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Abstract

Registering medical images of different individuals is difficult due to inherent anatomical

variabilities and possible pathologies. This thesis focuses on characterizing non-pathologi-

cal variations in human brain anatomy, and applying such knowledge to achieve accurate 3-

D deformable registration.

Inherent anatomical variations are automatically extracted by deformably registering

training data with an expert-segmented 3-D image, a digital brain atlas. Statistical properties

of the density and geometric variations in brain anatomy are measured and encoded into the

atlas to build a statistical atlas. These statistics can function as prior knowledge to guide the

automatic registration process. Compared to an algorithm with no knowledge guidance, reg-

istration using the statistical atlas reduces the overall error on 40 test cases by 34%.

Automatic registration between the atlas and a subject’s data adapts the expert segmenta-

tion for the subject, thus reduces the months-long manual segmentation process to minutes.

Accurate and efficient segmentation of medical images enable quantitative study of anatom-

ical differences between populations, as well as detection of abnormal variations indicative

of pathologies.
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CHAPTER 1 Introduction

Rapid development in medical imaging devices such as magnetic resonance imaging

(MRI), computer assisted tomography (CT), and positron emission tomography (PET), has

brought a revolution in the medical domain. For the first time, physicians can view people’s

internal structures in three dimensions, in a non-invasive way.

Among current medical imaging modalities, MRI reveals soft tissues the best. An MRI

is an image volume consisting of a series of parallel cross-sections along one of three prin-

cipal axes: coronal, axial, or sagittal. Example slices of a human brain MRI taken along

each axis are shown in Figure 1. The number of cross-sections taken depends on the pur-

pose of the MRI. Within the realm of MRI there are three common sub-modalities: T1-

weighted, T2-weighted, and proton density. While tissue density is reflected in image

intensity, the same tissue can appear of different intensities in different image modalities,

or due to gain artifacts in the scanner.

It is of great interest in medicine to study anatomical structures and to detect possible

anomalies. While qualitative analysis may be sufficient for disease diagnosis, quantitative

analysis of specific anatomical regions is required for longitudinal monitoring of disease



2 Chapter 1  Introduction

progression or remission, pre-operative evaluation and surgical planning, radiosurgery and

radiotherapy treatment planning, mapping of functional neuroanatomy of sensorimotor and

cognitive processes, as well as the analysis of neuroanatomical variability among normal

brains.

Quantitative regional analysis is possible only with explicit segmentation to separate

and identify anatomical structures. Traditionally, the segmentation of anatomical structures

is done manually. The process is painstakingly slow and involves a cadre of workers who

laboriously outline and edit each region of interest [53]. The left image in Figure 2 is one

Figure 1:  Example cross-sections of brain MRI
taken along each of the three principal axes.

Coronal Axial Sagittal
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slice of a T1-weighted coronal MRI of a non-pathological brain. The MRI volume contains

123 slices, and each slice is a 256x256 pixel matrix. Each pixel is a 0.9375x0.9375 mm2

square, and all slices are of thickness 1.5 mm. The right image in Figure 2 is a color coding

of the classification done by 7 operators (courtesy of Brigham and Women’s hospital of

Harvard Medical School). This is valuable data, but the process is too time-consuming to

study anatomical properties of a population. In a recent study, “one man-month” was

required to outline the thalami of 200 subjects [25]. Moreover, errors occur because of

human subjectivity in slice selection, structure interpretation, poor software interface

design, poor hand-eye coordination, low tissue contrast, and unclear tissue boundaries

caused by partial volumes (individual pixels contain more than one tissue type). Human

performance is also inherently inconsistent. It is reported that segmentations of the same

brain structure given by the same neuroanatomist three months apart can differ by 4.9% in

volume, and with only 87.8% overlap [14]. As for segmentations given by different human

operators, the inter-operator reliability can range from 64% to 87%.

Although MRI data is digital by nature, it was not until mid-1980s for computers to be

powerful enough to process and analyze them, especially in 3-D. However, from the dawn

Figure 2: One cross-section of a T1-weighted MRI of a normal brain (left),
and the corresponding color-coded classification of brain tissues (right).
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of its emergence, research in biomedical image analysis and computer assisted intervention

has been vigorous, and has raised much enthusiasm among medical researchers.

1.1  Problem Definition

This thesis tackles the problem of structural segmentation and classification. The tech-

nique is 3-D deformable registration between an atlas and the input of a particular subject’s

data. An atlas is reference data with anatomical localization or functional interpretation,

such as the aforementioned non-pathological brain MRI volume with structural segmenta-

tion and classifications given by human experts. Figure 3 illustrates the approach to the

problem: given a subject’s brain MRI volume, the atlas is deformed in 3-D to match the

input data. Under the same deformation, classification labels of anatomical structures in the

atlas can also be warped in 3-D to register with corresponding structures of the subject. In

this way, anatomical information in the atlas is customized for the subject. Therefore, the

problem of structural segmentation and classification becomes one of finding the optimal

3-D deformation that best registers the atlas and the subject image volumes.

1.2  Importance of registration

As discussed above, 3-D deformable registration between an atlas and a particular sub-

ject’s image data customizes the segmentation and labelling of anatomical structures for the

subject. This facilitates pathology detection and quantitative study of individual structures.

Given data from different populations, such as normal control subjects versus schizophren-

ics, this also allows statistical study of possible anatomical differences between popula-

tions. Further, while deformable registration between different subjects’ data enables cross-

subject diagnosis, it is also essential for similar case retrieval in medical image databases.

Applications of much interest also include registration of the same subject’s data over time.

This supports post-treatment analysis and longitudinal study of anatomical changes, such

as the relation between brain loss and aging.
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1.3  Research in registration

Registration of medical images has been an active research area--the comprehensive

survey article by van den Elsen et al. [101] lists 161 citations. Two popular schools of reg-

Figure 3: Illustration of classifying a subject’s anatomical structures
through registration with the atlas. The atlas is deformed in 3-D to
match the input data. Under the same deformation, classification
labels of anatomical structures in the atlas can also be warped in
3-D to register with corresponding structures of the subject. (the
atlas volume doesnot contain partions the nose, mouth, etc.)

 Atlas Subject

 3-D Deformable Registration

Atlas Label
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istration using image properties are the feature-based approach and the voxel-based

approach.

Feature-based methods attempt to extract the contours or surfaces, i.e. features, of ana-

tomical structures in the images to be registered, and find the correspondence between

them, [2], [11], [14], [28], [33], [80], [94]. They are efficient in representation and indepen-

dent of imaging modality. However, feature-based registration is critically dependent on

the quality of feature extraction, which is not trivial since anatomical structures tend to have

complex shapes and ill-defined boundaries. Human interaction is generally necessary to

help select and extract features or to guide the registration procedure. Consequently, it is

prone to user subjectivity, is inconvenient, and can be time-consuming.

The landmark work in feature-based medical image registration was done by Bajcsy et

al. They assume anatomical variations between individuals can be modeled by elastic

deformation, and model the atlas as a physical object with elastic properties. The registra-

tion procedure first extracts contours of anatomical structures in the subject’s image, then

elastically deforms contours in the atlas to match with those in the subject [2], [33]. How-

ever, without user interaction, their atlas can have difficulty matching complicated object

boundaries. In addition, this method is computationally expensive, and requires time-con-

suming interactive preprocessing that involves removing the skull in the image volume.

Davatzikos proposed a method that uses outer cortical surface mapping to drive a 3-D

deformation with linear elasticity [20]. This method also requires human interaction in out-

lining features such as sulci and fissures. Sandor and Leahy automated the feature extrac-

tion by using boundary-finding and a morphological procedure, whose result is highly

dependent on the accuracy of detected boundaries and may still require manual corrections

[80]. Szeliski and Coughlan used tensor product splines to represent transformations

between two 3-D anatomical surfaces, and introduced octree splines for fast computation

of the distance between surfaces [90]. Thompson and Toga employed 3-D active surfaces

initialized by a hybrid surface model based on superquadrics and spherical harmonics, and

use surface deformation maps to drive the volumetric warp [96]. Collins et al. presented an

automatic 3-D registration method that matches features using a hierarchical local affine
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transformation [14]. Feldmar and Ayache developed a surface to surface non-rigid regis-

tration scheme using locally affine transformation [30]. There has also been research on

feature selection for medical image registration, such as 2-D and 3-D ridge seeking opera-

tors suggested by Maintz et al. [63], and near-optimal intra data selection developed by

Simon et al. for fast and accurate 3-D rigid-body registration [84].

As an alternative, voxel-based algorithms obviate the need for explicit feature extrac-

tion or segmentation. Christensen et al. [11], [12] represented small deformations between

brain volumes using a linear-elastic model, and large magnitude deformations with a vis-

cous fluid model. The fluid dynamic model allowed large deformations by relaxing the

motion-restraining stress over time. However, the computation took hours on a massively

parallel computer, and the relevance of the physical model to registration is still question-

able. Thirion assumed image volumes to be registered had similar intensity distributions

and were already grossly aligned, and modeled the deformation as a 3-D voxel flow. He

used the gradient of the non-deforming volume instead of the deforming one in determining

the deformation, because computation of the latter requires tri-linear interpolation of each

voxel’s gradient. However, this quicker method will be erroneous when the atlas does not

resemble the subject closely. Also, it is prone to failure when there are large intensity dif-

ferences between image volumes [92]. Vemuri et al. formulated registration as a motion

estimation problem, and proposed a hierarchical optical flow motion model which repre-

sented the flow field using a B-spline basis [102]. Instead of relying on similar intensity

distributions, Woods et al. assumed that voxel intensities in accurately aligned image vol-

umes could be related by a single multiplicative factor. They computed this ratio for each

pair of corresponding voxels, and minimized its standard deviation across all pairs to deter-

mine the optimal affine transformation between the image volumes [111].

Registration algorithms using intensity correspondence have shown encouraging

results. However, they are problematic when there are significant intensity differences.

Moreover, they can only register multi-modal data if there exists a linear intensity mapping

between images from different modalities. Viola et al. [103] and Maes et al. [62], indepen-

dently investigated the mutual information criterion (MI). MI measures the statistical
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dependence between two random variables, or the amount of information that one variable

contains about the other. Modeling image intensities as random variables, registration

using the MI criterion assumes that the statistical dependence between corresponding voxel

intensities is maximal if the image volumes are geometrically aligned. Because no assump-

tions are made regarding the nature of this dependence, the MI criterion is highly data inde-

pendent. Both groups presented accurate results on intra-subject (the same person) inter-

modality registration. Pokrandt et al. studied multi modality registration using Gaussian

entropy as an evaluation function [75]. Rangarajan and Duncan applied MI criterion to fea-

ture-based registration [79]. However, so far registration using an MI criterion has been

limited to affine transformations, due to the difficulty of defining analytic expressions of

image gradient during deformation. Meyer et al. explored MI-based registration allowing

affine transformation and thin-plate spline warp, but with prohibitive computational

expense [69]. The potential of applying MI criterion to inter-subject deformable registra-

tion remains to be further studied.

1.4  Difficulties in registration

It is clear from the above discussion that medical image registration is far from a solved

problem. Figure 4 shows the result of registering the atlas with a particular subject’s data,

using Thirion’s algorithm [92]. Segmentations of brain structures in the atlas are adapted

for the subject, and contours of several structures are overlaid on the subject’s image vol-

ume. Note that even Thirion’s method has difficulty matching these two image volumes:

there is significant mis-match between the adapted segmentation and the subject’s brain

structures.

Many factors hamper accurate registration, such as image degradation caused by arti-

facts and noise, low tissue contrast, and blurring due to partial volume effects (tissue-

mixing within a single voxel). One major factor comes from image variations caused by

different acquisition processes, another major factor relates to image variations because of

inherent anatomical differences between individuals. In the example in Figure 4, the sub-
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ject’s brain structures are of different shape and size from those in the atlas; moreover, the

subject’s image data is considerably brighter than the atlas, which poses more difficulty for

registration methods based on intensity correspondence.

1.4.1  Image acquisition process

Currently there is no enforced standard in the image acquisition process of MRI. The

interface between the MRI device and the subject is a horizontal tube, in which the subject

should lie still during the whole imaging process. There is no fine calibration of the sub-

ject’s 3-D position and orientation. As a result, the axis along which the images are taken

is generally at an angle to the principal axis. Further, each cross-section in the image

volume represents the average response of a partial volume, the thickness of which may

vary. An MRI can focus on a sub-section of the brain if so desired. Moreover, the numerous

parameter settings and the drifting of the magnetic field can cause inhomogeneities in

image intensities.

Figure 4: The result of matching the atlas (left), to a particular
subject (right), using Thirion’s method. Segmentations of brain
structures in the atlas are adapted for the subject, and outlines
of several examples are overlaid on the subject’s image data.

Mismatch
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These factors cause variations in the orientation, position, scale, resolution, and inten-

sity distributions between different image volumes, as illustrated in Figure 5. These varia-

tions affect the whole image volumes, i.e. their effects are global. They are regarded as

extrinsic image variations because they are caused by factors external to the subject. A reg-

istration algorithm needs to cope with these variations in order to perform well.

1.4.2  Non-pathological anatomical differences

Due to genetic and life-style factors, there are also inherent non-pathological differ-

ences in the appearance and location of anatomical structures between individuals. Figure 6

displays cross-sections from two non-pathological brains’ MRI volumes. The example

structure, corpus callosum, has different shape, size, and location in these two brains. These

variations are characteristic for the particular structure of the individuals, i.e. they are local

and intrinsic. For registration algorithms that assume the same structure should have the

same appearance or location in different individuals, these inherent variations make accu-

rate inter-subject registration difficult.

Figure 5: Example cross-sections from different MRI volumes. There
exist differences in orientation, scale, and intensity distribution.
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1.5  Bootstrap Strategy

The goal of this thesis is to achieve accurate automatic segmentation via atlas-subject

3-D deformable registration, so as to facilitate applications in medicine. The core approach

is a closed-loop bootstrap framework for characterizing the appearance of anatomical struc-

tures and their non-pathological variations between individuals, then applying such knowl-

edge to improve registration performance, and further using the improved registration to

refine the anatomical characterization, which helps obtaining more accurate registration.

This closed-loop bootstrap process can keep going as more image data becomes available,

Figure 7 illustrates the concept. Knowledge of anatomical variations not only allows the

registration algorithm to tolerate non-pathological differences that exist between individu-

als, but also facilitates anomaly detection and quantitative study of anatomical differences

between populations, such as normal control subjects versus schizophrenics. Algorithms

developed in this thesis apply to any imaging modalities, however, due to limited data

Figure 6: Innate variations between individuals. Note the differences
in the size, shape, and location of corpus callosum

Corpus
Callosum
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source, most experiments were conducted on T1-weighted magnetic resonance imaging

(MRI) of human brain.

1.6  Dissertation overview

Figure 7 presents a seemingly cyclic problem: knowledge of the anatomy and its vari-

ations will provide guidance to deformable registration, however, a deformable registration

algorithm is necessary to extract the knowledge of variations. Therefore, Chapter 2 will

first introduce a 3-D deformable registration method without knowledge guidance, and

give quantitative evaluations of its performance. This algorithm will bootstrap the closed-

loop in Figure 7. Chapter 3 will focus on the extraction and characterization of anatomical

variations between individuals. Then Chapter 4 closes the loop with a registration algo-

rithm guided by this knowledge of anatomical variations, and compares its performance to

that of the method in Chapter 2. Further improvement on knowledge representation and

application will be discussed in Chapter 5. Chapter 6 covers details on current implemen-

tation of the algorithms. The following two chapters are devoted to explorations of medical

Study of Differences
between Populations

Anomaly
Detection

Characterization of Brain
Anatomy and Its Variations

 3-D Deformable RegistrationImage Data

Figure 7:  Bootstrap Strategy
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applications, with Chapter 7 showing supportive results on quantitative study of anatomical

differences between populations, and Chapter 8 presenting approaches to anomaly detec-

tion. In the end, Chapter 9 concludes this thesis by highlighting the contributions and dis-

cussions on future research directions.
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CHAPTER 2 3-D Hierarchical
Deformable
Registration

This chapter introduces a 3-D deformable registration method that does not utilize

knowledge of anatomical variations. This algorithm will bootstrap the closed-loop of

extracting knowledge for guiding registration, and function as a baseline for performance

comparisons.

