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Abstract—This paper presents a new three-dimensional (3D)
behavioral model to compensate for the nonlinear distortion
arising in concurrent dual-band (DB) Envelope Tracking (ET)
Power Amplifiers (PAs). The advantage of the proposed 3D
distributed memory polynomial (3D-DMP) behavioral model, in
comparison to the already published behavioral models used for
concurrent dual-band envelope tracking PA linearization, is that
it requires a smaller number of coefficients to achieve the same
linearity performance, which reduces the overall identification
and adaptation computational complexity. The proposed 3D-
DMP digital predistorter (DPD) is tested under different ET
supply modulation techniques. Moreover, further model order
reduction of the 3D-DMP DPD is achieved by applying the
principal component analysis (PCA) technique. Experimental
results are shown considering a concurrent DB transmission of
a WCDMA signal at 1.75 GHz and a 10 MHz bandwidth LTE
signal at 2.1 GHz. The performance of the proposed 3D-DMP
DPD is evaluated in terms of linearity, drain power efficiency
and computational complexity.

Index Terms—digital predistorter, dual-band, envelope track-
ing, order reduction, RF power amplifiers, principal component
analysis.

I. INTRODUCTION

S
EVERAL efforts have been dedicated in recent past years

to design wireless communication systems capable to deal

with multi-standard or multi-band signals at the same time. In

the specific case of dual-band (DB) systems, intensive research

has been devoted to design single PAs to concurrently support

dual frequency bands with significant frequency separation,

that is, from several hundreds of MHz up to few GHz [1]–

[4]. The advantage of having one single power amplifier (PA)

able to process signals in multiple bands simultaneously is

the reduction of the number of components and cost of the

RF subsystem.

Nevertheless, the PA has to cope with spectrally efficient

modulated signals presenting wide bandwidth (BW) and high

peak-to-average power ratio (PAPR). Signals presenting high
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PAPR have a negative impact in the transmitter’s power

efficiency, because the PA has to be operated at high back-

off levels to avoid introducing nonlinear distortion. Even by

compensating for the nonlinear distortion using digital pre-

distortion (DPD) [5], the power efficiency improvement that

can be achieved is limited. To significantly improve the power

efficiency figures, dynamic supply modulation techniques,

such as envelope tracking (ET) [6], have been proposed in

dual-band systems [7]–[11].

The combination of concurrent dual-band PAs with envelope

tracking faces several challenges. On the one hand, to guar-

antee the desired linearity levels, the DPD has to be designed

taking into account the difficulty of running the DPD at around

5x the signal’s BW due to the BW expansion occurring in

the DPD process. When considering bands separated several

hundreds of MHz, the implementation of a wideband DPD is

unfeasible, especially in real-time platforms. Fortunately, DPD

systems for dual-band signals can be significantly simplified

assuming that the nonlinear distortions of concern are those

that arise close to the band of interest, while the rest could

be removed by filtering. This is the idea behind the two-

dimensional (2D) behavioral models presented in [12]–[17].

On the other hand, one of the main challenges in envelope

tracking for concurrent dual-band regards the design of effi-

cient envelope drivers capable of supplying the power required

by the transistor at the same speed of the signal’s envelope.

In a concurrent DB transmission, the envelope of the resulting

RF signal can present BWs that are several times the carrier

separation (according to the rule of thumb around 3x). In

order to avoid dealing with this high speed envelope variations

(normally, the envelope driver’s efficiency decays with the

envelope’s BW) some methods to reduce the BW [18] or slew-

rate (SR) [19] of the signal’s envelope have been proposed.

Alternatively, for concurrent dual-band signals, there are at

least two methods to deal with the instantaneous dual-band

envelope of the transmitted signal: a) perform the sum of

the modulus of the baseband signals (i.e., the peak of the

instantaneous dual-band envelope), as proposed by Gilabert

et al. in [8]; or b) perform the square root of the sum

of the squared modulus of the baseband signals (i.e., the

average amplitude of the instantaneous dual-band envelope),

as proposed by Lin et al. in [9].

Unfortunately, using a different envelope (i.e., intentionally

slower) than the original instantaneous dual-band envelope

to dynamically supply the PA produces additional nonlinear

distortion. As a consequence, in order to compensate later for
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Fig. 1. Block diagram of the 3D DPD and slow envelope generator for concurrent dual-band envelope tracking PAs.

the slow-envelope dependent distortion effects, a concurrent

dual-band envelope tracking PA behavioral model has to

include in its formulation not only the interference band signal,

but also the envelope used for dynamically supply the PA.

So, it results in a three-dimensional (3D) behavioral model as

described in [8]–[11].

The number of coefficients required by these 3D behav-

ioral models grows dramatically when considering memory

effects. This has a negative impact in the least squares (LS)

based model extraction because it increases the computational

complexity and can lead to a bad conditioning extraction.

