
Abstract
Registration between 3-D images of human anatomies enables cross-subject
diagnosis. However, innate differences in the appearance and location of anatom-
ical structures between individuals make accurate registration difficult. We char-
acterize such anatomical variations to achieve accurate registration.

We represent anatomical variations in the form of statistical models, and embed
these statistics into a 3-D digital brain atlas which we use as a reference. When
we register the statistical atlas with a particular subject, the embedded statistics
function as prior knowledge to guide the deformation process. This method gives
an overall voxel mis-classification rate of 2.9% on 40 test cases; this is a 34%
error reduction over the performance of our previous algorithm without using
anatomical knowledge.

1. Motivation
Registration between volumetric images of human bodies enables cross-subject diagno-
sis and post-treatment analysis. However, due to genetic and life-style factors, there are
innate variations among individuals in the appearance and location of anatomical struc-
tures. Figure 1 displays cross-sections of T1-weighted magnetic resonance imaging
(MRI) volumes of two non-pathological brains. The example structure, corpus callo-
sum, has different intensity, shape, size, and location in these two brains. For registra-
tion algorithms that use only intensity or shape templates to achieve correspondence,
results are typically poor due to these inherent variations.

Currently there exist many intensity correspondence based registration algorithms [1],

[3], [5], [12]. Figure 2 shows a registration result using method [5]. The right image vol-
ume is deformed to register with the left image volume, and outlines of its anatomical
structures are overlaid on the left image to illustrate the alignment. Note that there is sig-
nificant misalignment between the deformed structures and the real structures. This is
because the shape and density of anatomical structures in the two volumes are consid-
erably different, and a method using intensity correspondence cannot address the differ-
ence.
Knowledge of anatomical variations provides information that can guide the registration
process and improve accuracy. Characterization of such variations also facilitates quan-
titative study of anatomical differences between populations, as well as anomaly detec-
tion. We capture and model non-pathological anatomical differences between
individuals, and use this knowledge to achieve accurate registration.

Figure 1. Innate variations between individuals.
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2. Problem Definition
We collected 105 T1-weighted MRI volumes of non-pathological brains, and use them
as the training set for knowledge extraction. Examples from the training set are shown
in the top row of Figure 3. Apart from the intrinsic differences between different peo-
ple’s brain structures, there are also extrinsic differences in image orientation, scale,
resolution, and intensity.
In order to capture the anatomical variations in the training set, we compare each MRI
volume to a common reference. Our reference is a 3-D digital atlas, which is a T1-
weighted MRI of a non-pathological brain, accompanied by expert classification of its
anatomical structures. Note that, this atlas is an example of a normal brain, not an aver-
age brain of a population. The method for comparison is an automatic 3-D deformable
registration algorithm that was previously developed [12]. This method first eliminates
the extrinsic variations between image volumes with preprocessing, then extracts the
intrinsic anatomical variations by finding the deformable mapping between each image
volume and the atlas.
The intrinsic variations are abstracted into a computational model. During registration,
this model functions as prior knowledge to guide the registration process to tolerate an-
atomical variations, and to achieve higher accuracy.

3. Capturing Anatomical Variations
Different image acquisition processes result in variations in the 3-D orientation, posi-
tion, resolution and intensity of image volumes in the training set. Differences in head
size also add variation in the scales of the image volumes. These variations are extrinsic
to the anatomical variabilities, and thus need to be removed before the intrinsic varia-
tions can be extracted.

3.1. Eliminating Extrinsic Variations
The registration algorithm employed for atlas-training set comparison [12] consists of a
hierarchy of deformable models, of which the first level is a similarity transformation,
which addresses the extrinsic geometric variations between different subject volumes
via 3-D rotation, scaling, and translation. As a result, each subject volume in the train-
ing set has roughly the same orientation, size, and location as that of the atlas. The trans-
formed subject volume is resampled to match the resolution of the atlas. A multi-level
intensity equalization scheme is interwoven into the deformation hierarchy to adjust the
differences in intensity distributions. The middle row in Figure 3 shows the result of
having removed the extrinsic differences between the atlas and the training set.