The 3-D registration algorithm matches image volumes based on intensity correspon-

dence. The task of registration is to find a 3-D deformation function that maps any par-

ticular atlas voxel to the corresponding voxel in the subject’s

volume, illustrated in Figure 8. As mentioned in section 1.4, there are not only intrinsic ana-

tomical differences between people’s MRIs, but also extrinsic differences resulted from

different image acquisition processes. Therefore, a hierarchical scheme is adopted to first

address the extrinsic variations, and then deformably match corresponding anatomical

D

xA yA zA, ,( ) xS yS zS, ,( )
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structures between individuals. Note that this is an approach employed in this thesis, other

methods also apply to the framework presented in Section 1.5.

Because different image acquisition processes can result in different intensity distribu-

tions, intensity equalization procedures are necessary to ensure that corresponding anatom-

ical structures have comparable intensities. However, this is a chicken-and-egg problem

because anatomical correspondence is the goal of registration, and therefore unknown. One

solution is a hierarchical approach that starts with a crude intensity normalization, and then

refines the equalization scheme as better anatomical correspondence is achieved in the reg-

istration process. This is a novel approach compared to existing related work.

This 3-D hierarchical deformable registration algorithm involves two interleaving hier-

archies, one is a hierarchy of intensity equalization schemes, the other is a hierarchy of geo-

metrical deformable models, as illustrated in Figure 9. It first grossly equalizes the

intensities between the image volumes, and applies transformations to globally align them

(Section 2.1). Based on this initial alignment, it then uses a more localized intensity nor-

malization, and employs a smooth deformation to roughly match the anatomical structures

SubjectAtlas

Figure 8: The concept of registration.

xA yA zA, ,( ) D xS yS zS, ,( )

D xA yA zA, ,( ) xS yS zS, ,( )=
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in the image volumes (Section 2.2). This correspondence allows a more informed intensity

transformation between the two image volumes, and a fine-tuning deformation adjusts the

correspondence of anatomical structures more precisely (Section 2.3). This algorithm is

automated by a random initialization method (section 6.3). Iterative optimization algo-

rithms are used to determine the deformation parameters at all levels.

2.1  Global alignment

with whole volume intensity equalization

The first level deformable model adjusts the extrinsic variations between the atlas and

the subject’s image volume. Because the extrinsic variations correspond differences in ori-

entation, position, and scale of the image volumes, a similarity transformation composed

of 3-D rotation, translation, and uniform scaling is sufficient to compensate for them.

As mentioned earlier, different imaging processes may result in different intensity dis-

tributions in the atlas and the subject volume. This difference can make a method using

intensity correspondence unreliable, as shown in the example in Figure 4. Before global

alignment, the image volumes can be of significantly different orientation, position, and

scale. With unknown geometrical correspondence, the first level intensity equalization is a

whole volume intensity normalization. It equalizes the mean and standard deviation of the

intensities in the head volumes to roughly correct the intensity discrepancy. The head vol-

umes are separated from the background in preprocessing (Section 6.1).

2.1.1  Representing similarity transformation

Figure 10 shows the coordinate systems used in the similarity transformation, T. The

origins of the coordinate systems in the atlas and the subject volume are placed at their cen-

troids (center of mass of the head volumes). The Z axis coincide with the axis along which

the cross-sections were scanned. Note that the Z axis do not necessarily coincide with any

principal axes, as discussed in section 1.4.1. The atlas is first rotated about its origin to the

same orientation of the subject volume, then uniformly scaled about its origin to be of the
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Global Alignment

Smooth
Deformation

Fine-tuning
Deformation

Figure 9:  3-D Hierarchical Deformable Registration with
two interleaving hierarchies: a deformation hierarchy and
an intensity equalization hierarchy.

Structure-based Intensity Transformation

Whole Volume Intensity Equalization

Local Intensity Equalization

Atlas Subject
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same overall size, and then translated to align with the subject volume. The similarity trans-

formation T has 7 degrees of freedom.

2.1.2  Determining similarity transformation

Because the atlas and the subject are inherently different, there is no similarity transfor-

mation that exactly matches them. The best transformation only minimizes the differences.

The quality of a transformation is measured by the sum of squared differences (SSD)

between the intensities of geometrically corresponding voxels in the image volumes [111].

Suppose is the intensity of voxel in the subject’s volume. The sim-

ilarity transformation T matches to in the atlas, and is

the intensity at in the atlas. The squared difference between and

 is summed over the whole volume to compute SSD:

Z

Y

X

Z

CentroidCentroid

Figure 10:  Coordinate systems used in the similarity transformation.
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SSD is a function of similarity transformation T. To find the optimum transformation,

Levenberg-Marquardt non-linear optimization algorithm [76] is used to iteratively adjust T

to reduce SSD. Figure 11 is a block diagram illustrating the iterative process for determin-

ing the best transformation. More discussion on the Levenberg-Marquardt non-linear opti-

mization algorithm can be found in Appendix A.

The iteration continues until changes in T are below a preset criteria. This criteria is not

particularly critical since the similarity transformation is meant only to bring the image vol-

umes into approximate alignment. The registration will be refined by further steps in the

deformation hierarchy. The criteria used in this thesis requires that the change in 3-D rota-

tion between iterations be less than 2 degrees about each axis, that the change in uniform

scaling between iterations be below 1%, and that the change in 3-D translation be smaller

than 1 pixel along each direction. Multi-resolution processing and stochastic sampling are

employed for efficiency and to help prevent the optimization from becoming trapped in

local minima (section 6.2).

Atlas Subject

Figure 11: Block diagram of determining global alignment

Resampling Using
Similarity Transformation

Differencing

One Iteration of Levenberg- Marquardt
Nonlinear Optimization algorithm

Transformation
Parameters

Change in
Transformation
Parameters
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Note that the transformed atlas coordinates, , may not be integral, and

will not be given by the original data. In this case, tri-linear interpolation is

used to determine the voxel’s intensity from its eight bounding neighbors, see Figure 12. If

 falls outside of the volume, that voxel is ignored for the SSD computation.

Figure 13 shows an example of globally aligning the atlas to a particular subject. The

first row are example slices of the atlas and the subject’s volume before the global align-

ment. The atlas is then resampled to match the subject’s volume via a similarity transfor-

mation, and corresponding slices are shown on the second row. Note that the atlas is now

of the same orientation, scale, and position as the subject’s volume. The segmentation of

one brain structure, the corpus callosum, is adapted for the subject under the same transfor-

mation. The outline of the corpus callosum is shown in the resampled atlas, and directly

applied to the subject’s volume. Note that although the two volumes are grossly aligned,

the example structure does not match well with its counterpart. This is because there exist

Linear interpolations
among 8 neighbors
along one axis gives 4
intermediate values

Linear interpolation
among the 4 interme-
diate values along an-
other axis then yields 2
intermediate values

Linear interpolation
between the 2 inter-
mediate values along
the third axis gives the
voxel intensity

Figure 12: Trilinear Interpolation gives the intensity of a voxel with
non-integral coordinates by doing linear interpolations among its 8
bounding neighbors along each of the three axes.

T x y z, ,( )a

Ia T x y z, ,( )( )

T x y z, ,( )a
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intrinsic anatomical differences between individuals, as discussed in Section 1.4.2, and

global alignment only addresses extrinsic differences caused by separate image acquisition

processes.

2.2  Smooth deformation

with local intensity equalization

The global alignment adjusts extrinsic variations between image volumes, but cannot

address intrinsic variations between individual structures, as shown in Figure 13. Transfor-

mations that allow local deformations are necessary. An intuitive solution is to allow each

voxel to shift freely in 3-D space to align with its counterpart. But this will require the vox-

els’ initial positions to be close to their desired positions so as not to be trapped in local

minima. Since the global alignment cannot guarantee a precise enough initial correspon-

dence for individual structures, the second level deformable model takes an intermediate

step which allows 3-D deformation at a local neighborhood level.

The intensity equalization scheme can be refined now that there is more information on

the correspondence between the two volumes. The second level intensity equalization

evens the intensity mean and standard deviation between the overlapping portions of the

atlas and the subject volume after they are globally aligned. Similar to the case in global

alignment, intensity differences between corresponding voxels in the subject volume and

the atlas act as the deforming force, which shift voxel neighborhoods in 3-D space to align

with their counterparts.

2.2.1  Representing smooth deformations

To represent local deformations at a neighborhood level, the smooth deformation pro-

cedure uses a 3-D control grid which is a coarser grid than the voxel grid. Control grids used

in this thesis are generated by regularly sub-sampling the voxel grid, so each cell in the con-

trol grid is a parallelepiped or a cube. Vertices of the control grid are control points that can

shift independently in 3-D space. 3-D displacements of the control points are deformation
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Figure 13: Global alignment matches the atlas to the subject’s
volume, and adapts segmentations of brain structures for the
subject. However, individual structures do not align well.

Corpus
Callosum

Atlas Subject

Global Alignment
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parameters which determine the displacements of the voxels they enclose. This imposes an

implicit smoothness on the displacement field. Since the number of control points is orders

of magnitude lower than the number of voxels, this representation makes the deformation

optimization process more stable. Figure 14 illustrates the 3-D smooth deformation. Adapt-

able multi-resolution processing and stochastic sampling are again employed for efficiency

and to help prevent the optimization from becoming trapped in local minima (section 6.2).

The highest resolution control grid employed is 7x7x7. Szeliski used similar approaches in

2-D image registration and 3-D surface registration [89], [90]. Vemuri et al. proposed an

analogues scheme for motion analysis [102]. Collins et al. employed 3-D grids for feature-

based registration, though deformation of the grid is constrained to a local affine model

[14].

2.2.2  Estimating smooth deformation

Similar to the case for global alignment, the goodness of the smooth deformation is

measured by the SSD between intensities of corresponding voxels in the atlas and the sub-

ject volume. For a voxel at in the subject volume, suppose it belongs to the ith

control cell . The control cell of the same index in the atlas is . From the

relative position of voxel with respect to the eight vertices of in the sub-

ject’s volume, the location of its corresponding voxel in the atlas, , can be deter-

mined: assume the same relative position holds between voxel and control cell

in the atlas, tri-linearly interpolate the position from the eight vertices

of . Here S denotes smooth deformation. In the case that does not fall

on the voxel grid, the intensity of voxel is tri-linearly interpolated from its eight

neighboring voxels in the atlas. Note that the intensity SSD is computed over all voxels in

the atlas and the subject volume, not just for the control points.

If the atlas completely aligns with the subject volume, intensities between correspond-

ing voxels should be equal. However, in practice they may differ. The best deformation

minimizes the intensity SSD. Similar to section 2.1.2, a Levenberg-Marquardt iterative

non-linear optimization method is used to determine the best smooth deformation parame-

x y z, ,[ ] s

Cells i[ ] Cella i[ ]

x y z, ,[ ] s Cells i[ ]

S x y z, ,( )a

S x y z, ,( )a
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Corpus Callosum

Spinal Cord

After Global Alignment

Figure 14: An illustration of the 3-D smooth deformation. The control
points in the atlas shift to match their counterparts in the subject.
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ters. Figure 15 is a block diagram illustrating the iterative optimization process of smooth

deformation.

The best smooth deformation is considered to be determined when the change of each

parameter drops below a preset threshold. The threshold used in this thesis is that the

change of each control point’s position along each of the 3-D directions between iterations

is below 1 voxel unit. Control grids and image volumes in multi-resolution are used to

improve efficiency and avoid local minima, which will be discussed in 6.2.

Figure 16 shows the effect of applying smooth deformation to the intermediate result

after global alignment. The atlas is warped in 3-D to match with the subject volume. Seg-

mentation of corpus callosum is further adapted for the subject. When directly applied to

the subject volume, its outline roughly aligns with the subject’s corpus callosum. Com-

pared to the result after global alignment, the registration for individual brain structures

Atlas Subject

Figure 15: Block diagram of smooth deformation

Resampling Using
Smooth Deformation

Control
Points

Differencing

One Iteration of Levenberg- Marquardt
Nonlinear Optimization algorithm

Change in Control Points’
3-D Displacements
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improved significantly, but there still exists misalignment at fine details. This is because

smooth deformation implicitly enforces local neighborhoods to deform coherently.

Figure 16: Smooth deformation improved the alignment of individual
structures between the atlas and the subject’s volume

Corpus
Callosum

Atlas Subject

After Global Alignment

Smooth Deformation
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2.3  Fine-tuning deformation

with linear intensity transformation

Smooth deformation only allows control points to shift freely in 3-D space, displace-

ments of voxels inside control grid cells are determined by the bounding control points.

This means geometrical differences between the atlas and the subject that are smaller than

the size of a control grid cell cannot be adjusted. This necessitates the last level of defor-

mation. It fine-tunes the 3-D alignment by permitting each voxel to shift independently in

3-D space to match with its counterpart. Note that this is a special case of the smooth defor-

mation in which the control grid is the voxel grid, and each voxel is a control point.

The improved alignment of individual anatomical structures after smooth deformation

enables a more precise intensity equalization between the atlas and the subject volume.

From observation, the match is generally more reliable for structures with relatively sim-

pler shape and distinct intensity, such as corpus callosum and skull. Corpus callosum dis-

plays a high signal intensity, whereas skull has a low signal intensity, as shown in Figure 17.

Their representative intensities can jointly determine a linear transformation that equalizes

the two volumes’ intensity distributions. Figure 18 displays intensity histograms of these

two structures in the atlas, and histograms of what was automatically segmented as corpus

callosum and skull in the subject’s volume. The representative intensity of corpus callosum

is defined as the highest peak in its intensity histogram after Gaussian smoothing, and the

representative intensity of skull is denoted as the lowest peak in its smoothed intensity his-

togram. These representative intensities from the atlas and the subject form a linear inten-

sity transformation between them. This transformation further equalizes the intensities in

the atlas and the subject’s volume.

2.3.1  Representing fine-tuning deformation

Similar to global alignment and smooth deformation, the intensity difference between

spatially corresponding voxels in the atlas and the subject’s volume serves as the deforming

force. What is different is that now each voxel can shift independently in 3-D space. The
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deformation parameters are 3-D displacements of all voxels, which is 3 times the amount

of intensity data. Note that this is an under-constrained problem.

2.3.2  Estimating fine-tuning deformation

Suppose D denotes the current fine-tuning deformation. For a voxel in the

subject’s volume with intensity , its corresponding voxel in the atlas

has intensity . Consider the case that corresponding voxels have the same

intensity, and the optimum deformation is achieved one step from D. Use to denote the

difference between D and the optima, we have:

The first order Taylor expansion of the left-hand-side in (2) gives:

Figure 17: Corpus Callosum has a high signal intensity (bright),
and skull has a low signal intensity (dark).

Skull

Corpus
Callosum
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is the first order derivative, i.e. image gradient, at voxel in

the atlas. Substitute (3) into (2) gives the image brightness constraint [77]:

Figure 18: Intensity histograms of corpus callosum (top) in
the atlas (dotted line) and the subject’s volume (solid line),
as well as the corresponding ones of skull (bottom).
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The above equation yields one solution for :

To stabilize the deformation parameters when the intensity gradient in the atlas,

, is close to zero, a stabilizing factor  is added:

The deformation D is recovered by computing , adding it to D, and iterating until

is smaller than a preset threshold. In the current implementation, the iteration stops

when the root-mean-square (RMS) between the intensities of spatially corresponding

voxels between two iterations decreases by less than 0.5%. 3-D isotropic Gaussian smooth-

ing is applied to the volume’s 3-D displacement flow after each iteration to regularize the

under-constrained problem. Thirion used a similar approach [92]. Figure 19 shows a block

diagram that illustrates the fine-tuning deformation procedure.