Several efforts have been made to solve the ill-conditioning

problem as well as to reduce the model extraction errors

when using a small number of data samples to characterize

PA behavioral models [20]. Alternatively, reducing the order

of the DPD model by properly selecting the most significant

basis functions or creating a new set of orthogonal basis

functions, has beneficial effects in both the computational

complexity and in the conditioning of the data matrices. The

singular value decomposition (SVD) [21]–[24] or the principal

component analysis (PCA) technique [25] are commonly used

for extracting the dominant eigenvalues/eigenvectors and thus

reducing the order of the DPD function. By creating a new

orthogonal basis it is possible to reduce the order of the DPD

behavioral model (and at the same time improve the matrix

conditioning) where, unlike other structured or intelligent

pruning approaches, the model order reduction is made without

assuming any specific physical structure of the model.

This paper presents a new 3D behavioural model that signifi-

cantly reduces the computational complexity of the DPD func-

tion. It is based on a 3D distributed memory polynomial (3D-

DMP) architecture in which, following a parallel structure,

each branch is responsible for characterizing/compensating

one of the three main (intra-band, cross-band and dynamic

supply distortion) unwanted nonlinear distortion effects in

concurrent dual-band envelope tracking PAs. The linearity

performance (quantized in terms of ACLR and NMSE) and

computational complexity (quantized in terms of number of

coefficients) of the proposed 3D-DMP DPD is compared, to

the best authors knowledge, to the most recent published

3D behavioral models for linearizing concurrent dual-band

envelope tracking PAs. These models, sorted according to its

publication date, are: the 3D memory polynomial (3D-MP)

model proposed by Gilabert et al. in [8], the 3D baseband

equivalent Volterra series (3D-BBE Volterra) model proposed

by Sarbishaei et al. in [10] and the 2D phase-aligned Volterra

series (2D P-A Volterra) model proposed by Kwan et al.

in [11]. Moreover, the 3D-DMP DPD is tested for different

envelope tracking supply modulation strategies to evaluate the

linearity and the drain efficiency performance of the dual-band

envelope tracking PA system, schematically depicted in Fig. 1.

Finally, to further reduce the computational complexity of the

DPD, a model order reduction technique following the PCA

theory is also applied.

Therefore, the paper is organized as follows. In Section II,

we analyze different strategies to generate a slow envelope

to dynamically supply concurrent dual-band PAs. Then, in

Section III we present and compare the proposed 3D-DMP

behavioral model to other already published solutions in terms

of required number of coefficients according to the specific

architecture of each model. Section IV is devoted to describe

the experimental setup. In Section V, the linearization, power

and computational efficiency performance of the proposed 3D-

DMP DPD is evaluated under different envelope tracking sup-

ply modulation strategies and compared to the aforementioned

3D-DPD models. Finally, conclusions are given in Section VI.
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II. SUPPLY MODULATION TECHNIQUES FOR

CONCURRENT DUAL-BAND AMPLIFICATION

In an envelope tracking system, the supply voltage is

dynamically adjusted to follow the instantaneous RF envelope.

When considering concurrent dual-band operation, where the

instantaneous dual-band envelope presents a BW (according

to the rule of thumb) around 3x the carrier separation, it is

mandatory to use a slower version of the original envelope to

relax the envelope driver’s BW and SR requirements. However,

the price for not using the original RF envelope to supply the

PA is the degradation of the power efficiency and linearity.

In this paper we will evaluate the linearization performance

of the proposed 3D-DMP under different supply modulation

strategies used to generate a slower envelope capable to meet

the envelope driver’s limitations. Moreover, a comparison

of the drain power efficiency obtained with these different

ET supply modulation techniques will be also presented. In

particular, the following strategies will be considered:

• Dynamic supply based on the generalized mean (GM) of

the instantaneous dual-band envelope.

• Dynamic supply based on the combination of both slew-

rate (SR) and bandwidth (BW) reduced (SR&BWred)

envelopes of the instantaneous DB envelope.

We can define the generalized mean (also known as power

mean or Hölder mean) with exponent p (with p being a non-

zero real number) of the positive real numbers x1, . . . , xK as

GMp =
( 1

K

K
∑

i=1

x
p
i

)1/p

(1)

where for p = 1 we obtain the arithmetic mean and for

p = 2 the root mean square. Therefore, the envelope tracking

supply modulation technique based on the generalized mean

(considering two sequences) is described in the following

equation,

EGMp
s [n] =

(1

2

(

∣

∣u1[n]
∣

∣

p
+
∣

∣u2[n]
∣

∣

p
))1/p

(2)

where u1[n] and u2[n] are the input discrete-time complex

baseband signals, as shown in Fig. 1, and with the exponent

p being a non-zero real number. In concrete we will evaluate

the GM for the following values of p :

• GM with p = 1: Peak of the instantaneous DB envelope

[8].

• GM with p = 2: Average of the instantaneous DB

envelope [9].

• GM with p = 1.5.

• GM with p = 4.

The reason for choosing also p = 1.5 and p = 4 is to observe

the shape of the resulting slow envelope in both time and

frequency domain and determine if it has a significant effect on

the linearity and efficiency of the overall dual-band envelope

tracking system.