3.2. Extracting Intrinsic Anatomical Variations
After the removal of extrinsic variations, intrinsic variations are apparent as the mis-
alignment between anatomical structures in the subject volumes and the atlas. The em-
ployed registration algorithm captures this information by aligning the corresponding

Figure 2. The right image volume is deformed to register with the left one. Outline
of several deformed anatomical structures are overlaid on the real structures.
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structures through 3-D deformation, and recording the 3-D displacement, as shown in
the last row of Figure 3. Therefore, after aligning each subject’s anatomical structures
with those in the atlas, each atlas voxel is associated with two distributions: one is an
intensity distribution of corresponding voxels in the subject volumes; the other is a geo-
metric distribution of the 3-D displacement between the atlas voxel and the correspond-
ing voxels in the subject volumes. The former contains density variations of anatomical
structures over a population (density is reflected in image intensity), while the latter em-
bodies geometrical variations of these structures, such as shape, size, and location.

4. Modeling Anatomical Variations
The purpose of capturing anatomical variations is to achieve accurate registration. We
characterize these variations in a statistical manner, so as to employ them as prior
knowledge in statistical models.

4.1. Modeling Density Variations
Once the training set is deformed to register with the atlas, each atlas voxel corresponds
with its counterpart in each of the subject volumes. The histogram of their intensities
captures tissue density variations in a population (Figure 4).
The intensity histogram at each atlas voxel is modeled as a 1-D Gaussian distribution,

:

where , while and are corresponding voxel intensities in the subject
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Figure 3. Remove extrinsic variations and extracting intrinsic variations.
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volume and the atlas. is the 3-D deformation between them. is the mean intensity
difference between the training set and the atlas at this voxel; is the variance of the
intensity difference distribution. has been adjusted for intensity variations caused by
image acquisition processes.

4.2. Modeling Geometric Variations
After the training set is deformed to register with the atlas, the 3-D displacements be-
tween each atlas voxel and its counterparts in the training set embody the geometric
variations between individuals. The distribution of the variations can be captured in a
3-D histogram. Figure 5 shows a 2-D illustration.

The 3-D histogram of displacements at each atlas voxel is modeled as a 3-D Gaussian
distribution, :

here is the 3-D displacement between the atlas voxel and its counterparts in the
training set, is the mean 3-D displacement at this atlas voxel, and is the 3x3 cova-
riance matrix of the distribution.  has been adjusted for extrinsic variations.
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Figure 4. Model density variations at each atlas voxel as a 1-D distribution.
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Figure 5. Model geometric variations at each atlas voxel as a 3-D distribution.
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4.3. A Statistical Atlas
The original atlas was one particular subject’s brain MRI data, with each voxel’s ana-
tomical classification given; the above modeling associates each atlas voxel with a dis-
tribution of tissue density variations, and a distribution of geometric variations between
individuals. These distributions enrich the atlas into a statistical atlas that embodies the
knowledge of anatomical variations in a population. Figure 6 illustrates the concept.

5. Registration Using the Statistical Atlas
Using the statistical models as prior knowledge, the registration between a subject and
the atlas can be formulated as finding the deformation that gives the highest posterior
probability . According to Bayes rule,  can be expressed as:

Finding the highest becomes maximizing the right hand side of equation (3).
Here is a constant for two given image volumes, and the numerator has the same
maximum as its logarithm. Substituting from equations (1) and (2) and taking loga-
rithms we obtain:

hence maximizing  is equivalent to minimizing the term:

We use gradient descent to find the deformation that minimizes (4). The 3-D gradient,
, at each step of the descent is given by the first order derivative of (4):

where is the 3-D image gradient, which is a function of the voxel’s position. Since
 and  can have small values, The 3-D shift  is then:

here is a step size constant. In this way, each voxel is guided to search for a counter-
part so their match is most probable according to the statistics gathered from a popula-
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Figure 6. A statistical atlas.
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tion. We apply 3-D Gaussian smoothing to the voxels’ 3-D displacements after each
iteration to smooth the deformation. This compensates for the fact that the dependence
between the deformation of neighboring voxels is not modeled in the statistical atlas.
This algorithm differs from the previously developed hierarchical deformable registra-
tion algorithm [12] in the measurement of the goodness of the voxel deformation flow.
In this method, we maximize the posterior probability of the current deformation using
statistics gathered from a population, whereas in the previous algorithm we minimize
the intensity difference between spatially corresponding voxels in the atlas and the sub-
ject volume. Before undergoing deformation, both algorithms globally align the two
image volumes to eliminate extrinsic variations[12].

6. Performance of Registration Using the Statistical Atlas
We evaluate the effectiveness of our model of anatomical variations by comparing reg-
istration using the statistical atlas, and registration using the original atlas.