Figure 20 shows the effect of applying fine-tuning deformation to the intermediate

result after smooth deformation. The atlas is further warped to match with the subject’s vol-

ume. The segmentation of corpus callosum is adapted to match better with the structure in

the subject’s data.

Another example of registering the atlas with a subject’s data using the hierarchical

deformable registration is displayed in Figure 21. Segmentation of anatomical structures is

also adapted for the subject, and outlines of several structures, e.g. the pair of lateral ven-

tricles, are projected onto the subject’s data to illustrate the improvement in matching indi-

vidual structures. Figure 22 is a close-up of the subject’s lateral ventricles in Figure 21. The

alignment between the adapted segmentation and the subject’s lateral ventricles improves

Dδ

δD
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--------------------------------------------------------------------------- I a D x y z, ,( )( )∇=
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significantly along the deformation hierarchy. It is note-worthy that the shape of the

adapted segmentation seems to be changing along the deformation hierarchy. That is

because the atlas is deformed in 3-D to match with the subject’s volume, whereas what is

being displayed is a fixed 2-D cross-section of the subject’s volume.

The 3-D hierarchical deformable registration algorithm reduced the typical months-

long manual segmentation time of a whole human brain to minutes. Using an SGI computer

with four 194 MHz R10K processors, it takes 18 minutes to adapt the atlas’ segmentation

for a subject’s MRI with 256x256x124 voxels (124 slices, and each slice is a 256x256 pixel

matrix). Parameters can be tuned to further improve efficiency. The algorithm is fully auto-

mated using a random initialization of the global alignment (Section 6.3), which makes its

application convenient.

Atlas Subject

Figure 19: Block diagram of fine-tuning deformation
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Fine-tuning Deformation
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Figure 20:  Fine-tuning deformation further improves
registration accuracy of anatomical structures.
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After Global Alignment

After Fine-Tuning Deformation

After Smooth Deformation

Lateral
Ventricles

Lateral
Ventricles

Lateral
Ventricles

Figure 21: The progressive results of hierarchical deformation.

Atlas Subject
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2.4  Quantitative evaluation

Qualitatively, registration results shown in Figure 20 and Figure 22 are encouraging,

however, objective and quantitative evaluation is necessary. For rigid registration, transfor-

mation parameters can be compared to those derived from stereotaxic fiducial markers rig-

idly fixed to a subject’s skull [110]. Although fiducial-based registration itself has inherent

measurement errors, it is generally adopted as a ground-truth transformation. Unfortu-

nately, no such ground-truth can be acquired for deformable registration. One common

solution is to assess how well the adapted segmentation from an atlas matches the corre-

sponding anatomical structure in the subject’s image volume. In this way, the demand for

Deformation Hierarchy

Figure 22: A close-up on the subject’s lateral ventricles in Figure 21.
The alignment between the adapted segmentation from the atlas
and the subject’s structures improve significantly.

Global Alignment

Smooth Deformation

Fine-tuning Deformation
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ground-truth deformation becomes the requirement for ground-truth segmentation of the

subject’s anatomical structures.

2.4.1  Ground-truth segmentation

In vivo data, the kind of data used in this thesis, presents another difficulty to quantita-

tive validation: ground-truth segmentation of anatomical structures in living people is not

available. As a solution, expert segmentation and classification of a subject’s anatomical

structures are regarded as ground-truth, or the gold-standard. A similar approach was

employed in [2], [14], [19], and [33].

The ground-truth used in this thesis is comprised of 40 subjects’ MRI volumes that

have expert segmentation of one structure, corpus callosum, in one plane, the mid-sagittal

plane. Figure 23 shows an example. The dimensionality of the test set is listed in Table 1.

The experts are trained operators, and these image volumes are used as the test set. It is

arguable that the corpus callosum is a distinct structure that is easy to segment, and there-

fore may not be appropriate for performance validation. On the other hand, this is also a

structure that experts are confident to segment as ground-truth, and a structure of much

research interest among collaborators. The goal of automatic segmentation is eventually

being able to accurately segment subtler structures so as to facilitate research in the medical

domain.

Number of

Volumes

Volume

Orientation

Slices/

Volume

Slice Thickness

(mm)

In Plane

Pixel Matrix

Pixel Size

(mm2)

Bits/

Pixel

1 Sagittal 124 1.5 256 x 256 0.9375 x 0.9375 16

1 Coronal 124 1.5 256 x 256 0.9375 x 0.9375 16

1 Axial 187 1.2 256 x 256 0.98 x 0.98 16

13 Axial 124 1.3 256 x 256 0.9375 x 0.9375 16

24 Sagittal 256 1 256 x 256 1 x 1 8

Table 1. Dimensionality of the test set.
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Some researchers validate their methods by registering one image volume with a trans-

formed version of itself, and comparing the computed transformation to the known trans-

formation. Note that when the known transformation is of the same formulation as the

transformation used in the registration process, this scheme is testing the algorithm’s con-

sistency, but not the accuracy.

2.4.2  Measurement

Currently, there is no standard metric for evaluating segmentation accuracy. Dann et al.

introduced a relative overlap measure for comparing two segmentations when neither is

necessarily correct. It is defined as the ratio between the area of intersection and the area of

their union [19]. Collins et al. used three measures to evaluate segmentation accuracy [14].

One is the ratio of absolute volume difference between ground-truth and the computed seg-

mentation w.r.t. ground-truth. Since a small volume difference does not indicate accurate

segmentation, another measure is defined as the ratio between the overlapping volume and

ground-truth. However, this measure gives 100% for an accurate segmentation or any seg-

mentation that is a superset of ground-truth. This necessitates the third measure, which is

Figure 23: An example of expert segmentation
of corpus callosum in the mid-sagittal plane.
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the ratio between the overlapping volume and the computed segmentation. The smaller of

the second and third measure is used for validation. Bajcsy et al. employed the number of

correctly matched voxels, false positives, and false negatives to assess the performance of

their global matching procedure [2]. Gee et al. examined segmentation of 32 cortical and

subcortical structures in a test set of 6 subjects, using the relative overlap measure in [19]

and the second measure in [14]. In addition, they employed the distance between the cen-

troids of a segmentation and its ground-truth to indicate the localization accuracy [33]. For

feature-based registration, Davatzikos defined the registration error at each feature point or

landmark to be the distance between its computed location and its ground-truth [20].

In this thesis, segmentation error is measured by the ratio between the number of mis-

labelled voxels and ground-truth, as illustrated in Figure 24. The number of mislabelled

voxels includes both false positives, i.e. voxels classified as corpus callosum by the algo-

rithm but not in the ground-truth, and false negatives, i.e. voxels classified as corpus callo-

sum in the ground-truth but not by the algorithm. Note that this error can be bigger than

100%. If the three areas in Figure 24 are of equal size, then this error will be 100%, whereas

[19]’s relative overlap measure will be 33%, and measures defined in [14] will give zero

volume difference and 50% overlap. The error measured defined here is therefore the most

stringent.

2.4.3  Performance

The performance evaluation process involves applying the 3-D hierarchical deformable

registration algorithm to match the atlas to each image volume in the test set, and thus

adapting the atlas’ anatomical segmentation respectively. Overall error ratio of the whole

test set is computed at each level of the deformation hierarchy, and compared in Figure 25.

For the final result after fine-tuning deformation, the algorithm reached an overall error

ratio of 4.4%. This is a significant reduction over the 22.8% error yielded by smooth defor-

mation, and a drastic reduction over the 55.5% error after global alignment. This quantita-

tive assessment of registration accuracy validates the observation in Figure 22.
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It would be valuable to compare this algorithm’s relative performance with methods

developed by other researchers. However, such comparison has been difficult due to vari-

ations in the type of data being aligned, the type of machine used for computation, and the

type of validation methodology. A retrospective registration evaluation project is being

conducted at Vandelbilt University which provides clinical evaluation of the accuracy of

retrospective techniques. Currently, evaluation is only available for PET-to-MR and CT-

to-MR affine registration [107], and is therefore not applicable to work described in this

thesis.

The algorithm is fully automatic, where global alignment is automated by random ini-

tialization. It takes 18 minutes to register 3-D images of 256x256x124 voxels on a SGI

workstation with four 194 MHz processors; whereas typical manual segmentation of 3-D

brain images takes months.

I II III

Adapted
Segmentation

Error
AreaI AreaIII+

AreaI AreaII+
------------------------------------------------=

Expert
Segmentation

Area II: Correct Segmentation
Area I: False Negative

Area III: False Positive

Figure 24: Illustration of the error metric



40 Chapter 2  3-D Hierarchical Deformable Registration

2.5  Error analysis

Errors in segmentation can be caused by several sources. One is bias incurred by using

manually segmented structures from a single individual as the model atlas. Any errors in

the atlas are carried through the deformable registration, yielding errors in the segmentation

of subjects’ data. This will be true in general for any atlas defined on the basis of a single

brain, and can only be compensated when the atlas is extended to represent anatomical vari-

ations between individuals. Another source is inter-subject inter-observer variability. Ana-
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Figure 25: Overall error ratio of the test set
at each level of the deformation hierarchy.
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tomical differences between individuals complicate the manual segmentation processes

involved in creating the ground truth and the atlas. Definition of the corpus callosum varies

from expert to expert, from subject to subject. Segmentations from multiple experts can be

integrated to improve consistency. Finally, errors from deformable registration. Since geo-

metric correspondence is established based on intensity correspondence, any discrepancy

in intensity can lead to errors in registration. Improvement of the registration algorithm will

be further discussed in the following chapters.

2.6  Algorithm analysis

While it is validated that registration accuracy improves along the deformation hierar-

chy, it is also important to assess the effectiveness of the intensity equalization scheme.

Moreover, while the overall error ratio reveals the algorithm’s performance, it is still of

interest to examine the distribution of error over the test set.

2.6.1  Effectiveness of intensity equalization

Three experiments are designed to assess the efficacy of the intensity equalization hier-

archy, as shown in Table 2. These experiments are conducted over the whole test set. Over-

all error ratios show that the first and second levels of intensity equalization generally help

the registration to reduce error by 6%. The third level, structure-based equalization, proves

to be remarkably effective. It brought the error rate from 26.2% to 4.4%, which is a 83%

error reduction. This demonstrates that smooth deformation is able to align the atlas and the

subject’s volume well enough for the structure-based equalization to be reliable. Note that

registration results deteriorated by 15% when fine-tuning deformation was performed with-

out the structure-based intensity equalization. This validates the necessity for the structure-

based equalization, and proves the effectiveness of interleaving an intensity normalization

hierarchy with a 3-D deformation hierarchy.
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2.6.2  Error distribution

Histogram distribution of error ratios over the test set is computed at each level of the

deformation hierarchy, and displayed in Figure 26. After global alignment only 14.6% of

all samples have an error ratio below 20%. After smooth deformation 43.9% of all samples

have less than 20% error, and 14.6% of all samples have an error ratio below 10%. Fine-

tuning deformation eliminated cases with more than 20% error, and brought 92.7% of all

samples to an error ratio below 5%. The increase in registration accuracy is evident.

2.7  Discussion

So far the discussion has been focused on the design and evaluation of the hierarchical

deformable registration algorithm, and its interleaving intensity equalization scheme. It is

also interesting to remark on certain considerations and alternative approaches investigated

during the design.

Experiment Geometric Transformation Intensity Equalization  Error Ratio

1 Global Alignment
None 61.3%

Whole-volume equalization 55.5%

2
Global Alignment

Smooth Deformation

Whole-volume equalization 25.6%

Whole-volume equalization

& Local equalization
22.8%

3

Global Alignment

Smooth Deformation

Fine-tuning Deformation

Whole-volume equalization

& Local equalization
26.2%

Whole-volume equalization

& Local equalization

& Structure-based equalization

4.4%

Table 2. Evaluating the effectiveness of the intensity equalization hierarchy
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2.7.1  Transformation and resampling

To register the atlas with a particular subject’s volume, the transformations can be

either from the atlas’ coordinate frame to the subject’s, or vice versa. However, for appli-

cations that need the segmentation and classification of the subject’s anatomical structures,

it is necessary to resample the atlas into the subject’s coordinate frame so as to adapt its

expert segmentation and classification for the subject. This resampling will be straight for-
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ward if transformations involved in the registration have 1-on-1 mapping. Unfortunately

this is not true for deformable registration, due to its highly nonlinear nature. Figure 27

gives a 2-D illustration of the nonlinear mapping: it can be a multiple-to-one correspon-

dence, or no correspondence.

As illustrated in Figure 27 (a), an atlas-to-subject transformation will not guarantee

each voxel in the subject’s volume a correspondence in the atlas. This means some voxels

in the subject’s volume will have multiple anatomical classifications adapted from the atlas,

whereas some will have undetermined classification. A typical solution to this resampling

problem is to use the subject-to-atlas transformation, as illustrated in Figure 27 (b). In this

way, each voxel in the subject’s volume will either have an anatomical classification

adapted from its corresponding atlas voxel, or be labelled as background. This thesis pre-

sents registration transformations as from the atlas to a subject’s volume for the ease of

understanding. However, all algorithms apply to both directions. To adapt the anatomical

classification in the atlas for a particular subject, a subject-to-atlas transformation is

employed.

Figure 27: 2-D illustration of the transformation’s nonlinear nature.

Atlas Subject

(a) (b)

Subject Atlas
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2.7.2  Other intensity equalization methods

A number of intensity normalization schemes were explored before the final design,

such as using histogram equalization to remove bright and dark outliers, and using lateral

ventricles instead of skull in determining linear intensity transformation. Histogram equal-

ization did not prove superior to normalization of intensity mean and variance, whereas

intermediate segmentation of lateral ventricles were not reliable enough to facilitate com-

putation of the correct intensity transformation. A more rigorous intensity normalization

method should account for signal distortions that are unique to the MRI process. Wells et

al. developed an EM-segmentation algorithm that used an imaging model to account for

that, and Kapur et al. extended the theme by adding a regularizer to combat salt-and-pepper

noise [49], [106].

2.7.3  Smoothness of deformation

The assumption of smoothness in deformation guarantees that neighboring voxels in

the atlas be mapped to neighboring points in the target. Similar approaches were used by

Black and Anandan [6]. However, there exist neighboring points in unconnected structures

(such as on opposite sides of a sulcus, or on either side of the longitudinal fissure) that do

not need to be mapped to neighboring voxels in the subject. Therefore, it may be desirable

to allow a discontinuity in the transformation at internal brain structures, e.g. surfaces that

separate the cerebellum from the occipital lobe or that separate the temporal lobe from the

inferior frontal lobe.

2.7.4  Quantitative evaluation

Since the corpus callosum seems an easy structure to identify, quantitative evaluation

based on its segmentation may not be the most convincing. However, during this thesis

work, this has been the structure experts can segment confidently enough to provide as

ground truth. Although performance evaluation based on the segmentation of structures of

more complex shape will be more rigorous, it has been observed and reported that struc-
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tures with a complex boundary shape are more difficult for people to segment than those

with a simple boundary [52]. People have a tendency to over- or under-estimate the bound-

ary. Consequently, manual segmentation exhibits a consistent variability in the segmenta-

tion of voxels at the boundary of complicated shapes such as the cortical grey matter.

2.8  Chapter summary

This chapter has presented and evaluated a 3-D hierarchical deformable registration

algorithm that does not use guidance of anatomical knowledge. This algorithm is a neces-

sary starting point to achieve the next goal, the characterization of brain anatomy and its

variations, which will be discussed in the next chapter.
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CHAPTER 3 Building a Statistical
Atlas

The 3-D hierarchical deformable registration algorithm discussed in Chapter 2

achieved encouraging performance. However, considerable inaccuracies still exist.

Figure 28 compares segmentation results given by the automatic algorithm and that from

an expert. Note that certain inaccuracies are caused by the algorithm’s insufficient knowl-

edge of the anatomy, and cannot be corrected by exploiting image features solely.