On the other hand, the envelope tracking supply modulation

technique based on the SR&BWred version of the instanta-

neous dual-band envelope is defined as

ESR&BW
s [n] = min

{

EGM1

s [n], ESR
s [n]

}

(3)

ZOOM

Fig. 2. Waveforms of envelopes for dual-band envelope tracking PAs.

where EGM1

s is the slow envelope based on the peak of the

instantaneous dual-band envelope and where ESR
s [n] is the

SR reduced version of the original dual-band instantaneous

envelope that can be defined as

ESR
s [n] = Γ

(∣

∣

∣
u1[n]e

−jΩ1n + u2[n]e
jΩ2n

∣

∣

∣

)

(4)

where Γ(·) is the SR reduction transformation extensively

described in [19], [26]. With the SR reduction algorithm we

can limit the maximum slew-rate of the resulting envelope.

However, the resulting slew-rate reduced envelope is not band-

limited, mainly due to the presence of peaks. These peaks are

introduced by the algorithm when it is necessary to change

drastically from a positive to a negative slope, or vice-versa.

This SR&BWred technique tries to maximize the drain

efficiency by reducing both the SR and BW of the original

instantaneous dual-band envelope at the limit supported by a

specific envelope driver.

Fig. 2 and Fig. 3 show the time-domain waveforms and

spectra, respectively, of the instantaneous dual-band envelope

(considering a WCDMA signal at 1.75 GHz and a 10 MHz

BW LTE signal at 2.1 GHz) and the proposed slow envelopes

based on both the GM and the SR&BWred techniques. Re-

garding the slow envelopes generated considering the GM

approach, we can observe that for p = 1 we obtain (see
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Fig. 3. Spectra of envelopes for dual-band envelope tracking PAs.

Fig. 2-top) an upper bound (peak envelope) of the original

RF envelope (Minkowski inequality),
∣

∣

∣
u1[n]e

−jΩ1n + u2[n]e
jΩ2n

∣

∣

∣
≤

∣

∣u1[n]
∣

∣+
∣

∣u2[n]
∣

∣ (5)

and its BW (Fig. 3-top) is significantly smaller than the

original one. However, the narrowest envelope BW is obtained

with p = 2 (average envelope). As it will be shown later, no

significant differences in terms of linearity and drain efficiency

are obtained by considering alternative values (e.g., p = 1.5
or p = 4). In addition, when p tends to 0 the slow envelope

waveform tends to a constant supply voltage value different

than 0 (for example 1 in the case of having normalized

waveforms), while if p tends to infinity the resulting slow

envelope tends to 0.

On the other hand, Fig. 2-bottom shows the resulting

SR&BWred envelope considering a SR reduction of 98.87%
with respect to the original instantaneous dual-band envelope.

The slew-rate reduction (SRred) percentage is defined as

SRred(%) =
SRO − SRS

SRO
· 100 (6)

where SRO is the slew-rate of the instantaneous dual-band

envelope and SRS is the slew-rate of the resulting envelope

after applying the slew-rate reduction algorithm. As it can be

observed in Fig. 3-bottom, the resulting BW still presents sig-

nificant information at high frequency values (when compared

to GM1, for example), this is the price to pay in order to try to

maximize the drain efficiency. In general, despite the efficiency

98.87%

ZOOM

Fig. 4. Measured NMSE between the input and output supply envelope at the
EA for different supply modulation techniques and SR reduction percentages.

of the supply modulator can even be improved by using a

slower envelope (bandwidth or slew-rate limited envelope), the

overall drain efficiency will be degraded in comparison to the

efficiency obtained using the original envelope [18].

To empirically determine which is the maximum SR or

envelope BW supported by a specific envelope driver, we can

evaluate the normalized mean square error (NMSE) between

the input and output signals at the envelope driver. In our

particular case (the envelope driver will be later described in

the Section IV), we have noticed that defining a threshold of

−25 dB of NMSE as the minimum allowed reliability between

input and output signals at the envelope driver, we can later

guarantee the linearity levels of the RF output dual-band signal

using the proposed 3D-DMP DPD. Fig. 4 shows the NMSE

when using SR reduced envelopes with different SR reduction

percentages and also for the peak (GM1), average (GM2) and

SR&BWred envelopes. As observed in Fig. 4, in our particular

case, the minimum SR reduction percentage that already meets

the -25 dB of NMSE is around 98.5%. Consequently, the

SR&BWred envelope has been generated using a similar SR

reduction percentage.

Finally, as depicted in Fig. 1, the generated slow envelope,

taking into account one of the aforementioned techniques, is

then shaped according to the shaping function described in [1]

with the objective of maximizing power efficiency,

E[n] =
(

(

Es TH

)6
+
(

Exx
s [n]

)6
)1/6

(7)

where Es TH is the lower bound of the envelope that deter-

mines the swing voltages or dynamic range of the supply mod-

ulator (normally set to avoid the knee region unwanted effect)

and where Exx
s [n] can be either E

GMp
s [n] or ESR&BW

s [n],
depending on the strategy selected to generate the slow enve-

lope. We now define the lower threshold percentage (LTP) of

the supply envelope voltage as

LTP (%) =
Es TH

max
(

Exx
s [n]

) · 100 (8)

As expected, the higher the LTP, the better the overall linearity

and the worse the drain efficiency, which at the limit would

correspond to constant supply (i.e., LTP = 100%).