6.1. Evaluation Metric
Since each voxel in the atlas is labelled with the anatomical structure that contains it,
when we register the atlas with a subject, we can then assign the label to the correspond-
ing voxel in the subject. This creates a customized atlas which contains classifications
of the subject’s anatomical features. Figure 7 illustrates this process. Given the ground-
truth classification of the subject’s anatomical structures, we can evaluate the quality of
the registration by assessing the voxel classification accuracy. Currently we have 40
subjects’ brain MRIs that have expert classification of one structure, the corpus callo-
sum, in one plane, the mid-sagittal plane. They are not part of the training set, and are
used as the test set. Our error metric is the ratio between the number of mislabelled vox-
els and the number of expert labelled voxels. Mislabelled voxels include those labelled
as corpus callosum in the customized atlas but not by the expert, or vice versa.

6.2. Registration Using the Intensity Statistics Model
First, we assess the effectiveness of the intensity statistics model alone with constant
geometric prior probability. The maximization problem in equation (3) simplifies to

, and equation (5) becomes:

We apply this method to the test set, and compute the ratio of mislabelled voxels for all

Figure 7. Classifying a subject’s anatomical structures through registration with the atlas.
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volumes. We find an overall mislabelled voxel ratio of 3.8%. This is a 14% error reduc-
tion over the algorithm with no knowledge guidance [12], which has 4.4% error.

6.3. Registration Guided by the Geometric Statistics Model
In this experiment, we assess the effectiveness of the geometric statistics model alone,
with the intensity statistics assumed to be a constant. The optimum deformation maxi-
mizes . The 3-D gradient at each step is the second term in equation (5):

however, alone is insufficient to determine the deformation because it ignores the
images being registered. To combine the prior model prediction and the image gradient
information, we use their inner product to obtain a 3-D deformation gradient :

this balances the influence of the prior distribution and the fidelity to the image data.
We apply this method to the test set, and it yields an overall mislabelled voxel ratio of
4.05%, which is an 8% error reduction

6.4. Registration Using the Statistical Atlas
The statistical atlas combines the strength of the intensity and geometric prior, as de-
rived in equation (5). When applied to the test set, it has an overall mislabelled voxel
ratio of 3.6%, which is a 23% error reduction over the algorithm with no knowledge
guidance. Figure 8 shows an example of improved registration using the statistical atlas

7. Neighborhood Context
The voxel-based statistics models are efficient at modeling anatomical variations. In re-
ality, however, the deformation of neighboring voxels are not independent. Figure 9
shows an example of the deformation flow overlaid on the image data. Note that the de-
formation flow is smooth and congruous locally. A more comprehensive model should
consider the dependencies between the 3-D deformation of neighboring voxels.

Modeling neighborhood context can be a direct higher dimensional extension of the
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Figure 8. Comparison of registration results using the original and the statistical atlas.

Figure 9 A close-up on the deformation flow overlaid on the
image data. Note the local smoothness of the deformation.
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voxel-based statistics models. Consider a 3-D neighborhood of NxMxK centered at an
atlas voxel; the intensity distribution of this neighborhood under a specific deformation

 is modeled as an  dimensional Gaussian distribution, where  equals NxMxK:

here is an vector of intensity differences between the corresponding neigh-
borhoods in the subject volume and the atlas. is the mean vector of the neigh-
borhood intensity difference distribution; is the covariance matrix of the
intensity difference distribution. has been adjusted for extrinsic intensity variations
Similarly the geometric variations of a NxMxK neighborhood centered at each atlas
voxel can be modeled as a dimensional Gaussian distribution of the neighborhood’s
3-D deformation:

where is the mean vector of the neighborhood’s 3-D deformation flow; is
the covariance matrix of the geometric distribution; is the vectors
of the neighborhood’s 3-D displacement, and it has been adjusted for extrinsic geomet-
rical variations. Note that the voxel-based statistics models are a special case of the
neighborhood statistics models with a 1x1x1 neighborhood.