This observation is supported by the analysis in Section 2.6, that one major error source

is bias introduced by the atlas. The current atlas is not an average or representative model

of any population, it is a single non-pathological brain MRI whose structures were manu-

ally classified. It is possible that the atlas is an extreme of the normal distribution. The cur-

rent algorithm is matching this potentially biased atlas to any particular subject’s data,

which is inevitably erroneous. Moreover, as discussed in Section 1.4.2, anatomical differ-

ences between individuals present a major difficulty to inter-subject registration. There-

fore, building an atlas based on multiple subjects’ data so that it represents the average

brain as well as its normal anatomical variability will help improve registration perfor-
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mance. This leads to the focus of this chapter, which is the characterization of brain anat-

omy and its non-pathological variations in a population:

Study of Differences
between Populations

Anomaly
Detection

Characterization of Brain
Anatomy and Its Variations

3-D Deformable RegistrationImage Data

Automatic Segmentation Expert Segmentation

Figure 28: Inaccuracies in the automatic segmentation,
compared to expert segmentation.
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3.1  Related work

Techniques solely base on image features have appeared inadequate for many segmen-

tation, registration, and measurement tasks in medical imaging. The inclusion of prior

knowledge in the analysis procedure has become increasingly important. Prior knowledge

may concern the physics of image formation; the anatomy, pathology or (patho)physiology

of the organs or tissues under investigation; or the expertise of the medical specialist on the

interpretation of the image data.

During the past decade, many researchers have worked on modeling shape variation of

organs or physiological variation of tissue characteristics. One approach is landmark-based

morphometrics for multivariate analysis of curving outlines in biomedical images. In this

approach, shapes are defined as equivalence classes of discrete point-sets under the opera-

tion of the Euclidean similarity group. A Procrustes distance between every pair of shapes

is characterized by a least-squares formula. Bookstein introduced a combination of Pro-

crustes analysis and thin-plate splines to provide a range of complementary filters, from

high pass to low pass, for effects on outline shape in grouped studies [7]. He applied this

hybrid method to compare the shape of the corpus callosum from mid-sagittal sections of

25 human brain MRIs, 12 normal and 13 with schizophrenia.

However, in any structural anatomical data set there will be more information about

structural differences than can be captured by landmarks. Davatzikos et al. studied callosal

outlines acquired by an automatic active contour method, and relate the outlines of samples

to an a priori norm using elastic relaxation. The relation of each individual to the norm is

then described by an areal distortion function, which captures the anatomical variability

[21]. Groups (eight male and eight female) are compared by averaging the distortion at cor-

responding points of the normative form or over regions, and thresholding the differences

at various effect sizes. Sclaroff and Pentland represented shape in terms of an object’s phys-

ical deformation modes. The representation consists of two levels, one is modal deforma-

tions that describe the overall shape of a solid, the other is displacement maps that employ

a multiscale wavelet representation to provide local and fine surface detail [73]. They
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applied the method to compress dense 3-D point data from surfaces, using displacement

maps and wavelets [82]. The limitations of methods using physical models include the

questionable accuracy of the models of brain stiffness. Further investigation of the brain’s

material properties will be required.

Instead of physically modeling the structure under study, researchers have also sought

to obtain shape descriptions directly from sample data. Cootes et al. used principal compo-

nents to describe the modes of variation inherent in a training set of 2-D heart images [17].

Hill et al. extended the technique to 3-D, and performed multivariate analysis on shape

measurements derived from manually collected homologous points [40]. Only objects of

simple shapes and limited variations can be accounted using this method. It is not applica-

ble to modeling the whole brain. Thompson et al. quantified the variability of gyral and sub-

cortical surfaces as a non-stationary Gaussian random tensor field [95]. Tensor field

corrections based on Christoffel fields and Winslow theory were applied to create an aver-

age image template with the average anatomical configuration and intensity for the group

under study. Their earlier work studied the variability in location and geometry of five sulci

in each hemisphere of six postmortem human brains placed in the Talairach stereotaxic

grid. The sulci were modeled as 3-D surfaces, and heterogeneous profiles of 3-D variations

were quantified locally within individual sulci [99]. Joshi et al. examined the neuro-ana-

tomical variation of the geometry and shape of 2-D surfaces in the brain, e.g. the cortical

and hippocampal surfaces. Shape was quantified via the construction of templates, while

variations were represented by defining probabilistic deformations of the templates [46].

Empirically, they represent the probabilistic deformations as Gaussian random vector

fields on the embedded sub-manifolds. Manifold information on easily identifiable land-

marks need to be provided by an operator.

The high complexity and variability of the anatomy and related pathology make it dif-

ficult to represent using a single model. Cootes has examined both physical and statistical

shape models, with the goal of smoothly transitioning from a physical to a statistical shape

description as more data become available [18]. Zhu and Yuille considered physical and

statistical shape models in the context of representing and recognizing objects from their 2-
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D silhouettes [112]. Szekely et al. developed a model-based segmentation technique com-

bining desirable properties of physical models, shape representation, and modeling of nat-

ural shape variability. They designed flexible Fourier parametric shape models by

combining the mean contour with a set of eigenmodes of the parameters. The method was

applied to characterize the biological variability of the shape of the corpus callosum outline

[87]. Wang and Staib also incorporated statistical shape models into elastic model based 2-

D non-rigid registration [104]. The elastic model constrains the transformations to maintain

smoothness, and statistical shape information embedded in corresponding boundary points

function as Bayesian priors to improve the registration.

Most of the above work concerns with statistics of individual structures, i.e. models that

are local. But local models lose information on the relative position and interaction between

neighboring structures. While this is promising for applications aiming at segmenting par-

ticular structures and lesion, a global model capturing variations of all brain structures is

necessary in order to register and segment the whole brain simultaneously. Evans et al. con-

structed a probabilistic atlas by averaging 305 brains in a stereotactic space. The variability

is illustrated by the sharpness of the grey level contours, but the method does not provide

suitable information to derive a shape model [26]. Gee and Le Briquer aligned eight normal

subjects’ image data with a reference configuration, and modeled their anatomical variabil-

ity using principal component analysis of the spatial mappings [31]. Due to the complexity

of brain anatomy, more samples are necessary to validate their model. Similarly, Guimond

et al. developed an automatic method to acquire average intensity and shape models of the

human brain [38]. This thesis will attempt to build a global model that captures both the

average and the variations of all brain structures between individuals, using a non-patho-

logical population of considerable size.

3.2  Capture Anatomical Variations

In order to extract anatomical variations between individuals, image data of a popula-

tion needs to be compared in a common reference frame. The atlas is chosen as the common
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reference frame, for the convenience of further augmenting it into a multi-subject atlas. The

3-D hierarchical deformable registration algorithm discussed in Chapter 2 is used to map

image data of a population to the atlas’ framework. A population of 105 T1-weighted brain

MRI volumes constitute the training set. Dimensionality of the training set is listed in

Table 3. All brains in the training set are non-pathological, and they are separate from the

test set introduced in Section 2.4.1. Figure 29 shows example cross-sections from several

individuals brain MRI volumes. Notice that there exists differences in the density (reflected

in intensity), shape, size, and location of brain structures between individuals, i.e. differ-

ences that are intrinsic. In addition, these image volumes also differ in overall intensity dis-

tribution, orientation, position, and scale, due to different image acquisition processes.

These variations are extrinsic to the anatomical differences, and therefore should be

addressed separately from the intrinsic variations. This is similar to Martin et al.’s approach

of separating important and unimportant shape variation so as to quantitatively describe

pathological shape variations [66].

The process of capturing anatomical variations involves eliminating extrinsic differences

caused by image acquisition, and extracting intrinsic differences related to brain anatomy,

as illustrated in Figure 30. Eliminating extrinsic differences in geometry entails bringing

all image volumes to the same orientation, position, and overall size as the atlas. This is

conveniently achieved using global alignment, the first level in the 3-D hierarchical

deformable registration algorithm (Section 2.1). To extract intrinsic geometric differences

between individuals, anatomical structures of each sample volume in the training set need

Number of

Volumes

Volume

Orientation

Slices/

Volume

Slice Thickness

(mm)

In Plane

Pixel Matrix

Pixel Size

(mm2)

Bits/

Pixel

58 Coronal 124 1.5 256 x 256 0.9375 x 0.9375 16

21 Axial 124 1.3 256 x 256 0.9375 x 0.9375 16

26 Sagittal 256 1 256 x 256 1 x 1 8

Table 3. Dimensionality of the Training Set.
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to be compared to obtain information on variability. This is achieved by deformably match-

ing each image volume in the training set to the atlas, using the second and third levels of

the 3-D hierarchical deformable registration method (Section 2.2, Section 2.3). The respec-

tive deformation flows embody intrinsic geometric variations between each sample in the

training set and the atlas. A similar approach is taken to capture inherent variations in struc-

ture density between individuals. Extrinsic intensity variations from separate image acqui-

sition processes are removed via the intensity equalization hierarchy interleaved with the

deformation hierarchy (Section 2.1, Section 2.2, and Section 2.3). Intrinsic variations in

structure density are the residual intensity differences between corresponding voxels in

each deformed sample volume and the atlas.

3.3  Model Anatomical Variations

While anatomical variations are captured in deformation flows and corresponding

voxels between each deformed sample volume in the training set and the atlas, further

abstraction of this knowledge is necessary. Variations in structure density and geometry are

modeled separately. Because of the limited sample size and the complex nature of morpho-

logical variations in human anatomy, knowledge of anatomical variations are modeled

using the first and second order statistics of the measurements.

Figure 29: Example cross-sections of different
individuals’ brain MRI data from the training set.
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Atlas

Global Alignment

Deformable Registration

Subject 1 Subject N

...

...

...

Figure 30: The process of eliminating extrinsic variations between
individual image volumes, and extracting anatomical variations.
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3.3.1  Modeling density variations

After each sample volume in the training set is deformed to match with the atlas, the

residual intensity differences between corresponding voxels reflect variations in structure

density between the sample and the atlas. Suppose there are N sample volumes in the train-

ing set (currently N=105), then each atlas voxel spatially corresponds to N voxels, with one

voxel from each deformed sample volume. Tissue density variation in the training set pop-

ulation at each atlas voxel location can be examined in a histogram, as illustrated in

Figure 31. Note that the atlas voxel may not have the average intensity in the histogram,

because the atlas is simply one non-pathological brain MRI volume and is not necessarily

representative of any population. Each atlas voxel is associated with one such histogram.

The collection of such intensity histograms over the atlas volume embodies intrinsic vari-

ations of structure density in a population.

The histogram distribution can be modeled as 1-D Gaussian distribution, ,

where is the specific deformation that maps a sample volume to the reference frame of

the atlas, and is the intensity difference between each atlas voxel under examination and

the corresponding voxel in the deformed sample volume:

here is the mean density difference between all samples in the training set and the atlas

at this voxel; is the variance of the density difference distribution. Note that is com-

puted after having removed extrinsic intensity differences caused by separate image acqui-

sition processes. Therefore, this 1-D Gaussian distribution models the inherent variations

in structure density between individuals.

P Id D( )

D

dI

P Id D〈 | 〉 1

2πσ
-----------------e

Id µ–( )2

2σ2
--------------------------–

= (6)

µ
σ2 dI
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3.3.2  Modeling geometric variations

As discussed in Section 3.2, intrinsic geometric variations are captured in the 3-D

deformation flow that warps each sample volume to register with the atlas. Now each atlas

voxel is associated with N 3-D flow vectors, with each vector being the spatial distance

between the atlas voxel and the anatomically corresponding voxel in one particular sample

volume. Distribution of the N 3-D flow vectors associated with each atlas voxel can be cap-

tured in a 3-D histogram. Figure 32 shows a 2-D illustration. Each atlas voxel is associated

Atlas Sample 1 Sample N
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Figure 31: Modeling intrinsic variations in structure density:
each atlas voxel is associated with a 1-D Gaussian distribution.

......



57

with one such histogram. The collection of such 3-D histograms over the atlas volume

embodies intrinsic geometric variations of brain anatomy in a population.

Similar to Section 3.3.1, the 3-D histogram distribution at each atlas voxel is modeled

as a 3-D Gaussian distribution, :

here is a 3-D flow vector that associates the atlas voxel with its anatomically corre-

sponding voxel in each particular sample volume. is the mean 3-D flow vector that spa-

tially relates this atlas voxel to its anatomical counterparts in the training set; and is the

3x3 covariance matrix of the distribution. Note that has been adjusted for extrinsic geo-

metrical variations resulted from image acquisition. This 3-D Gaussian distribution models

the inherent geometric variations between individuals.

3.4  A statistical atlas

The atlas was originally one single non-pathological brain MRI volume, whose voxels

are related to their intensity values and classification labels of respective anatomical struc-

tures they belong to. It is valuable data, however non-representative. The above procedure

of extracting and modeling anatomical variations associates each atlas voxel with a mean

intensity and its variance in a population, and a mean position and its variance in the pop-

ulation. In this way, the atlas is enriched to represent the anatomical variability in tissue

density and geometry of a population. This means the atlas is no longer an atlas built upon

information of one possibly biased example, it is augmented into a statistical atlas that

embodies anatomical information of a population. Figure 33 illustrates the concept.

The statistical atlas was built by examining distributions of intensity and spatial loca-

tion of corresponding voxels in a training set. The correspondence was established using

P D( )

P D( ) 1

2π( )3 Φ
------------------------------e
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Figure 32: Modeling intrinsic variations in geometry as 3-D Gaussian.
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an automatic 3-D deformable registration algorithm introduced and evaluated in Chapter 2.

However, as discussed in Section 2.5, there exist inaccuracies in results given by this algo-

rithm. Inaccuracies in registration inevitably propagate to statistical models built there-

upon, and reduce the credibility of the statistical atlas. To overcome this problem, a

bootstrap approach is adopted (Section 1.5): still employ the same scheme of extracting and

modeling anatomical variabilities, however, instead of using the entire training set, first

build a statistical atlas from a subset of training samples that were more precisely regis-

tered; as will be presented in Chapter 4, anatomical knowledge embedded in the statistical

atlas helps improve registration accuracy, thus enables the building of a more reliable sta-
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Figure 33: A statistical atlas. In addition to its intensity value and
anatomical classification, atlas voxel is associated with a 1-D
distribution of tissue density variations as well as a 3-D distribution
of geometric variations in a population
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Callosum
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tistical atlas from a bigger subset of accurately registered training samples. This process

continues as more training samples are available, which allows the statistical atlas to be

progressively improved.

Interesting observations can be made from the variance maps of intensity and geometry

in the statistical atlas, as shown in Figure 34. The brightness of the variance maps corre-

sponds to the magnitude of the variance. The intensity variance map (on the left) reveals

distinctively low variations in the intensity of certain structures, such as the corpus callo-

sum, dorsomedial nucleus, fronix, pons, midbrain, medulla, and vermis. This indicates that

these structures have rather consistent densities between individuals. On the other hand, the

geometric variance map (right) showed no distinguishable structure-wise differences.

Figure 34: The intensity variance map (left) and the geometric variance
map (right) of the statistical atlas. Brightness reflects the magnitude of
the variance. Note that the intensity of certain structures, such as the
corpus callosum and pons have low variance across the training set.

PonsCorpus Callosum



61

3.5  Discussion

The problem of modeling anatomical variability is approached by augmenting an atlas

based on a single example into a statistical atlas built from a population. The statistics are

gleaned by comparing samples from a training set in the common reference frame of the

original atlas, using 3-D deformable registration. Patterns of anatomical variations are

modeled using the first and second order statistics of the measurements. Other options were

considered and investigated during the design process, which are presented here for future

reference.

3.5.1  Population-specific training sets

The current statistical atlas was built on a training set of non-pathological brain MRI

volumes. Due to the difficulty of acquiring sufficient data, subjects in this training set are

not stratified into subpopulations according to age, gender, or any other demographic cri-

teria. However, research in neurology has revealed that structural changes due to growth,

aging, and certain psychiatric diseases are observable at both cellular and gross anatomic

scales. In the case of the corpus callosum, it undergoes profound changes in morphology

and composition during brain development, and these patterns are dramatically altered in

psychiatric diseases such as multi-infarct dementia, schizophrenia, Alzheimer’s Disease,

etc. Therefore, a static representation is ill-suited to determining the dynamic effects of

development and disease. With the availability of large image archives, population-specific

atlases should be built to encode population variability.