5

III. 3D DISTRIBUTED MEMORY POLYNOMIAL DIGITAL

PREDISTORTER

A. Antecedents

In order to take into account the slow-envelope dependent

distortion effects that appear in the dynamic supply of the

PA, the concurrent dual-band envelope tracking PA behavioral

model has to include in its formulation not only the interfer-

ence band signal, but also the envelope used for dynamically

supply the PA. Therefore, it results a 3D behavioral model,

ŷ1[n] = f1

(

x1[n], x2[n], E[n]
)

(9)

ŷ2[n] = f2

(

x2[n], x1[n], E[n]
)

where ŷ1[n] and ŷ2[n] are the estimated complex baseband

outputs of the 3D PA behavioral model at each frequency

band, respectively. These behavioral models are estimated

from complex input and output data records (see Fig. 1), where

y[n] = y1[n]e
−jΩ1n + y2[n]e

jΩ2n (10)

To properly characterize and later compensate for the the in-

band and out-of-band intermodulation, cross-band modulation

distortion and the slow-envelope dependent distortion effects

that appear in concurrent dual-band transmitters with dynamic

supply, a 3D memory polynomial (3D-MP) DPD was proposed

by the authors in [8]. Following the notation in Fig. 1, the DPD

output (for Band 1) was defined as

x1[n] =
N−1
∑

i=0

Q−1
∑

q=0

P−1
∑

p=0

ψ
(1)
pqi(E) · u1[n− τui ] (11)

∣

∣u1[n− τui ]
∣

∣

p∣
∣u2[n− τui ]

∣

∣

q

where u1[n] and u2[n] are complex baseband signals to be

transmitted which, as extensively explained by Roblin et

al. in [27], are necessary to characterize the inter-band and

cross-band intermodulation distortion in concurrent dual-band

PAs. In addition, to properly characterize the slow-envelope

distortion effects that appear when supplying the PA with

a slower version of the instantaneous dual-band envelope,

the coefficients ψ
(1)
pqi(E) are dependent on the slow envelope

(E[n]) and its memory,

ψ
(1)
pqi(E) =

M−1
∑

m=0

R−1
∑

r=0

w
(1)
pqirm ·

(

E[n− τem]
)r

(12)

where w
(1)
pqirm are the complex coefficients describing the

model, τu and τe (with τu,e ∈ Z and τ
u,e
0 = 0) are the

most significant sparse delays of the input (u1[n]), interference

signal (u2[n]) and slow envelope (E[n]) that contribute to

characterize memory effects and time misalignments between

the supply voltage waveform and the RF modulated signal.

Analogously, x2[n] can be described as in (11) and (12)

but considering u2[n] as the input signal and u1[n] as the

interfering one, while w
(2)
pqirm are the parameters describing

the DPD in Band 2.
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Fig. 5. Structure of the proposed 3D-DMP DPD for Band 1.

B. Description of the New 3D Distributed Memory Polynomial

Digital Predistorter

One of the problems of the 3D-MP DPD in [8] is the

potential growth of the number of coefficients required when

considering memory effects in both input signals or the slow

envelope. This is an issue not only because of the computa-

tional complexity introduced by the DPD, but also because

dealing with a huge number of coefficients may take to an

ill-conditioned identification due to over-parametrization and

lack of orthogonality among the considered basis functions.

As a consequence, several efforts have been devoted to find

simplified structures. This is the case of the multi-dimensional

Volterra-based models such as the 3D-BBE Volterra model

[10] or 2D P-A Volterra model [11]. Alternatively, or in a

complementary way, model order reduction techniques such

as the ones based on the SVD [21]–[23] or techniques based

on the PCA theory [28] are applied without assuming any a

priori physical structure of the model.

In this paper we propose a new 3D distributed memory

polynomial (3D-DMP) DPD, as schematically depicted in

Fig. 5. The objective of this new 3D DPD is to reduce

the required number of parameters to compensate for the

nonlinear distortion in concurrent dual-band envelope tracking

PAs. This is possible by following a distributed structure. The

strategy of adding several structures in parallel fosters the

identification accuracy when considering linearly independent

basis functions and significantly reduces the number of co-

efficients with respect to using a series approach, such as in

the 3D-MP DPD in [8], where all the unwanted effects were

considered to be inter-related. Therefore, the main advantage

of this distributed model regards the possibility of integrating

several structures in parallel, each one aiming at compensating

a specific nonlinear distortion, and thus providing flexibility in

the design.

