this section we describe the shape signatures which are used in our matching algorithm. A 
signature should uniquely characterize a relatively short segment of the curve. Hence we require 
signatures to be: 

i) local (calculated at each point), 

ii) translationally and rotationally invariant, 
iii) stable, so that small changes in the curve induce small effects on the signgture. 

It is well known from Differential Geometry that smooth space curves can be uniquely reconstructed 
within a rigid motion (i.e rotation and translation) using three geometric invariants: arc length s, 
curvature ~(s) and torsion r(s) as a function of s. 

Since curvature and torsion are essentially second and third order derivatives respectively, it ~s 
essential to smooth the data a small amount before computing the signatures. Regression splines 
are a convenient class of smoothers for this task, since they permit one to easily compute derivatives. 
We chose a quintic spline representation (order 6) since we want the torsion to be continuous, which 
in turn will m£ke the signature based on the torsion more stable. 

3 The Matching Algorithm 

This section describes the shape signature matching algorithm applied in our experiments. 

All the curves in the data-base are preprocessed as follows. The algorithm accepts as its input 
the curvature-torsion signature strings computed at different levels of resolution. For each signature 
we record the curve number and the sample point number at which this signature was generated. 
The data is stored in a hash-table. 

In the matching stage, the observed curve is sampled and signatures (at different levels of details) 
are computed at the sampling points. For each signature we check the appropriate entry in the 
corresponding hash-table, and for every (model curve, sample point) pair, appearing in the hash 
table, we add a vote for this model curve and the relative shift between the model curve and the 
observed curve. 

At the end of this process we determine which (model curve, shift) pa~rs received the most votes, 
and determine the approximate start and end points of the corresponding signature substrings in 
the observed and model curve, 

Given the starting point and endpoint of a signature subsequence, we identify the actual sub- 
curve to which they correspond, and apply the robust least-squares matching algorithm to the 
corresponding subcurves. 

For a detailed description of the matching algorithm see [1]. The algorithm is of average com- 
plexity of O(n), and improves the result of Schwartz and Sharir which is of complexity O(nlogn). 



591 

0 2 4 6 
ARC~LENGTH 

Figure 2: (left) Range image (right) boundary curve X,Y,Z 

Figure 3: (top) Curvature (bottom) torsion computed at four different reso- 
lutions 

4 Exper imenta l  Resul ts  

Figure 2 shows a perspective view of the range image of one of the pieces, and the boundary curve 
extracted from that piece. Figure 3 shows the curvature and torsion derived from the curve for the 
4 different levels of smoothing. Figure 4 show the results of matching individual pieces of the ball 
and finding the best subcurve match. 
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Figure 4: The results of matching four different pieces 