3.5.2  Manual versus automatic classification

It is arguable that studying anatomical variations from a training set of expert classified

data may produce more precise models. However, manually classifying high-resolution

volumetric data is extremely time-consuming (it took an expert eight months to classify 144

structures in the atlas volume). This makes it difficult if not impossible to acquire a sizable

training set. Moreover, the inherent subjectiveness and inconsistency in human perfor-
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mance, between people or for the same person over time, will likewise decrease the preci-

sion of models built upon it ([14], Chapter 1).

3.5.3  Multiple experts’ opinions

The current statistical atlas encodes anatomical variations of a population. However,

the anatomical classification is still one expert’s opinion, which can be subjective and

biased. Combining different experts’ opinions in a probabilistic manner will provide a more

impartial classification.

3.5.4  Global versus structure-based models

As discussed in Section 3.1, models of anatomical variations can be local or global. In

this thesis, the primary goal of modeling anatomical variability is to achieve accurate reg-

istration and segmentation of all brain structures simultaneously. Therefore, a global model

that encompasses all structures as well as their spatial relations and interactions is prefera-

ble. The current statistics are voxel-based, but structure or multi-structure based statistics

can be conveniently modeled and incorporated within the framework.

3.5.5  Choice of method

In modeling geometric variations from the training set’s 3-D deformation flow, other

methods than voxel-based statistics were also considered, such as principal component

analysis (PCA), modal analysis, and finite element surface model. The potential of using

PCA was further investigated, and presented in Appendix B.

PCA is a more compact way to represent the average geometry and major patterns of

variations. However, due to the high dimensionality of MRI data, it is currently impractical

to conduct PCA on 3-D deformation flow of the whole volumes. While PCA can be used

to model the mean geometry and major modes of variation of individual anatomical struc-

tures, critical information on their relative position and inter-structure interaction is lost.
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One possible solution was investigated and presented in Appendix B, but it did not promise

to improve registration accuracy over the existing algorithm.

3.6  Chapter summary

This chapter has focused on augmenting the atlas from a non-representative, single

example into a statistical atlas that embodies anatomical variations of a population.

Although there are many applications for a statistical atlas, the major interest of this thesis

is to use it to achieve accurate registration and segmentation, which will be discussed in the

following chapters.
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CHAPTER 4 Registration Using the
Statistical Atlas

The purpose of building the statistical atlas is to achieve more accurate registration

through bootstrap. This chapter focuses on using the knowledge of anatomical variations

to guide registration, so as to close the loop proposed in the framework:

Study of Differences
between Populations

Anomaly
Detection

Characterization of Brain
Anatomy and Its Variations

 RegistrationImage Data
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4.1  Related Work

Despite much effort on modeling individual variabilities of anatomical structures, few

researchers have reported on using knowledge of anatomical variations to improve regis-

tration. Moghaddam et al. presented a probabilistic similarity measure for direct image

matching based on a Bayesian analysis of image deformations [71]. They modeled varia-

tions in object appearance as probabilistic distributions, and computed a similarity measure

based on the a posteriori probabilities. This approach was applied to 2-D image recognition.

Gee et al. [31] proposed a Bayesian formulation of the image matching problem, and tested

it on 2-D MRI data generated by applying manually defined distortions to real MRI data.

Results on matching image volumes from different individuals are as yet unavailable.

Wang and Staib posed 2-D deformation estimation problem in a maximum a posterori

framework, in which statistical shape model based on corresponding boundary points were

used as prior probabilities [104].

4.2  Registration using the statistical atlas

Similar to the approaches in related work, image registration is formulated within a

Bayesian estimation-theoretic framework: the statistics derived from past observations

specify the relevant prior probability model for the unknown spatial mapping. A Bayesian

framework is well suited to the task of modeling variations in morphology. Because we are

dealing with uncertain quantities, such as noisy data, from which information or decisions

are derived (that must themselves then be uncertain), it is natural to adopt a probabilistic

approach. Second, Bayesian analysis formally embodies the use of prior information that

we have about the problem. In matching, the prior serves to constrain the mappings by

favoring certain configurations, in effect, regularizing the problem. Statistical information

about morphological variability, accumulated over past samples, can be formally intro-

duced into the problem formulation to guide the matching or normalization of future data

sets. Among the many operational advantages of Bayesian analysis, the most relevant to

this work is that the result is a posterior distribution for the unknown mapping, which
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expresses the probability of any mapping given the observed images. The existence of this

distribution makes possible a range of analyses, including the estimation of the variance or

reliability of the estimated mapping.

The registration of two intensity volumes, such as a subject volume and the statistical

atlas, can be formulated as finding the voxel deformation that gives the highest a poste-

rior probability . is the intensity difference between corresponding voxels in the

two volumes. Using Bayes’ Rule,  can be expressed as:

where

Therefore, the problem of finding the highest posterior probability, , is that of

maximizing the right hand side of equation (8). Here is a constant for two given

image volumes, and the numerator has the same maximum as its logarithm. Substituting

from equations (6) and (7) and taking logarithms yield:

and hence maximizing the posterior probability is equivalent to minimizing the term:
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Gradient descent is used to minimizes the term in (9). The 3-D gradient, , at each step

of the descent is given by the first order derivative of (9):

where is the 3-D image gradient, which is a function of the voxel’s position. The first

term will shift the current voxel by moving it in the direction that will reduce the difference

between its current intensity and its mean intensity across all training samples. If the vari-

ance in this voxel’s intensity distribution is large, the magnitude of the step along the image

gradient will be reduced. The second term will shift the current voxel by moving it towards

the mean geometric deformation of this voxel in the training set. If the variance of this

voxel’s geometric distribution is large, the magnitude of the step will be reduced. Since

and can have small values, a stabilizing factor is added to and to the diagonal ele-

ments of to regularize the gradient. The empirical value used is . The 3-D shift

 of the voxel is then:

here is a step size constant. In this way, each voxel in the statistical atlas is guided to

search for a counterpart in the subject, so their match is most probable according to the sta-

tistics gathered from a population. 3-D Gaussian smoothing is applied to the voxels’ 3-D

displacements after each iteration to smooth the deformation. This compensates for the fact

that the dependence between the deformation of neighboring voxels is not modeled in the

currently voxel-based statistics.

This algorithm differs from the hierarchical deformable registration algorithm dis-

cussed in Chapter 2 in the measurement of the goodness of the voxel deformation flow. In

this method, the goodness is the posterior probability of the current deformation, which is

maximized using prior statistics gathered from a training set; in the previous algorithm, the

badness is the intensity difference between spatially corresponding voxels in the atlas and

the subject volume, which was minimized over the volumes. Before undergoing deforma-
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tion, both algorithms globally align the two image volumes to eliminate extrinsic varia-

tions.

4.3  Performance evaluation

To validate this approach, the algorithm is applied to the same test set as described in

Section 2.4. Experiments are conducted to examine the effectiveness of the intensity and

geometric statistics alone as well as their combined strength.

4.3.1  Registration using the intensity statistics

The effectiveness of the intensity statistics model is tested by assuming a constant geo-

metric prior probability. The maximization problem in equation (8) simplifies to:

and equation (10) becomes:

Using this method to register the atlas with the test set, the overall mislabelled voxel

ratio is 3.8%. This is a 13.6% error reduction over the algorithm with no knowledge guid-

ance, which had an error rate of 4.4% (Section 2.4).

4.3.2  Registration using the geometric statistics

In this experiment, the effectiveness of the geometric statistics model is assessed, with

the intensity statistics assumed to be a constant. The maximization problem in equation (8)

becomes:

P D Id〈 | 〉 P Id D〈 | 〉∝

∇ Id µ–

σ2
----------------- I∇=

P D dI( ) P D( )∝
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and the 3-D gradient at each step is the second term in equation (10):

however, alone is insufficient to determine the deformation, because it ignores the

images being registered, and forces the deformation toward the average brain. To combine

the prior model prediction and the observed data, the inner product between and image

gradient is used to obtain a 3-D deformation gradient:

this helps to balance the influence of the prior distribution and the fidelity to the observa-

tions. When applied to register the atlas to the test set, this method yields an overall misla-

belled voxel ratio of 4.05%. This is an 8% error reduction over the algorithm with no

knowledge guidance.

4.3.3  Registration using the statistical atlas

When both intensity and geometric prior distributions are used, as derived in equation

(10), registration between the atlas and the test set yields an overall mislabelled voxel ratio

of 3.6%. This a 18.2% error reduction over the algorithm using the original atlas with no

knowledge guidance. Figure 35 shows an example of improved registration performance

using the statistical atlas, compared to result given by using the original atlas.

These experiments show that while the intensity statistics model is more effective than

the geometric one at guiding the deformable registration, the best registration result is

achieved when the intensity and geometric statistics models are combined. Figure 36 com-

pares registration performance using the original atlas, using voxel-based intensity statis-

tics only, using voxel-based geometric statistics only, and using the statistical atlas.

Registration using the full statistical atlas takes 35 minutes to register 3-D images of

256x256x124 voxels on a SGI workstation with four 194 MHz processors.

∇ Φ 1– ∆ϑ ω–( )=

∇

∇

∇̃ ∇
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4.4  Discussion

In order to build the statistical atlas, each image volume in the training set was warped

to match the atlas. Therefore, the geometric statistics represent the distribution of 3-D dis-

placements from each atlas voxel to voxels in different subject volumes. However, for most

applications, it is preferable to compute the inverse deformation i.e. to warp the atlas to

match the subject volume. In this way, anatomical classifications in the atlas can be cus-

tomized for the particular subject, thus facilitate interesting applications. Unfortunately, the

analytical inverse of the voxel-based 3-D deformation does not exist. One practical solution

is to interpolate the inverse deformation.

Figure 37 gives an 1-D illustration. Assume is one dimension in the atlas, and

is the corresponding dimension in the subject volume. From the statistical atlas, the corre-

spondence from each position on to that on can be computed. What is unknown is

 Use Statistical AtlasUse Original Atlas

Figure 35: Registration using the statistical atlas achieves
better performance than using the original atlas.

ϑ a ϑ s

ϑ a ϑ s
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the correspondence from each position on to that on . Take a particular position ,

the current hypothesis in gradient descent corresponds it to . However, from the prior

probabilities encoded in the statistical atlas, should correspond to via a displace-

ment . What needs to be determined is the correspondence for that is consistent

with the prior knowledge in the statistical atlas. Assume that the correct correspondence for

is only one small step away from , and that changes between neighboring dis-

placements are linear, we have
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Figure 36:  Error ratios of the test set given by registration using the
original atlas, using voxel-based intensity statistics only, using voxel-
based geometric statistics only, and using the statistical atlas. The
intensity statistics prior is more effective than the geometric one at
guiding registration; the best result is achieved using the statistical
atlas with both intensity and geometric statistics.
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Take Taylor expansion of , and ignore higher order terms give:

Combining the above two equations gives

In this way, the correspondence for , , is determined:

Empirically, the assumptions of small step and linear change in neighboring flows hold

well. More study on neighboring flows will be presented in Chapter 5.

4.5  Chapter summary

This chapter applies the statistical atlas to 3-D deformable registration. Using Bayesian

formulation, statistics embedded in the atlas function as prior probabilities. The optimal

deformation maximizes the posterior probability. This approach is evaluated by registering

the statistical atlas to the same test set as described in Section 2.4. The overall error rate is

3.6%, which is a 18.2% reduction over the previous algorithm (Section 2.4). However, the

current knowledge model is simply voxel-based statistics, considerations on neighborhood

context will be discussed in the next chapter.
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Prior

ϑ s1 ϑ a1 µ ϑ a1( )+=

Hypothesis

• Small Step

• Linear Change in
Neighboring Flows

Interpolate Flow
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Figure 37: 1-D illustration of interpolating the inverse deformation
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CHAPTER 5 Model Neighborhood
Context

Currently, anatomical variations between individuals are modeled as voxel-based sta-

tistics. This representation is simple and efficient, as demonstrated in Section 4.3. How-

ever, information on voxel neighborhood context is missing. Figure 38 is a close-up on the

posterior part of corpus callosum in the mid-sagittal plane. 2-D projections of the 3-D

deformation flow are overlaid on top of the intensity image. Note that the deformation flow

is smooth and congruous locally, which means the deformation at each voxel is not com-

pletely independent of its neighbors. Therefore, a more comprehensive model should con-

sider this dependency between neighboring voxels, which will be the focus of this chapter.

5.1  Modeling neighborhood context

A convenient way to model neighborhood dependency is a direct higher dimensional

extension of the voxel-based statistics models. Consider a 3-D neighborhood of NxMxK

centered at an atlas voxel; the distribution of intensity variations of this neighborhood is
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modeled as an  dimensional Gaussian distribution, where  equals NxMxK:

here is an vector of intensity differences between the corresponding neighbor-

hoods in the subject volume and the atlas; is the current 3-D deformation. is the

mean vector of the neighborhood intensity variation distribution; is the covariance

matrix of the intensity variation distribution. Here has been adjusted for extrinsic inten-

sity variations induced by separate image acquisition processes.

Similarly geometric variations of a NxMxK neighborhood centered at each atlas voxel

can be modeled as a  dimensional Gaussian distribution:

where is the vector of the neighborhood’s 3-D displacements; is the

mean vector of the neighborhood’s 3-D deformation flow; is the covariance

matrix of the distribution of geometric variations. Here has been adjusted for extrinsic

geometrical variations. Note that the voxel-based statistics models are a special case of the

neighborhood statistics models with a 1x1x1 neighborhood. Also note that the size of

and grows exponentially as increases, which makes computation expensive, as will

be discussed in the following section.
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5.2  Registration using neighborhood context

The same deduction procedure as in Section 4.2 is used to determine the deformation

that maximizes the posterior probability for a voxel neighborhood; the 3-D gradi-

ent of voxels in the neighborhood is:

Theoretically this algorithm can be implemented in the same way as the voxel-based

statistics models; however, the intensity covariance matrix has dis-

tinct entries, and the geometric covariance matrix has dis-

tinct entries. MRI volumes typically have more than 8 million voxels. Even if all entries in

the covariance matrices can be stored as bytes, the covariance information for each 2x2x2

voxel neighborhood will still require 336 MByte memory. Together with other memory

requirements, the total demand makes this approach impractical.

Figure 38: the posterior portion of the corpus callosum in the
mid-sagittal plane, overlaid with the 2-D projection of the 3-D
deformation flow. The deformation is smooth locally.
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To simplify the problem, only the interactions between immediate neighbors are con-

sidered. Instead of storing interactions between immediate neighbors, they are computed

on the fly. The voxel-neighbor interactions are estimated using the goodness of the neigh-

bors’ current match according to their respective prior distributions. Figure 39 illustrates

the idea: the goal is to find a match for the black voxel in the subject; however, when no

neighborhood context is considered, there is ambiguity as to which black voxel in the atlas

it should match to. But when considering the goodness of how well the neighbors of the

black voxel in the subject match with their counterparts in the atlas, it is clear which atlas

voxel it should match to.

Using a weighted-window matching approach, the goodness is weighted by the dis-

tance between the current voxel under investigation and the particular neighbor. Therefore,

for a voxel neighborhood , the 3-D gradient determined using neighborhood context is a

direct extension of equation (10):

Atlas Subject

?
Figure 39: Registration using neighborhood context
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5.3  Performance evaluation

The algorithm is evaluated by registering the atlas to the same test set as in Section 4.3.

The size of the voxel neighborhood used is 3x3x3. Weights of neighboring voxels are

inversely proportional to their distance from the voxel under examination. Empirical num-

bers used are 0.01 for 8 farthest neighbors, 0.014 for 12 intermediate neighbors, and 0.017

for 6 closest neighbors. Experiments showed that as long as major weight is put on the cen-

tral voxel, registration results are not sensitive to the particular numbers. Registration using

neighborhood context achieves an overall error ratio of 2.9%. This is a 34% error reduction

over the algorithm with no knowledge guidance, and a 19.4% error reduction over registra-

tion using the statistical atlas. Figure 40 shows an example of better registration achieved

by using neighborhood context, and Figure 41 compares examples of segmentation given

by the algorithm, and the respective segmentation given by experts.