The proposed 3D-DMP DPD includes three branches to

compensate for in-band, out-of-band and cross-band intermod-

ulation distortion and the slow-envelope distortion, respec-

tively. A memoryless representation of the proposed model
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for Band 1 is

x1[n] = u1[n] ·
(

f1
(

|u1[n]|
)

+ (13)

β
(

|u2[n]|
)

· f2
(

|u1[n]|
)

+ γ
(

E[n]
)

· f3
(

|u1[n]|
)

)

If we now take into account a model with memory, the input-

output relationship in the 3D-DMP DPD (for Band 1) is

defined as

x1[n] =

N1−1
∑

i=0

P1−1
∑

p=0

a
(1)
pi · u1[n− τu1

i ]
∣

∣u1[n− τu1

i ]
∣

∣

p
+ (14)

N2−1
∑

i=1

P2−1
∑

p=0

β
(1)
pi (u2) · u1[n]

∣

∣u1[n− τu1

i ]
∣

∣

p
+

N3−1
∑

i=1

P3−1
∑

p=0

γ
(1)
pi (E) · u1[n]

∣

∣u1[n− τu1

i ]
∣

∣

p

where coefficients β
(1)
pi (u2) are dependent on the interference

signal (u2[n]) and its memory,

β
(1)
pi (u2) =

M2−1
∑

j=1

Q2−1
∑

q=0

b
(1)
piqj

∣

∣u2[n− τu2

j ]
∣

∣

q
(15)

and coefficients γ
(1)
pi (E) are dependent on the slow-envelope

(E[n]) and its memory.

γ
(1)
pi (E) =

K3−1
∑

k=1

R3−1
∑

r=0

c
(1)
pirk

(

E[n− τek ]
)r

(16)

Moreover, P1, P2 and P3, are the polynomial orders of the

input signal (u1[n]) at each branch; N1, N2 and N3, are the

number of delays of the input signal at each branch; Q2 is the

polynomial order of the interference signal (u2[n]); M2 is the

number of delays of the interference signal; R3 the polynomial

order of the supply envelope (E[n]) and K3 the number

of delays of the supply envelope; τu1 , τu2 and τe (with

τu1,u2,e ∈ Z and τ
u1,u2,e
0 = 0) are the most significant sparse

delays of the input (u1[n]), interference signal (u2[n]) and slow

envelope (E[n]) that contribute to characterize memory effects

and time misalignments between the supply voltage waveform

and the RF modulated signal.

Analogously, x2[n] can be described as in (14)-(16) but

now considering u2[n] as the input signal and u1[n] as the

interfering one.

To show the benefits of proposed 3D-DMP DPD in terms

of computational complexity reduction, Fig. 6 compares the

required number of coefficients of the following behavioral

models: a) 3D-MP; b) 3D-DMP; c) 3D-BBE Volterra; and d)

2D P-A Volterra, when considering different memory lengths

in both input/interference signals and the slow envelope.

Therefore, considering different memory taps in delay T1 and

delay T2 it is possible to evaluate the models’ complexity

growth in terms of number of coefficients. The correspondence

of delay T1 and delay T2 in Fig. 6 with the specific parameters

(following the original papers’ notation) of the aforementioned

models under comparison is described in the following:

• Delay T1: N (3D-MP); N1 (3D-DMP); M1 (3D-BBE

Volterra); M1 (2D P-A Volterra).
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Fig. 6. Number of coefficients versus number of memory taps for different
dual-band envelope tracking DPD models.

• Delay T2: M (3D-MP); N2 = N3 = M2 = K3 (3D-

DMP); M3s = M3d (3D-BBE Volterra); M2 (2D P-A

Volterra).

Therefore, for example, by varying the values of delay T1,

we are varying the parameter N1 in the 3D-DMP model,

while by varying delay T2, we are varying simultaneously

the parameters N2 = N3 = M2 = K3, as it can be observed

in (14)-(16). As it was expected, when considering memory

effects these behavioral models can become intractable from

the computational complexity point of view. However, the 3D-

DMP, thanks to its distributed structure, is the one that shows

a slower growth in the number of parameters with the number

of memory taps considered. In the particular case of the 2D

P-A Volterra, the number of coefficients do not experience a

significant growth by increasing the memory depth, however,

the complexity of the model increases by considering higher

order kernels of the 2D P-A Volterra model, as evidenced in

Fig. 6. A comparison of the linearization performance of the

aforementioned models will be given in Section V.

C. Further Model Order Reduction Based on the PCA Theory

To further reduce the model order of the 3D-DMP DPD,

we have considered a technique that is based on the principal

component analysis (PCA) theory [25], where by converting

a basis of observed and eventually correlated data into a basis

of uncorrelated data, we can eliminate redundancies and thus

reduce the order of the DPD model. Moreover, applying order

reduction techniques also improves the conditioning of the

basis waveforms used [29].

An example on how to apply the PCA theory to reduce

the model order of a DPD was published by the authors in

[28]. With this technique we can perform a change of basis

where the number of required coefficients decreases by a

certain reduction factor (RDF), i.e., # coeff. of the original

basis divided by the # coeff. of the new basis. The PCA

approach relaxes the computational load of the subsystem

responsible for assisting the real-time FPGA device in the

task of updating the DPD coefficients, such as for example,

a soft-core microprocessor (e.g., Xilinx Microblaze) or any
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other microprocessor device. In addition, it prevents from the

well-known ill-conditioning identification problem because the

resulting new basis is orthogonal. In real-time, the new basis

is directly built through a linear combination of the old one.

This may increase the DPD computational complexity, unless

additional punning strategies are considered. As reported in

[28], further reduction of the terms participating in the linear

combination that produces the new basis can be performed

without significantly degrading the overall DPD performance.