8. Registration Using Neighborhood Statistics
We follow the same deduction procedure as in Section 5 to achieve the deformation that
maximizes the posterior probability for a voxel neighborhood; the 3-D gradient
of voxels in the neighborhood is:

Theoretically we can implement this algorithm in the same way as the voxel-based sta-
tistics models; however, the intensity covariance matrix has
distinct entries, and the geometric covariance matrix has
distinct entries. Our image volumes typically have more than 8 million voxels. Even if
all entries in the covariance matrices can be stored as bytes, the covariance information
for each 2x2x2 voxel neighborhood will require 336 MByte memory. Together with
other memory requirements, the dimensionality of our image volumes makes this ap-
proach impractical.
To simplify the problem, we consider only the interaction between immediate neigh-
bors. Instead of storing interactions between immediate neighbors, we compute them
on the fly. We approximate the voxel-neighbor interaction using the goodness of its
neighbors’ current match according to their prior distributions. Using a weighted-win-
dow matching approach, the goodness is weighted by the distance between the voxel
and the particular neighbor. Therefore, for a voxel neighborhood , the 3-D gradient
determined by neighborhood statistics models is a direct extension of equation (5):

8.1. Performance of Neighborhood Statistics Models
We evaluate the effectiveness of neighborhood statistics models in the same fashion as
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Registration Guided by Neighborhood Intensity Statistics model: Using only the
neighborhood intensity prior model, i.e., the first term in equation (11) achieves an
overall error ratio of 3.18%. This is a 27.7% reduction over the algorithm with no
knowledge guidance, and a 16% error reduction over registration guided by voxel-
based intensity statistics.

Registration Guided by Neighborhood Geometric Statistics model: Using only the
neighborhood geometric prior model, i.e., the second term in equation (11) gives an
overall error ratio of 3.76%. This is a 14.6% reduction over the algorithm with no
knowledge guidance, and a 7% error reduction over registration guided by voxel-based
geometric statistics.

Registration Guided by Neighborhood Statistics models: Using both the neighbor-
hood intensity and geometric prior distributions gives an overall mislabelled voxel ratio
of 2.9%. This is a 34% error reduction over the algorithm with no knowledge guidance.
and a 20.6% error reduction over registration guided by voxel-based statistics models.
Figure 10 shows an example of improved registration using neighborhood statistics
models.

These experiments show that the neighborhood statistics models are significantly more
effective than voxel-based statistics models. In the case of intensity statistics model, the
neighborhood statistics model nearly doubled the error reduction of the voxel-based
statistics model. The geometric statistics model did not seem to be as effective as the
intensity statistics model. We attribute this to its higher dimensionality, which would
require a larger training set for more accurate model extraction. We expect a complete
implementation of the neighborhood statistics guided registration to yield an even
greater improvement in performance.

9. Conclusion and Future Work
Inter-subject registration is made difficult due to inherent differences between individ-
uals. Characterization of such anatomical variations can help improve registration per-
formance. We extract the patterns of variations in the appearances of brain structures
from a training set of 105 T1-weighted MRI. Registration guided by this prior knowl-
edge achieves higher accuracy on a test set of 40 MRI volumes.
We capture the anatomical variations between individuals by registering the training set
with a 3-D digital brain atlas, using a previously developed 3-D hierarchical deformable
registration algorithm [12]. This associates each voxel in the atlas with multi-dimension-
al distributions of anatomical variations in density and geometry. We evaluate statisti-
cal properties of these distributions for a neighborhood of each atlas voxel, and embed
these statistics into the brain atlas to build a statistical atlas.

 With Neighborhood Context Voxel Statistics

Figure 10. Compare results using voxel-based statistics and neighborhood statistics.
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Statistical models embedded in the atlas reflect anatomical variations of a population,
and thus can function as prior knowledge. It can guide the registration process to toler-
ate non-pathological variations between individuals while retaining discrimination be-
tween different structures. When applied to the test set, the knowledge-guided
registration gives an overall voxel mis-classification rate of 2.9%; this is a 34% im-
provement over the performance of the algorithm without knowledge guidance. Exper-
iments have also shown that statistical models that incorporate local spatial congruity
are more effective than single-voxel-based statistical models. Due to page limit, re-
views of related work can be found in [16].
The statistical atlas was built upon results from a registration algorithm without knowl-
edge guidance. Imprecisions in the results can affect the rigorousness of the statistical
models. To improve model accuracy, we propose to build an initial statistical atlas from
a small but accurately registered training set, then bootstrap it into a more reliable mod-
el. Besides guiding deformable registration, our computational model of anatomical
variations can also facilitate quantitative investigation of anatomical differences be-
tween populations, and help detect abnormal variations due to pathology.
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