 Use Neighborhood Context Use Voxel-based Statistics

Figure 40: Better registration is achieved
by considering neighborhood context.
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This weighted window matching approach yields better results than using voxel-based

statistics without increasing memory demand, as compared in Figure 42. However, it is

much more computationally expensive. To register 3-D images of 256x256x124 voxels on

a SGI workstation with four 194 MHz processors will take 57 minutes. Appendix C com-

pares the expert segmentation and the computed segmentation of the corpus callosum in the

mid-sagittal plane of each of the 40 test cases. The images are binary, with the corpus cal-

losum shown at intensity 140, and the rest shown as zero intensity background. Error ratios

given by the weighted window matching approach are listed under respective computed

segmentations.

Expert Segmentation Automatic Segmentation

Figure 41: Examples of automatic segmentation compared
to their respective expert segmentation
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5.4  Distance Error Metric

So far the quantitative evaluation of registration performance has been using the ratio

of mislabelled voxels as the measurement. While this metric is effective, it does not differ-

entiate various error voxels. Figure 43 illustrates a scenario where more discriminative

evaluation is necessary. The shaded region is the ground truth segmentation given by an

expert, and dashed outlines are results yielded by the registration algorithm. Suppose the

two examples shown in Figure 43 have the same number of mislabelled voxels, the current
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Figure 42:  Error ratios of the test set given by registration without
knowledge guidance, registration using voxel-based statistics, and
registration using neighborhood context. The best result is achieved
when neighborhood context is considered.
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error metric will give them the same evaluation. However, errors in these two results are of

different significance. For the example shown on the left, its error voxels occur close to the

boundary of the ground truth segmentation; whereas for the result on the right, many of its

error voxels stray considerably away from the ground truth segmentation. Therefore, in

terms of segmentation quality, the example on the left is better than the one on the right.

A more discerning measurement is the distance between each boundary voxel of the

computed segmentation and the closest boundary voxel of the ground truth segmentation.

Under this metric, error voxels that are far away from the true boundary will be penalized

more than error voxels that occur close by the ground truth., i.e. it de-emphasizes errors that

are near the true boundary. This is especially advantageous considering boundary voxels

are of higher uncertainty even in expert segmentation.

Using the distance error metric to evaluate the registration performance of the weighted

window matching approach, the mean distance of error voxels for the test set is 1.535 mm,

and the standard deviation is 0.762 mm. Figure 44 shows histogram distributions of dis-

tance measurements of boundary voxels. The histogram at the top includes the correct

boundary voxels, i.e. the voxels that lie on the true boundary. Because the number of cor-

rect boundary voxels is orders of magnitudes larger than the number of erroneous boundary

voxels, it is impossible to visualize the distribution of distance measurements of error vox-

Figure 43: A senario that demands more discriminative evaluation. The shaded

region is the ground truth segmentation given by an expert, and dashed outlines are

results yielded by the registration algorithm. Suppose the two examples have the

same number of mislabelled voxels, using the ratio of mislabelled voxels will give

them the same evaluation. However,in terms of segmentation quality, the example

shown on the left is better than the one shown on the right.
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els. Therefore, the correct boundary voxels are excluded in the histogram on the bottom,

thus allowing visualization of the distribution of error voxels in terms of the distance met-

ric. The vertical axis of this histogram is at a scale of the top one. Note that most

error voxels are within 2 mm from true boundaries, with few voxels being farther than 4

mm away, and no voxels are beyond 9.4 mm distance. Considering the average length of

the corpus callosum is around 100 mm (4 inches), this level of accuracy is satisfactory.

5.5  Discussion

Markov Random Field (MRF) has been used in computer vision to model smoothness

as well as different textures. Typical solvers for MRFs include Gibbs sampling [35], the

Metropolis algorithm [68], Iterated Conditional Modes (ICM) [5], and Mean-Field (MF)

methods [34]. Kapur et al. used a discrete vector valued Markov Random Field model as a

regularizing prior in a Bayesian classification algorithm to minimize the effect of salt-and-

pepper noise. They presented preliminary results on segmentation of white matter, gray

matter, fluid, and fat in brain MRIs [49]. The possibility of using MRF to model neighbor-

hood context was investigated. However, the dimensionality of volumetric data and the 3-

D nature of deformation fields have so far made the memory demand prohibitive even for

the 1-order model. With computer memory more readily available, this is an alternative

worth studying.

5.6  Chapter summary

This chapter discussed the modeling of neighborhood context in the statistical priors,

and an implementation of applying such knowledge to guide registration. Quantitative

evaluation demonstrated better performance than using just voxel-based statistics. A new

error metric based on distances between boundary voxels of the computed segmentation

and the ground truth is introduced, and employed to assess the registration performance

using neighborhood context.

7 9000⁄
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Figure 44: Histogram distributions of distance measurements of boundary
voxels. The top graph includes the correct boundary voxels, whereas the
bottom graph shows the distribution of error voxels only.
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CHAPTER 6 Implementation
Details

Several issues in the implementation are crucial to robust and efficient performance.

They apply to both the algorithm using the statistical atlas, and the earlier method without

knowledge guidance. This chapter will discuss them in detail.

6.1  Background Separation

Since the algorithms do not require prior segmentation or feature extraction, each voxel

in the image data is given equal weight in the registration. However, there is often back-

ground noise in the data, which necessitates background separation to ensure only relevant

voxels contribute to the registration process.

A thresholding method is applied to eliminate dim background noise. The threshold is

automatically selected as the first valley of the intensity histogram of the 3-D image, after

it is smoothed using a Gaussian filter (the Gaussian kernel used is of size 7). This produces

a binary image volume with the background intensity set to zero.
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Apart from dim background noise, there also exists bright outliers that have similar

intensities as certain anatomical structures. Since the region containing the head volume is

connected, a connected-component algorithm is applied to the thresholded binary image

volume, and the largest connected component is selected. Any holes caused by dark regions

inside the head volume are filled in. The result is a binary image volume with only voxels

inside the connected component being above zero intensity. This binary volume functions

as a mask to ensure only voxels within the head volume are considered in later processing.

6.2  Adaptive Multi-resolution Processing

Multi-resolution processing has been extensively used in computer vision algorithms,

such as stereo matching and motion estimation. This approach first solves the matching

problem on smaller, lower-resolution data, use the result to initialize higher-resolution esti-

mates, and refine it using details present at the higher resolutions. Its advantage includes

increased computation efficiency, as well as the ability to escape from local minima by first

focusing on global patterns.

MRI volumes are high dimensional data, which makes efficient processing imperative.

The current registration algorithm uses two strands of adaptable multi-resolution process-

ing: one is an image pyramid, the other is a control grid pyramid (in smooth deformation).

Sizes of MRI volumes vary depending on the number of slices. Among the over two hun-

dred MRIs processed by the registration algorithm, the number of slices ranges from 7 to

256. To make the multi-resolution scheme adaptive to different volume sizes, the minimum

number of slices in the subsampled image volumes and the control grid cells are enforced.

The current empirical number is 30 slices for image volumes, and 15 slices for each control

grid cell. This ensures the subsampled volumes and the control grid cells to contain suffi-

cient image information. In the image pyramid, each level has half the resolution of the next

higher level; in the control grid pyramid, the numbers of control points along x, y, and z

increase from 2 at an interval of 1 at each higher lever. For image data so far examined, the



87

highest image pyramid has 3 levels, and the highest control grid pyramid has 7x7x7 control

points.

6.3  Random Initialization

For the ease of application, the algorithms are fully automated. Global Alignment, the

first step of registration, is initiated by trying many random similarity transformations and

picking the one which gives the minimum SSD [74].

Because brain MRI volumes are not taken in a completely random manner, it is efficient

to limit the infinite choices to those that are possible. Since the registration between the

atlas and different subjects is of particular interest, the coordinate frame of one volume, the

atlas, is thus fixed. There are three principal axes along which brain MRIs are taken

(Section 1.4.1), which gives six possible gross orientations of the volumes. For initializa-

tion, it is sufficient to limit the possible rotations from the atlas to these six orientations. As

for translation and scaling, possible transformations are randomly sampled at small inter-

vals within empirical ranges. Currently, random initialization is conducted on images vol-

umes at the coarsest level of the image pyramid. The range for translation is [-8, 8] voxels

along each X-Y-Z dimension, the range for uniform 3-D scaling is [0.9, 1,1]. The number

of random translation and scaling tried for each rotation angle is 300.

6.4  Stochastic Sampling

To further improve algorithm efficiency, not every voxel is processed during the opti-

mization in global alignment and smooth deformation. Instead, a random set of voxels is

sampled at each iteration of the optimization processes. This method is valid because the

optimization processes are over-constrained, i.e. the number of voxels is orders of magni-

tudes greater than the number of parameters to be optimized. It is not necessary to involve

each voxel to solve for the parameters. Moreover, the stochastic nature of the sampling

helps the optimization processes to escape from local minima [103]. In the current imple-

mentation, the percentage of voxels sampled is 1%. For fine-tuning deformation, it has 3
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times as many parameters as the number of voxels, i.e. the problem is highly undercon-

strained, therefore stochastic sampling is not appropriate.

6.5  Parallel Processing

In the registration algorithms developed in this thesis, the computation for each voxel

is identical. Therefore, the process is voxel-wise parallelizable. To reduce overhead, paral-

lel processing is employed at a higher level than the voxel representation. During the

random initialization of global alignment, each combination of transformation parameters

is examined in parallel; during smooth deformation, each control grid cell is processed in

parallel; whereas in fine-tuning deformation, each slice of the image volume is processed

in parallel.
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CHAPTER 7 Quantitative Study
of the Anatomy

A quantitative study of anatomical structures brings broad prospects to medical

research. It allows measurement of the range of normal variation, and the detection of

abnormalities. Statistics on anatomy and pathologies can help express expert knowledge so

as to enhance medical education. Furthermore, quantitative description of medical image

content will facilitate efficient retrieval in the ever increasing medical databases.

Imaging techniques such as computed tomography and MRI have made it possible to

make non-invasive measurements of anatomical structures. However, traditional mor-

phometry or volumetry (i.e. the measurement of substructural volumes), has been per-

formed manually or semi-automatically. These methods are limited by relatively high error

and low repeatability attributable to the subjective assessment of substructure boundaries

required for manual outlining. However, the magnitude of the volume changes in diseases

such as neurological and psychiatric disorders may be small relative to the error associated

with these measurement techniques. Also, manual operations are tedious and time-consum-

ing, which hampers study of statistically significant data sets.
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Major sources of error in manual measurement of anatomical volumes, in order of mag-

nitude, come from (a) subject variability, (b) the observer, (c) the method of volume esti-

mation from the digital image, (d) voxel representation, and (e) the imager. Automatic

algorithms can help reduce the second and third sources of error listed above. For example,

it was reported that using interactive thresholding methods, expert observers could learn to

measure anatomical structures with a precision of about 2%; i.e. with practice a single

person could learn to measure structures such as grey and white matter repeatedly on the

same brain image within that degree of consistency. However, the same observers pro-

duced measurements that differed between observers by 15% [41]. Similar intra- and inter-

operator reliability of 5-20% was also mentioned in [70]. Since a long-term clinical study

cannot depend on the availability of the same observer throughout the study, a more objec-

tive automatic algorithm with comparable accuracy is advantageous. Besides, characteriza-

tion of subtle anatomic aberrations, such as have been found in schizophrenia, requires

quantifying local variability across subjects. This requirement makes high dimensionality

of the transformations on the coordinate systems essential, which can be readily provided

by automatic algorithms that allow local deformations. In addition, the efficiency of an

automatic algorithm allows the study of large data sets, which is basic to sound conclu-

sions. Furthermore, it has been the case in this field that different research groups collect

separate data sets, and use different operators or semi-automatic tools to analyze the data.

Although they have had conflicting conclusions, it has been hard to reproduce or cross-val-

idate each other’s results. The performance consistency of automatic algorithms makes

cross-examination possible. This chapter will discuss the application of the aforementioned

registration algorithm to quantitative study of the anatomy:
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7.1  Related work

Due to its interdisciplinary nature, the application of automatic algorithms in the quan-

titative study of anatomy has been scarce. Haller et al. examined automated 3-D MRI mor-

phometry of the human hippocampus by deformably matching a canonical atlas to 10 test

volumes [39]. Their results showed that the automated method estimated hippocampal vol-

umes with less variability than that of manual outlining. Davatzikos et al. proposed an

approach for quantifying the shape of the corpus callosum, based on the Talairach space

normalization and on the measurement of a 2-D deformation function resulting from elas-

tically registering the Talairach atlas with subject images [21]. They compared the corpus

callosum in the mid-sagittal plane of eight male and eight female subjects. Results sug-

gested that the splenial (posterior) region in adult females’ corpus callosum is larger than

in males, which agreed with some previous reports.

7.2  An automatic system

for the quantitative study of anatomy

The 3-D deformable registration algorithm developed in this thesis can readily apply to

the quantitative study of the anatomy. As discussed in Section 1.1, by registering the atlas

Study of Differences
between Populations

Anomaly
Detection

Characterization of Brain
Anatomy and Its Variations

 RegistrationImage Data
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with a particular subject’s image volume, the anatomical classification in the atlas can be

customized for the subject, therefore the 3-D segmentation of the subject’s anatomical

structures (Figure 3). Once the segmentation is acquired, quantitative study on the size and

shape of anatomical structures can be conducted.

In order to investigate and demonstrate the feasibility of such approach, a convenient

interface has been developed for quantitatively examining brain anatomy, as shown in

Figure 45. The left image is one slice of a subject’s T1-weighted MRI volume, and on the

right is the corresponding segmentation automatically customized from the atlas. The seg-

mentation is color-coded to represent different anatomical structures. To study any struc-

ture, the user simply clicks on it, and the system instantly overlays the segmentation

outline(s) on the intensity data. The name of the structure and several measurements such

as its volume and average density are automatically computed for illustration. For struc-

tures having symmetric counterparts, measurements of the parallel are also displayed. The

slide bar in the left bottom allows the user to examine the 3-D volume. The underlining

computer languages of this interface are C/C++ and Tcl/Tk, which are commonly available

on SGI Irix and SUN Solaris platforms. For applications looking at large populations, the

automatic atlas-subject registration, customization of anatomical segmentation, and quan-

titative analysis can be readily pipelined.

7.3  Feasibility study

In order to prove the potential of automatic quantitative analysis of the anatomy, and to

test its acceptability to medical professionals, several collaborative study have been con-

ducted with research groups in medical institutions.

7.3.1  Lateral Ventricles and Schizophrenia

Ever since the evolution of the concept of the schizophrenic illness, it has been argued

that at least some patients may have a deteriorative process at work. However, studies

examining the progression of brain structural alterations in schizophrenia have led to con-
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flicting results. Some researchers have found accumulating evidence for abnormalities in

brain structure in adults with schizophrenia, such as lateral ventricular enlargement[24],

[81], whereas some other researchers contend that no substantial differences are seen in

their studies [3], [85]. Researchers at Western Psychiatric Institute and Clinic of the Uni-

versity of Pittsburgh Medical Center have been studying the possible structural and func-

tional changes in schizophrenic patients [51]. However, so far their experiments employ

human operators using semi-automatic tools to acquire anatomical segmentation.

Figure 45: An interface showing one slice of a subject’s data
(left), and its automatically computed anatomical segmentation
(right). When the user selects a structure, its segmentation
outline is overlaid on the intensity data. The structure’s name
and several measurements are automatically displayed.
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Based on mutual interest in automatic quantitative analysis, segmentation of the right

lateral ventricle in nine schizophrenics and twelve normal controls were conducted both by

their operators and the automatic algorithm. Histograms of respective volumetric measure-

ment given by both methods are compared in Figure 46. The top row shows results given

by their operators, with the left histogram for normal controls, and the right one for schizo-

phrenics; the bottom row gives corresponding results from the automatic analysis. Despite

a systematic tendency of larger volumes estimated by the automatic algorithm, results from

these two methods are highly correlated (Pearson’s correlation coefficient = 0.95). Both

seem to suggest lateral ventricular enlargement in schizophrenics.