As a consequence the PCA approach can be useful not only

to improve the data matrix conditioning but also to reduce the

whole DPD system computational complexity.

IV. EXPERIMENTAL SETUP

For the concurrent dual-band transmission with dynamic

supply we used a WCDMA signal of 5 MHz BW at 1.75 GHz

and 10 MHz BW LTE signal at 2.1 GHz generated with the

pattern generator software from Texas Instruments (TI). The

PAPR of the dual-band signal used to test the 3D-DMP DPD

was 9.2 dB measured at 10−4 of the CCDF. The experimental

test bench is illustrated in Fig. 7. The generated waveform

passes through the PC and DPD blocks implemented in

Matlab and is downloaded for playback in the TI boards

(TSW1400EVM pattern generator + TSW30H84EVM DACs

and IQ modulator) that output the signal that will be fed

into the PA with 16-bit resolution at 614.4 MS/s after up-

conversion at the 2 GHz carrier frequency. The wide band-

width of the TI boards allows the generation of the composite

dual-band signals at baseband and thus, avoiding timing mis-

alignment between both concurrent signals at different bands,

as is the case of using two signal generators and frequency

up-conversion units [12]. However, the price to pay is that

the frequency band separation is limited and determined by

the maximum DAC sampling frequency. A Tabor WW2572A

arbitrary wave generator was used as DAC to output the

supply envelope (i.e., the sum of baseband envelopes or a SR

reduced version of the original envelope) that was previously

generated in Matlab. The DUT was a Cree Inc. Evaluation

Board CGH40006P-TB (GaN transistor). A Linear Technology

IC LT1210 (35 MHz bandwidth and 900 V/s of slew-rate at

Av=2 and 10 Ω load) was considered to build the envelope

driver. Because we are using a linear but slightly efficient

envelope amplifier, the power efficiency values reported in

Section V obviate the envelope driver’s efficiency and thus,

only the drain efficiency of the RF PA is reported. Finally, a

digital storage oscilloscope (DSO Agilent 90404A) was used

to acquire the RF output signal with 8 bit resolution and a

maximum sampling rate of 20 GS/s.

V. EXPERIMENTAL RESULTS

In a first approach, the proposed 3D-DMP DPD model

is compared with the 3D-MP, 3D-BBE Volterra and 2D

P-A Volterra in Table I. The comparison of the linearity

performance is evaluated in terms of in-band (i.e., NMSE)

and out-of-band (i.e., ACLR) distortion compensation. In

addition, the computational complexity is compared in terms

of number of coefficients used by the DPD. Without loss of

Fig. 7. Experimental test bench.

TABLE I
COMPARISON OF DIFFERENT DUAL-BAND ENVELOPE TRACKING DPD

BEHAVIORAL MODELS AND SUPPLY MODULATION BASED ON THE

SR&BWRED ENVELOPE WITH LTP=40%.

DB ET DPD ACLR (dB) NMSE (dB) Num.

Beh. Models Band 1 Band 2 Band 1 Band 2 coeff.

@1.75 GHz @2.1 GHz WCDMA LTE-10MHz

3D MP (P =5,Q=3, L: -43.0 L: -43.5 -35.0 -34.1 90

R=3,N=2,M=1 U: -42.3 U: -43.1

3D BBE Volterra

M1=14, M
3,s,d=2, L: -41.1 L: -39.3 -32.5 -32.4 99

Ns=3, M
5,s,d1,d2=0) U: -40.5 U: -39.1

2D P-A Volterra L: -44.1 L: -42.9 -34.2 -33.8 128

M1=1,M2=1,N=5 U: -44.0 U: -42.5

3D DMP (P1=7,R3=3,

P2=P3=Q2=5,N1=6, L: -46.6 L: -44.1 -34.6 -36.7 97

N2=N3=M2=1,K3=2) U: -46.4 U: -43.8

3D DMP L: -47.4 L: -45.5 -36.5 -37.6 96

482 coeff w. RDF = 5 U: -47.3 U: -45.5

generality we can assume that a higher number of coefficients

implies higher computational load and thus higher power

consumption of the overall digital signal processing system.

In Table I, we have considered a fixed number of parameters

(around 100 coefficients) in order to see the linearization

performance when considering a dynamic supply based on

the SR&BWred envelope and with LTP=40%. It can be

observed that, thanks to the distributed structure of the 3D-

DMP DPD, we have more flexibility (degrees of freedom

or resolution) to determine the most accurate configuration

when only considering ∼100 coefficients. As a consequence,

despite the rest of the behavioral models under comparison

can perform equally well when considering a higher number

of coefficients, the best linearization performance taking into
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TABLE II
3D DIGITAL PREDISTORTION WITH MODEL ORDER REDUCTION AND DIFFERENT SUPPLY MODULATION TECHNIQUES.

Digital Predistortion Supply Modulation ACLR (dB) NMSE (dB) Num.

3D Model Technique Reduction Factor Band 1 Band 2 Band 1 Band 2 coeff.