7.3.2  Corpus Callosum and Female Alcoholics

The corpus callosum is the main fiber tract connecting the two brain hemispheres, con-

sisting of approximately 200-350 million fibers in man. Surgical transection of the callo-

sum in humans provides evidence that it functions to communicate perceptual, cognitive,

mnemonic, learned and volitional information between the two brain hemispheres. Given

the importance of sensory, motor, and cognitive callosal relay between brain hemispheres,

this anatomic region has been a focus of studies examining structural and functional neu-

ropathology [97]. In disease, effects on callosal structure are observable at both cellular and

gross anatomic scales. However, intense controversy exists on the question of whether dif-

ferent callosal regions undergo selective changes in certain diseases.

Researchers at National Institute on Alcohol Abuse and Alcoholism, National Institute

of Health, have been investigating gender differences in alcoholism-related brain atrophy.

They examine mid-sagittal MRI scans from of similarly aged alcoholic women and men

and normal controls, and measure the cross-sectional area of the corpus callosum to exam-

ine brain damage. Unlike other investigators who found that alcoholic women have equal

[45], [64] or even smaller [56] ventricles than alcoholic men, they observed that the corpus

callosum area was significantly smaller (which leads to larger ventricles) among alcoholic

women than nonalcoholic women or alcoholic men. These results suggest an increased sen-
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Figure 46: Histograms of right lateral ventricle volumes of normal
controls and schizophrenics, resulted from manual estimation (top)
and automatic analysis (bottom). High correlation is observed
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sitivity to alcohol-induced brain damage among alcoholic women compared with alcoholic

men [42].

In an attempt to validate their study as well as to test the automatic analysis, MRI data

of 14 alcoholic women and 9 nonalcoholic women were examined by both their human

operator and the automatic algorithm. Figure 47 compares histograms of the corpus callo-

sum size in the mid-sagittal plane given by researchers at the NIH (top), and that given by

automatic analysis (bottom). Histograms on the left are for nonalcoholic controls, whereas

those on the right are for alcoholics. Despite an overall bias of larger areas computed by the

algorithm, the correlation between the results is fairly high (Pearson’s correlation coeffi-

cient = 0.89). The automatic analysis supports the observation from manual estimation.

The above studies demonstrated high correlation between results given by the auto-

matic analysis and human operators. Limitations of the automated method include potential

biases introduced by the classification in the reference atlas, as observed in both experi-

ments (Figure 46, Figure 47). This is analogous to the differences found between two

observers segmenting the same data. In theory, a representative average atlas combining

multiple experts’ opinions would eliminate this bias, and provide a better reference tem-

plate.

7.4  Chapter summary

This chapter introduced an automatic system for conducting quantitative analysis of the

anatomy, and demonstrated its feasibility in two collaborative clinical studies. Quantitative

study of anatomical differences between populations is attracting more and more attention,

such as the recent publication on the differences between Einstain’s brain and that of ordi-

nary people. With the assistance from automatic systems, it will be possible to study large

data sets of various subpopulations to look for minute differences that are so far unknown.
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Figure 47: Histograms of corpus callosum size in the mid-sagittal plane
of normal controls and alcoholics, resulted from manual estimation
(top) and automatic analysis (bottom). Good correlation is observed.
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CHAPTER 8 Anomaly Detection
thrOugh REgistration

Knowledge of normal anatomical variations can not only enable quantitative study of

anatomical differences between populations, as discussed in the previous chapter, it can

also facilitate detection of abnormal variations that are indicative of possible neuropathol-

ogy, which will be the focus of this chapter.

Study of Differences
between Populations

Anomaly
Detection

Characterization of Brain
Anatomy and Its Variations

 RegistrationImage Data



100 Chapter 8  Anomaly Detection thrOugh REgistration

8.1  Related work

Many researchers have approached automatic pathology detection through segmenta-

tion, using methods such as neural networks [54], automatic segmentation using a 3-D geo-

metric brain tissue probability model [48], and spatially weighted K-means histogram-

based clustering [61].

A different research avenue is using registration to detect abnormalities. Warfield et al.

developed an elastic matching algorithm that warps a reference data set containing infor-

mation about the location of the grey matter into the approximate shape of the patient’s

brain. White matter and white matter lesions were then segmented without interference

from grey matter, using a two class minimum distance classifier [105]. Experiments on seg-

menting multiple sclerosis in sixteen patients were promising. Kyriacou and Davatzikos

studied finite element analysis to simulate soft tissue deformation in the brain caused by

tumor growth, and tested on 2-D elastic registration of a standard brain atlas to simulated

data and one tumor-bearing image [57]. Martin et al. proposed a method to separate out

important from unimportant shape variation across a class of objects, so as to quantitatively

describe pathological shape variations. By modeling the brain’s elastic properties, they

were able to compensate for some of the non-pathological modes of shape variation, and

characterize modes of variation that are indicative of neuropathology [66]. Thompson et al.

discussed tracking tumor growth rate by rigidly transforming subject data into Talairach

stereotaxic space, and aligning a population-based probabilistic tissue map to the subject

data. A Gaussian mixture distribution reflecting the intensities of specific tissue classes at

each time-point in the scan series was determined, and tissue types were differentiated

using a nearest neighbor algorithm [98].

8.2  Symmetry versus asymmetry

There are many types of neuropathology, of particular interest are pathologies that

affect the structural symmetry. The organizational scheme of many animal species is based
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on bilateral symmetry: some organs appear in pairs in the body, “symmetrical” with respect

to the mid-plane; other organs are placed near the mid-plane and are also approximately

symmetrical. This symmetry is rather general for the human head, including the brain and

its two hemispheres. One example is shown in the left of Figure 48. There is approximate

symmetry about the central line.

On the other hand, symmetrical anatomical structures are sometimes also asymmetric,

which means each of the two organs in a pair can present a specialization and therefore a

slightly different morphology. For the human brain, some normal functional asymmetries

are well known, which translate into morphological asymmetries. Furthermore, certain

pathologies cause mass effect, which forces nearby structures to shift from their normal

positions and incur abnormal asymmetry, as shown in the example on the right of

Figure 48.

Lateral
Ventricles

Figure 48: The corresponding cross-sections of a
normal and a pathological brain. The symmetry in
the normal brain is lost in the pathological one.

Chronic
Subdural
Hematoma

Normal Pathological
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8.3  Anomaly detection using asymmetry

Using asymmetry to detect pathology is a familiar concept to specialists such as radiol-

ogists [22]. However, studies conducted by specialists suffer from sensitivity with respect

to the operator. In addition, structures in the 3-D image are studied independently slice by

slice, with the underlying assumption that the slices are exactly perpendicular to the sym-

metry plane. Moreover, rich 3-D information of anatomical structures are generally

reduced to measurements such as lengths or widths.

Many researchers have worked on automating the analysis of symmetry and asymme-

try. Liu et al. developed a technique for extracting the symmetry plane in axial images, and

demonstrated its effectiveness in clinical data containing pathologies [59]. Marias et al. fit

a 3-D mid-plane to a set of mid-lines detected using 2-D Snakes, and realigned the 3-D

image with respect to the mid-plane. They extracted the cortical surface using a propaga-

tion of 2-D Snakes, and measured the perpendicular distance from the mid-plane to the cor-

tical surface for both sides to quantify asymmetry. Information from several subjects was

then fused by matching the cortical surfaces [65]. Thirion et al. adopted a 3-D volumetric

approach along the same theme [93]. They detected the symmetry plane by a least squares

fitting from features matched in both object sides, and defined the asymmetry map over the

3-D image, instead of only on the mid-plane. Moreover, they used 3-D volumetric non-

rigid matching for inter-subject data fusion, which allows local analysis such as expansions

or atrophies. The potential of their method was illustrated in preliminary results.

8.3.1  Anomaly detection via quantifying asymmetry

As noted above, quantification of normal asymmetry can be a powerful tool to detect

abnormalities. Comparing the examples in Figure 48, brain symmetry and asymmetry are

the most conspicuous in the size difference between the pair of lateral ventricles. Using the

system developed in the previous chapter, the normal asymmetry of the lateral ventricles

has been studied. The measurement for asymmetry is the absolute volume difference

between the left and right lateral ventricles. The population studied consists of 128 non-
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pathological human brains. Figure 49 shows the histogram distribution of the asymmetry

in this population. The horizontal axis is the absolute ventricular volume difference in cm3,

the vertical axis is the percentage of normal brains whose lateral ventricle size differences

fall between certain range. Note that for 85% of the subjects, the asymmetry between the

pair of lateral ventricles is within 1 cm3; however, about 1% of the normal subjects have

lateral ventricles that differ in size by more than 3 cm3.

To examine the potential of detecting abnormal asymmetry, the asymmetry measure-

ment of the pathological brain in Figure 48 is located in the distribution (Figure 49). Note

that although the lateral ventricles in the pathological brain is strikingly asymmetric, which

is consistent with the fact that it falls in the outmost bin of the histogram, it still has com-

pany from normal subjects. Therefore, such asymmetry is only indicative of a possible

anomaly, but not conclusive. It needs to be combined with other diagnosis to give a definite

answer.

8.3.2  Anomaly detection via mirror registration

A more direct application of registration to detect asymmetry is to match a 3-D image’s

mirror image to the original one. The mirror image is created by flipping the volume about

its mid-sagittal plane. For a normal brain with approximate symmetry, little deformation is

needed to align its mirror image to itself; for a brain with pathologies that cause asymmetry,

a more significant deformation will be necessary. Examples in Figure 50 demonstrate this

idea. Subjects studied include one normal control, one patient with chronic subdural

hematoma (bleed), and one with a tumor. The top row shows axial cross-sections from each

subject’s volume. The bottom row shows the same cross-sections overlaid with the 2-D

projection of the 3-D deformation flows necessary for matching each subject’s mirror

image to the original volume. For the normal brain, the magnitude of the deformation vec-

tors is negligible because it is approximately symmetric. For the brain with a bleed, the

deformation flows have a much larger magnitude, and follow a uniform direction. This

direction suggests the source of the asymmetry, i.e. the bleed. Unlike most image volumes

examined in this thesis, the 3-D image with a tumor is a CT scan. Its deformation flows also
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have a large magnitude, and demonstrate a swirl pattern. This is because the tumor is so

close to the mid-sagittal plane that its “counterpart” in the mirror image partly matched

with itself. Characterization of the deformation flows can help detecting, locating, and clas-

sifying anomalies that affect brain symmetry.

8.4  Detect abnormal variations

Despite drastic individual variability in the anatomy, there still exists a distinction

between the normal range of variability and pathology-afflicted alteration. Figure 51 com-
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Figure 49: Histogram of the absolute volume difference between
the pair of lateral ventricles of 128 normal subjects. A pathological
brain falls in the outmost bin of the histogram.
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pares the label, skull, between the atlas and a brain with chronic subdural hematoma. The

Skull in the pathological brain was segmented by registering with the atlas, and thus cus-

tomizing the volumetric classification in the atlas. Note that the skull in the atlas has uni-

form thickness, with variations within a small range, whereas the thickness of skull in the

pathological brain varies significantly. This is because the pathology, hematoma, is non-

existent in the atlas. During registration, it was mistakenly matched to the neighboring

structure with similar intensity, the skull.

Bleeding TumorNormal

Figure 50:  Several subjects (top) and the deformations incurred in
matching their mirror images to the original volumes (bottom overlay).
Large deformations present for pathological cases.
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A statistical study of the skull volume over a population of 48 normal subjects gives a

histogram distribution shown in Figure 52. The horizontal axis is the volume of the skull in

cm3, the vertical axis is the percentage of subjects studied. Note the wide range of varia-

tions among normal subjects. The estimated skull volume in the pathological brain is

106.57 cm3, which falls beyond the normal distribution. Combined with the analysis using

symmetry, this can be used as another clue for anomaly detection.

8.5  Chapter summary

This chapter presented explorations in using registration for pathology detection. Com-

bining analysis of normal asymmetry and normal range of variations in a population,

pathologies that affect brain morphology can be indicated. However, white matter lesions

such as multiple sclerosis do not cause significant distortion of a patient’s anatomy, which

Figure 51: Comparing the label, skull, between a normal
brain and a brain with chronic subdural hematoma.

Skull

Normal brain Pathological brain
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makes it difficult for deformable registration to detect. Approaches combining statistical

classification and deformable registration may promise to overcome the limitations, as pro-

posed in [105].

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

5

10

15

20

25

30

P
e

rc
e

n
ta

g
e

 o
f 

n
o

rm
a

l 
b

ra
in

s

Skull Volume (cm
3
)

Figure 52: Histogram of the skull volume of 48 normal subjects. A
pathological brain falls beyond the normal range of variations.
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CHAPTER 9 Conclusion

This thesis has focused on extracting and modeling the knowledge of non-pathological

anatomical variabilities between individuals, and the application of such knowledge to

achieve more accurate registration than traditional image-based correspondence. Inherent

anatomical variations are automatically extracted by deformably registering training data

with an expert-segmented 3-D image, a digital brain atlas. Statistical properties of the den-

sity and geometric variations in brain anatomy are evaluated and encoded into the atlas to

build a statistical atlas. These statistics can function as prior knowledge to guide the auto-

matic registration process. Compared to an algorithm with no knowledge guidance, regis-

tration using the statistical atlas reduces the overall error on 40 test cases by 34%.

The designed algorithm is fully automatic, efficient, and has an accuracy comparable

to human performance. When a pre-segmented image volume, referred to as an atlas, is reg-

istered to a new input image data, referred to as a subject, the anatomical segmentation in

the atlas can be customized for the subject. This reduces the months-long manual segmen-

tation process to minutes, thus enables applications such as quantitative study of anatomical

differences between populations on statistically significant data archives, and objective
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cross-validation of different researchers’ discoveries. In addition, characterization of non-

pathological variations facilitates detection of abnormal variations indicative of possible

pathologies.

9.1  Highlights of Contributions

Registration Algorithm

(i) 3-D hierarchical deformable registration algorithm (Chapter 2): an automatic, effi-

cient, and reasonably accurate algorithm that can be employed to extract anatomical

variabilities between individuals.

• 3-D grid-based deformable registration (Section 2.2).

• Hierarchical intensity equalization, specifically the structure-based intensity

transformation (Section 2.3).

(ii) Registration using the statistical atlas to achieve higher accuracy (Chapter 4 and

Chapter 5).

• Probabilistic matching under Bayesian formulation (Chapter 4).

• Weighted-window matching to incorporate neighborhood context (Chapter 5).

(iii) Efficient implementation techniques, enabling fast deformable registration of 3-D

images (Chapter 6). To register 3-D images of 256x256x124 voxels on an SGI work-

station with four 194 MHz processors, the 3-D hierarchical deformable registration

algorithm takes 18 minutes, registration using voxel-based statistics takes 35 minutes,

and registration with neighborhood context takes 57 minutes.

• Random initialization (Section 6.3).

• Adaptive multi-resolution processing (Section 6.2).

Extraction of Anatomical Variabilities

(i) Automatic extraction and characterization of non-pathological anatomical variations

between individuals (Chapter 3).

• Knowledge extraction from a considerable population of 105 normal brain MRI

volumes. This is a larger population than what is employed in most related work.

(ii) A 3-D statistical atlas (Chapter 3): a global, volumetric representation of anatomical

variabilities between individuals.
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(iii) Bootstrap strategy to reduce imprecisions in knowledge models propagated from

inaccurate automatic registration.

Quantitative Evaluation of Registration Performance

(i) Quantitative evaluation of performance on a sizable test set of 40 MRI volumes. This

is considerably larger than what is used in most related work.

(ii) Developed and demonstrated the efficacy of two new performance metrics for quanti-

tative evaluation of 3-D registration results (Section 2.4.2, Section 5.4).

(iii) Registration accuracy of 2.9% overall error compared to expert performance. This is

arguably one of the most accurate deformable registration results published.

Figure 53 compares registration results given by each level of the 3-D hierarchical

deformable registration, registration using voxel-based statistics, and registration

using neighborhood context. The reduction in error ratio is significant along the hier-

archical deformation (Figure 53 a), and considerable while more comprehensive

knowledge model is employed (Figure 53 b).

Applications

(i) Feasibility study of applications in quantitative analysis of anatomical differences

between populations, with results highly correlated to human operation (Chapter 7).

(ii) Experiments on using knowledge of non-pathological variabilities to detect abnormal

variations that are indicative of pathologies (Chapter 8).

(iii) Mirror-registration for asymmetry detection (Chapter 8).

9.2  Future Directions

This thesis has investigated the problems of extracting and modeling anatomical vari-

abilities between individuals, the application of such knowledge to achieve accurate regis-

tration, and the use of registration to quantitatively study anatomical differences between

populations. The current research is an early investigation in the vast and largely unknown

field of computational anatomy, much remains to be explored and refined.

9.2.1  Methodology

One important issue is to refine the statistical atlas by building population-specific

atlases. To produce population specific representations of anatomy, data from large popu-
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lations need to be stratified into subpopulations according to age, disease state, gender and

other demographic criteria. Brain atlases constructed from subpopulations encode informa-

tion on population variability, and therefore can facilitate study of identifying group-spe-

cific patterns of anatomic or functional alterations. Researchers at the Laboratory of Neuro

Imaging in the University of California at Los Angeles, are building population-based dig-

ital brain atlases for Alzheimer’s Disease and schizophrenia. Atlases for different age

groups will also help studying anatomical changes in development and aging.

Under the current implementation, the training set is mapped to the atlas’ reference

frame using an automatic registration algorithm with inaccuracies; intensity differences
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statistical atlas , and using neighborhood context.



113

caused by image acquisition are separated from inherent tissue density variations using

hierarchical intensity equalization, which also contains imprecisions. Errors in registration

and intensity normalization affect the accuracy of models of anatomical variabilities, and

thus the rigorousness of using such models as prior knowledge to further guide registration.

One practical approach to alleviate this problem is to build an initial statistical atlas from a

small but accurately registered training set, then bootstrap it into a model based on a con-

siderable training set. Modeling the effects of different parameter settings on an MRI

machine will help more accurately remove extrinsic intensity discrepancies (Section 2.6.1).

Another issue warrants further study is the choice of knowledge models. The current

models prove to be effective and simple, but higher-level, more compact models will be

necessary to express 3-D shape variations of individual structures. Many researchers are

exploring shape models based on modal analysis, finite element analysis, and morphomet-

rics. The preliminary investigation on using PCA (Appendix B) is also one avenue to pur-

sue.

As observed in registering more than two hundred image volumes, some structures are

easily registered, whereas some others are more difficult to be matched. Therefore, a

coarse-to-fine approach that first registers the easy structures and then use them to boot-

strap the match of the more difficult ones will be helpful. Similar idea was used in the hier-

archical intensity equalization scheme (Section 2.3). Kapur et al. employed such strategy

in MRI segmentation using a relative geometric prior (prior distribution on the geometry of

difficult structures, given the geometry of easy structures) [49].

It is noteworthy that the underlining assumption to the construction of the statistical

atlas is that an individual anatomical image can model the morphometric variations

observed in other individual images. Under this assumption, the mappings between differ-

ent images are homologous, which means they only map corresponding structures and fail

to capture the changes due to topological discrepancies. Thus a morphometric analysis only

partially describes the shape differences. While the assumption that there exists a 1-to-1

correspondence between two brains is never strictly true, such as the recently reported dif-
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ference in sulcal patterns between Einstain and average people, the validity of this assump-

tion depends on the spatial scale of comparison. Topology of the cortex is not consistent

for different subjects, but this is a completely different problem, complex enough to war-

rant a separate research project. Approaches proposed by researchers include extracting the

cortical surface and mapping it onto a simple parametric space with the same topology, e.g.,

a sphere.

9.2.2  Applications

Quantitative analysis of the anatomy and pathology detection are the few applications

investigated in this thesis, additional exciting areas remain to be explored.

9.2.2.1  Database retrieval

The introduction of large scale PACS (Picture Archival and Communication Systems)

has resulted in the creation of large digital image databases. A typical radiology department

generates between 100, 000 and 10, 000, 000 images per year. A filmless imaging depart-

ment such as the Baltimore VA Medical Center generates approximately 1.5 terabytes of

image data annually. This has substantially increased the complexity and number of images

presented to radiologists and other physicians. Efficient retrieval in medical databases will

benefit experts, as well as non-experts, in applications such as computer-aided diagnosis,

time evolution analysis and forecasting.

Albeit a relatively new domain, medical image database retrieval has attracted much

research attention. Korn et al. examined the problem of finding similar tumor shapes so as

to search for nearest neighbors in large collections of tumor-like shapes [55]. Berrut et al.

developed a specialized user interface which allows a radiologist to semi-automatically

index images represented by a general model [4]. Liu and Dellaert employed image classi-

fication to retrieve similar cases in a well-defined database, where the distance metric

defining a classifier functioned as the similarity metric [60]. Guimond and Subsol

approached the retrieval of volume of interest (VOI) using intensity-based deformable reg-

istration between the VOI given by a user and images in the database [37]. Morphological
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similarity is measured using correlation. Researchers at Los Alamos National Lab have

developed CANDID algorithm to retrieve similar CT slices with lung diseases using tex-

ture analysis [50]. Quantification of registration results can also be used to compare image

data and to classify similar cases.

9.2.2.2  Data-mining

Accurate and efficient registration algorithms can also facilitate data mining that detect

correlations among shapes, diagnosis, symptoms, and demographic data. This will help

form and test hypothesis about the development and treatment of diseases, study potential

relationships between subtle neuroanatomical changes and symptom severity, prognosis,

and the capacity to respond to treatment.

9.2.2.3  Model anatomical abnormalities

Various neurological disorders affect the gross anatomical shape of different brain

structures. These changes have been studied for several decades, using both postmortem

and invasive in vivo methods. Recent advances in the contrast and resolution of MRI scan-

ners make it possible to study these shape effects in vivo and noninvasively, with the poten-

tial of better diagnosis and treatment.

To properly study pathological deformations, the non-pathological inter-patient varia-

tions, such as that modeled in the statistical atlas in this thesis, need to be normalized. The

goal is to detect and quantify distributed patterns of deviation from normal anatomy [66].

For the study of asymmetry, statistical analysis of asymmetry fields will help answer ques-

tions such as the significantly asymmetrical regions in a population, the difference in asym-

metry between populations, and the detection of abnormal asymmetry [93]. Potential

approach include using vector operators such as the norm of the vector field which charac-

terizes its magnitude, the divergence of the vector field which captures its radial aspect.

High divergence and high magnitude are characteristic of atrophies or expansions due to

lesions or tumor growths,
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9.2.2.4  Functional atlas

The current atlas is a structural atlas with anatomical classifications, however, there

could also be atlases on the functional organization of the brain, or on the response of dif-

ferent brain regions to therapeutic procedures such as radiotherapy. Atlases from different

modalities will facilitate integration of functional and anatomical data across individuals.

9.2.2.5  From volume to surface

Morphometric variance of the human brain is qualitatively observable in surface fea-

tures of the cortex. Even sulci and gyri that consistently appear in all normal subjects

exhibit pronounced variability in size and configuration. Sulci separate functionally dis-

tinct regions of the brain, and provide a natural topographic partition of its anatomy. Most

of the junctional zones between adjacent microanatomic fields run along the beds of major

or minor cortical sulci. Striking intersubject variations in sulcal geometry have been

reported in primary motor, auditory cortex [78], visual cortex [86], as well as the recent

compelling report on the partial absence of one of Einstain’s sulci. Although the intrinsic

variability in sulcal configuration across individuals is well known and much research has

been conducted in the quantitative study [99], the ranges of the normal variations have not

yet been determined. Statistical analysis of sulcal geometry will facilitate multi-subject

atlasing and neurosurgical studies, and help studying neuro-degenerative diseases that have

dramatic decrease in the fractal dimension of the cerebral cortex, such as epilepsy [16].

9.2.2.6  Beyond human brain MRI

This thesis emphasizes results on T1-weighted MRI data of human brains, however, the

algorithm is applicable to other imaging modalities, as well as medical data of other body

parts. Applications of the statistical atlas include detection, quantification, and mapping of

local shape changes in 3-D medical images in disease, and during normal or abnormal

growth and development. For non-medical applications, the algorithm could potentially be

used for non-destructive diagnosis of malfunctioning mechanical objects such as engines,

and quality inspection of manufactured objects to detect interior defects.
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Although the current algorithm is developed for volumetric data, the general approach

is suitable for a whole cadre of shape categorization and classification problems in which

knowledge of shape variation can be gleaned over a particular object class. For instance,

the formulation could have fruitful application in tracking and recognition of gesture, facial

expression, and gait. Furthermore, such models can provide a parameterized estimate of

principal deformations due to a specific process: manipulation, locomotion, growth, man-

ufacture, disease, wind, heat, etc.
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APPENDIX A Levenberg-Maquardt
Algorithm

Levenberg-Marquardt algorithm is a non-linear optimization algorithm based on gradi-

ent descent. Suppose a vector function expresses the residual difference at each

voxel, where is the vector of transformation parameters. The derivative of with

respect to shows how each component of will change given a change in the trans-

formation parameters .

Ideally, the goal would be to find the transformation parameters that make equal

to the zero vector:

R p( )

p R p( )

p R p( )

∆p

∆R p( ) ∂R

∂p
---------∆p= (19)

R p( )

R p
new

( ) R p
old

( ) ∆R p( )+ 0= = (20)
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Because of the existence of noise and the innate discrepancies in different volumes,

can not be reduced to the zero vector in practice. Levenberg-Marquardt algorithm

attempts to minimize by adjusting the transformation parameter vector . From (19)

and (20) we have

For a given , there are far more voxels than the number of transformation parameters,

so is not a square matrix. To solve this over-constrained system for , Levenberg-Mar-

quardt algorithm employs the pseudo inverse method:

If matrix (23) is not of full rank, the pseudo inverse will not exist. Levenberg-Mar-

quardt algorithm adds a stabilizing term  to the diagonal elements of the matrix

In each iteration of Levenberg-Marquardt optimization, is computed from the cur-

rent and . The summation of and gives . The is in

turn used to compute the new . The iteration goes on until is smaller than a user

defined threshold, at which point the transformation parameters that minimize the residual

difference are considered to be recovered [76].
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APPENDIX B Principal Component
Analysis

Principal component analysis (PCA) is an elegant method for handling high dimen-

sional data. In the context of studying anatomical variations, one potential approach is

using PCA to extract eigen-variations of a population. Major modes of variations may be

captured by principal eigen-variations, as well as probability distributions of the respective

coefficients for reconstructing data of the population.

Of course, it is questionable whether a small number of principal eigen-variations will

be sufficient in representing the immensely intricate anatomical variations of human brain,

and the high dimensionality of the data further complicates the problem. This thesis con-

ducts preliminary study on using PCA to improve registration performance, as well as

using PCA for classification.
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1. Registration

The registration problem is still formulated as finding the deformation that maximizes

the posterior probability:

is defined the same as that in Section 3.3.1., the difference is in

the representation of . Instead of being the distribution of per voxel defor-

mation flow, it is defined as the distribution of coefficients of the respective eigen-defor-

mations :

Because eigen-deformations are orthonormal, their respective coefficients are statisti-

cally independent. The above expression simplifies into

The number of principal eigen-deformations is decided using the plot of the sum of

eigenvalues with respect to the number of eigenvalues. Figure B-1 shows an example

where the sum of eigenvalues plateaus after 20 eigenvalues. Therefore, the first 20 eigen-

deformations are considered sufficient for representing major variations in the population.

2. Classification

It is observed that there may exist populational differences in the shape of certain ana-

tomical structures, e.g. many researchers find the posterior section of the corpus callosum

more bulbous in female subjects than their male counterparts [21]. Using principal eigen-

vectors to represent each data category, a new input can be classified based on how well it

can be reconstructed by different categories. Mahalanobis distance is used as the distance
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measurement. Suppose the category under examination has a mean deformation , and a

covariance matrix . For a particular deformation , its Mahalanobis distance from this

category is:

Using to represent the principal eigenvectors given by PCA, and

to represent the corresponding coefficients for reconstructing ,

becomes

0 5 10 15 20 25 30 35 40 45 50
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

7

Number of EigenValues

S
um

 o
f E

ig
en

V
al

ue
s

Figure B-1. The sum of eigenvalues plateaus after 20 eigenvalues. Therefore,
the first 20 eigenvectors are sufficient for representing major variations.
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Expand the above equation gives

Because  are orthonormal vectors,  simply becomes

where is the largest eigenvalue. The intuition of this distance measure is illustrated

in Figure B-2. and are centers of the two categories, and ,

and are their respective eigenvectors. Point p is classified as category f because

of shorter Mahalanobis distance.

Interesting directions for further investigation are conducting PCA on deformation

flows of control points, initializing the deformation by the mean deformation and searching

for coefficients of each eigen-deformation, de-coupling shape information from location

and scale, etc.
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Figure B-2.  The intuition of using Mahalanobis distance in classification.
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APPENDIX C Segmentation
Comparison

This appendix compares experts’ segmentation of the corpus callosum in the mid-sag-

ittal plane of 40 test cases to that from the automatic registration algorithm. All results are

displayed as binary images, with the corpus callosum shown at intensity 140, and the rest

of the mid-sagittal plane shown as zero intensity background. Error ratio of each case is dis-

played below its respective automatic segmentation result.

Error Ratio = 0.6%

Expert Segmentation Automatic Segmentation
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Error Ratio = 3.03%

Error Ratio = 0.39%

Expert Segmentation Automatic Segmentation
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Error Ratio = 4.92%

Error Ratio = 0.35%

Expert Segmentation Automatic Segmentation
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Error Ratio = 5.0%

Error Ratio = 1.13%

Expert Segmentation Automatic Segmentation
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Error Ratio = 1.42%

Error Ratio = 1.50%

Expert Segmentation Automatic Segmentation
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Error Ratio = 1.04%

Error Ratio = 2.87%

Expert Segmentation Automatic Segmentation
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Error Ratio = 2.64%

Error Ratio = 1.16%

Expert Segmentation Automatic Segmentation
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Error Ratio = 0.91%

Error Ratio = 2.35%

Expert Segmentation Automatic Segmentation
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Error Ratio = 0.85%

Error Ratio = 2.51%

Expert Segmentation Automatic Segmentation
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Error Ratio = 2.45%

Error Ratio = 2.05%

Expert Segmentation Automatic Segmentation
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Error Ratio = 1.25%

Error Ratio = 7.96%

Expert Segmentation Automatic Segmentation
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Error Ratio = 5.09%

Error Ratio = 1.02%

Expert Segmentation Automatic Segmentation
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Error Ratio = 0.62%

Error Ratio = 4.4%

Expert Segmentation Automatic Segmentation
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Error Ratio = 3.22%

Error Ratio = 3.87%

Expert Segmentation Automatic Segmentation
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Error Ratio = 4.13%

Error Ratio = 3.51%

Error Ratio = 0.99%

Expert Segmentation Automatic Segmentation
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Error Ratio = 9.78%

Error Ratio = 4.05%

Error Ratio = 3.86%

Expert Segmentation Automatic Segmentation



141

Error Ratio = 8.08%

Error Ratio = 4.15%

Error Ratio = 9.55%

Expert Segmentation Automatic Segmentation
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Error Ratio = 5.84%

Error Ratio = 1.08%

Error Ratio = 3.78%

Expert Segmentation Automatic Segmentation
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Error Ratio = 0.68%

Expert Segmentation Automatic Segmentation
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