@1.75 GHz @2.1 GHz WCDMA LTE-10MHz

RDF = 1 L: -49.0 L: -47.5 -37.1 -36.9 2520

U: -49.3 U: -47.5

3D-Memory Polynomial SR&BWred Env. RDF = 8 L: -45.7 L: -45.3 -34.2 -36.7 315

(P =7,Q=5,R=3,N=6,M=4) U: -46.0 U: -45.1

RDF = 64 L: -42.3 L: -41.2 -32.3 -33.7 39

U: -42.1 U: -41.3

RDF = 1 L: -48.6 L: -48.5 -36.3 -36.0 482

U: -49.0 U: -48.6

SR&BWred Env. RDF = 5 L: -47.4 L: -45.5 -36.5 -37.6 96

U: -47.3 U: -45.5

3D-Distributed Memory Polynomial RDF = 16 L: -40.0 L: -40.6 -32.7 -33.2 30

(P1=7,P2=P3=Q2=5,N1=10, U: -40.0 U: -40.5

R3=3,N2=N3=M2=3,K3=4) RDF = 1 L: -49.7 L: -48.6 -36.5 -39.2 482

U: -49.8 U: -48.8

AVG (GM p=2) Env. RDF = 9 L: -46.8 L: -45.4 -36.5 -34.2 54

U: -45.8 U: -45.2

RDF = 16 L: -43.1 L: -42.5 -34.9 -34.3 30

U: -42.8 U: -42.0

account only ∼100 coefficients is achieved with the 3D-DMP

DPD. In addition, if instead of empirically finding the most

accurate configuration (polynomial order, number of kernels,

memory depth, etc.) we start from an initial configuration with

a lot of coefficients and then we perform model order reduction

based on the PCA theory, we can observe in Table I (last row)

that it is possible to improve the aforementioned 3D-DMP

DPD linearity figures. Therefore, the linearity requirements

for the LTE signal (i.e., -45 dBc of ACLR) cannot be simply

met (with this particular restriction: ∼100 coefficients and

supply modulation based on the SR&BWred Envelope with

LTP=40%) unless we consider a 3D-DMP DPD with 482

coefficients and then we apply a reduction factor (RDF) of

RDF = 5, resulting in round( 482
RDF ) = 96 coefficients.

Table II show the linearization performance of the 3D-

MP DPD and the proposed 3D-DMP DPD, respectively, for

different RDFs and considering dynamic supply modulation

based on the SR&BWred envelope with LTP=40% and on the

AVG (GM p = 2) envelope with LTP=30%. With the PCA

technique, we can reduce the number of coefficients several

factors before significantly degrading both in-band and out-

of-band linearity figures. Therefore, for example, taking into

account the -45 dBc ACLR restriction for the LTE signal,

with the 3D-MP DPD (see Table II) it is possible to apply

a reduction up to RDF = 8 (315 coefficients) and still be

compliant with the spectrum mask. Again, taking advantage of

the distributed structure of the proposed 3D-DMP (see Table

II), this time with only 96 coefficients (RDF = 5) we can

already meet the linearity specifications in Band 2. Moreover,

by using dynamic supply modulation based on the AVG

envelope we obtain better linearity figures and, for example,

we can meet the -45 dBc ACLR specification with the 3D-

DMP DPD considering only 54 coefficients (RDF = 9).
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Fig. 8. Drain efficiency and worst-case ALCR for different LTP and
considering 3D-DMP DPD and supply modulation based on the SR&BWred
envelope.

Fig. 8 and Fig. 9 show the measured drain efficiency and the

worst-case ACLR (after applying 3D-DMP DPD) for different

LTP values when considering supply modulations based on

the SR&BWred and AVG envelopes, respectively. As it was

expected, the more DC power the PA consumes (i.e., higher

LTP values) the better ACLR figures and the worse drain

efficiency. From the power efficiency perspective, we would

like to keep the LTP to the minimum but, to be compliant

with the desired ACLR levels the LTP has to be at least

LTP = 33% in the case of supplying with the SR&BWred

envelope and LTP = 23% in the case of using the AVG

envelope.

Table III shows a comparison of the drain efficiency (DE)

obtained with different envelope tracking supply modulation

techniques: based on the GM of the instantaneous dual-band
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TABLE III
EFFICIENCY IMPROVEMENT FOR DIFFERENT SUPPLY MODULATION TECHNIQUES IN DUAL-BAND ET PAS WITH 3D-DMP DPD.

ACLR (dB) NMSE (dB) Mean

Configuration Band 1 Band 2 Band 1 Band 2 Output DE EI

@1.75 GHz @2.1 GHz WCDMA LTE-10 MHz Power (dBm) (%)

Fixed Supply L: -41.0 L: -43.6 -31.2 -32.5 28.0 26.3 –

No DPD U: -38.0 U: -40.3

Fixed Supply L: -51.3 L: -50.9 -35.2 -36.3 28.1 26.8 1

with 2D-DPD. U: -51.1 U: -51.1

Supply Mod.:GM p=1 (PEAK) Env. LTP=33% L: -24.2 L: -25.4 -15.5 -16.0 28.1 50.0 –

No DPD U: -24.0 U: -25.3

Supply Mod.:GM p=1 (PEAK) Env. LTP=33% L: -47.2 L: -45.7 -35.9 -36.8 28.0 47.4 1.77

with 3D-DMP DPD U: -46.7 U: -45.6

Supply Mod.:GM p=1.5 Env. LTP=25% L: -24.2 L: -24.7 -15.8 -15.3 28.1 50.6 –

No DPD U: -24.0 U: -24.6

Supply Mod.:GM p=1.5 Env. LTP=25% L: -46.4 L: -45.3 -36.2 -36.8 28.0 48.0 1.79

with 3D-DMP DPD U: -46.0 U: -45.2

Supply Mod.:GM p=2 (AVG) Env. LTP=23% L: -24.3 L: -24.3 -15.8 -15.2 28.2 50.2 –

No DPD U: -24.2 U: -24.2

Supply Mod.:GM p=2 (AVG) Env. LTP=23% L: -47.7 L: -46.1 -35.4 -35.4 28.0 47.5 1.77

with 3D-DMP DPD U: -47.6 U: -46.0

Supply Mod.:GM p=4 Env. LTP=23% L: -25.9 L: -24.7 -17.3 -16.0 28.0 49.8 –

No DPD U: -25.8 U: -24.6

Supply Mod.:GM p=4 Env. LTP=23% L: -48.1 L: -45.6 -35.2 -37.9 28.0 47.6 1.78

with 3D-DMP DPD U: -47.6 U: -45.6

Supply Mod.:SR&BWred Env. LTP=33% L: -24.6 L: -25.8 -16.2 -15.8 28.1 51.5 –

No DPD U: -24.4 U: -25.7

Supply Mod.:SR&BWred Env. LTP=33% L: -47.0 L: -45.4 -36.0 -36.0 28.0 48.8 1.82

with 3D-DMP DPD U: -46.9 U: -45.3
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Fig. 9. Drain efficiency and worst-case ALCR for different LTP and consid-
ering 3D-DMP DPD and supply modulation based on the AVG envelope.

envelope for p = [1, 1.5, 2, 4], and based on the SR&BWred

envelope of the instantaneous dual-band envelope. In all cases

under comparison, the ACLR values after 3D-DMP DPD are

below -45 dB, while the mean output power is 28 dBm.

The 3D-DMP DPD used 121 coefficients after applying PCA

with RDF = 4. A straightforward way to compare the

drain efficiency of each configuration is through the efficiency

improvement (EI) metric [19], defined as the ratio between

the fixed (PFS) and the dynamic supply (PDS) power con-

sumption, EI = PFS

PDS
. As a consequence, the higher the

EI the better. As shown in Table III, there is no significant

differences in the EI among the different supply strategies.

However, it is expected that by decreasing the SR reduction

percentage (currently at 98.87%) and thus having a faster

supply modulated envelope, the EI of the SR&BW strategy

would be significantly better than the ones based on the GM.

Unfortunately, we are currently limited in SR by the linear

supply modulator described in Section IV.

To evidence the 3D-DMP DPD linearization performance,

Fig. 10 and Fig. 11 show the output spectra and the gain char-

acteristics respectively, before and after linearization at both

frequency bands and considering the SR&BWred envelope to

dynamically supply the PA. Similarly, Fig. 12 and Fig. 13

show the output spectra and the gain characteristics but this

time considering the AVG envelope to dynamically supply the

PA. The typical slow-envelope dependent unwanted distortion

effects can be observed in these plots of the gain.

VI. CONCLUSION

In this paper we have presented a new DPD for concurrent

dual-band envelope tracking PAs. The advantage of the pro-

posed 3D-DMP DPD in comparison to the already published

solutions is that, thanks to its distributed structure in which

several cross-products among the three input variables are

obviated, the number of coefficients required to characterize

and compensate for the in-band, out-of-band, cross-band inter-
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supply modulation based on the SR&BWred envelope
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supply modulation based on the AVG envelope
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modulation and slow-envelope dependent distortion is signifi-

cantly lower than in its Volterra-based or 3D-MP counterparts.

Moreover, with the model order reduction technique based on

the PCA theory we can determine the minimum number of

coefficients required to meet the targeted ACLR values.

The proposed 3D-DMP DPD has been tested under different

envelope tracking supply modulation techniques. The reported

EI figures are quite similar among the different strategies

considered in this paper. However, it is expected that dimin-

ishing the SR reduction percentage, better EI figures could

be achieved using the SR&BWred envelope. Unfortunately,

this cannot be proved due to the SR & BW limitations of

the envelope modulator used in this paper. Instead, the best

linearability is found when using the AVG envelope (GM

p = 2), since it is the supply modulation technique presenting

the narrowest BW.

We can conclude that, from the power efficiency perspec-

tive, the slow envelope should be as fast as supported by the

envelope driver, i.e., operating with the minimum necessary

SRred percentage. From the computational complexity point

of view, we want to meet the ACLR specifications with the

minimum number of coefficients (maximum RDF when using

PCA-based model order reduction). Finally, the LTP of the

supply envelope voltage has shown to be a key parameter to

cope with the linearity versus efficiency trade-off.

ACKNOWLEDGMENT

The authors would like to thank Dr. José Angel Garcı́a from
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