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Abstract

We consider the nonstationary 3-D flow of a compressible viscous heat-conducting

micropolar fluid in the domain to be the subset of R3 bounded with two concentric

spheres that present the solid thermo-insulated walls. In the thermodynamical sense

the fluid is perfect and polytropic. We assume that the initial density and temperature

are bounded from below with a positive constant and that the initial data are

sufficiently smooth spherically symmetric functions. The starting problem is

transformed into the Lagrangian description on the spatial domain ]0, 1[. In this work

we prove that our problem has a generalized solution for any time interval [0, T ],

T ∈ R+. The proof is based on the local existence theorem and the extension principle.

Keywords: micropolar fluid; spherical symmetry; generalized solution; global

existence

1 Introduction

The model of micropolar fluids, introduced by Eringen (e.g. in []), has received consider-

able attention in the last two decades. The model has many potential applications (see [],

p.) and has become an important area of interest for mathematicians and engineers (see

e.g. [–]). From a mathematical point of view, the micropolar fluid model is considered

in two directions-one explores the incompressible and the other the compressible flows.

The incompressible flow has been very well analyzed (e.g. see []), but there are still many

open problems. Lately, the incompressible flow of magneto-micropolar fluids is increas-

ingly being explored (e.g. see []). The compressible flow of themicropolar fluid has begun

to be intensively studied in the last few years (e.g. see [–]).

In this paper we consider the model for the compressible flow of the isotropic, vis-

cous and heat-conducting micropolar fluid which is in the thermodynamical sense per-

fect and polytropic. The described model in the one-dimensional case was first described

by Mujaković in []. This model was analyzed in relation to existence, regularity and

stabilization for different kinds of problems with homogeneous and non-homogeneous

boundary conditions (e.g. see [–]). A significant number of results related to this one-

dimensional model has been systematized in the fifth and sixth chapter of [], but re-

searches concerning the three-dimensional model for this kind of fluid are still at the be-

ginning. Till now the described model of the compressible micropolar fluid in the three-
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dimensional case has been considered just in [] or [] by Dražić and Mujaković in the

spherically symmetric case.

Here, as in [] and [], we analyze the motion of the described fluid on the domain

{

x = (x,x,x) : x ∈ R,a < |x| < b, |x| =
√

x + x + x

}

. ()

We assume that initial functions are spherically symmetric and smooth enough on ().

Based on this assumption, we analyze the spherically symmetric solution to the governing

system. Because of spherical symmetry, the starting three-dimensional problem becomes

one-dimensional with the spatial domain ]a,b[ in the Eulerian description or on the do-

main ], [ in the Lagrangian description.

Using the Faedo-Galerkin method in [] it is proved that the corresponding problem

with homogeneous boundary conditions for velocity, microrotation and heat flux has a

generalized solution locally in time, i.e. on the domain ], [× ],T[, where T >  is suf-

ficiently small. In [] the uniqueness of the generalized solution for the same problem is

proved. This work is a natural continuation of the research presented in these two papers,

where we prove that the problem has a generalized solution globally in time, i.e. on the do-

main ], [× ],T[, for any finite T > . The proof is based on the local existence theorem

and the extension principle.

To be able to apply the extension principle we first derive a set of a priori bounds with

constants dependent only on initial data and the constant T >  (boundary of time do-

main). Let us note that our time domain is arbitrary, but finite. The solution on the de-

scribed time domain ],T[, we call global as in [] and []. Such a solution is analyzed

for a much simpler problem in [], Chapter  as well, but under the name ‘solution in the

whole’.

The results from this paper are a generalization of the results from [] where the one-

dimensional variant of the problem, which we analyze here, is presented. We use here

some ideas from [], as well as from the book [] and [] where a similar problem was

considered for the classical compressible fluid (problem without microrotation).

The paper is organized as follows. In Section  we formally present the results from []

and [] which are important for this work and formulate the main result of this paper.

In Section  we give the proof of our result-the global existence theorem. We first briefly

explain the extension principle on which the proof is based. After that, we derive the set

of a priori bounds which are needed to employ the extension principle and at the end we

give the formal proof based on the obtained lemmas.

2 Statement of the problem and themain result

Our model is based on the local forms of the conservation laws for mass, moment, angu-

lar (momentum) moment and energy, as was stated in [] (()-()), as well as on the con-

stitutive equations for compressible viscous and heat-conducting micropolar fluid with

assumptions that the fluid is perfect and polytropic (()-(), ()-() in []). These equa-

tions relate mass density ρ , velocity v, microrotation ω, and temperature θ .

In [] we introduce the spherically symmetric initial conditions

ρ(x) = ρ(r), v(x) =
x

r
v(r), ω(x) =

x

r
ω(r), θ(x) = θ(r), ()
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where ρ, v, ω, and θ are known real functions defined on ]a,b[,a x = (x,x,x) ∈ R,

r = |x|, and we assume that ρ , v, ω, and θ are spherically symmetric too:

vi(x, t) =
xi

r
v(r, t), ωi(x, t) =

xi

r
ω(r, t), i = , , ,

ρ(x, t) = ρ(r, t), θ (x, t) = θ (r, t).

()

Using the assumptions (), the spatial domain () becomes a one-dimensional domain

]a,b[. The governing system in the Eulerian description is given by formulas ()-() in

[]. As it was stated in the book [], p.. when the global estimates are deduced, it

is convenient to use Lagrangian description. The transition from the Eulerian to the La-

grangian description was done in [], pp.-, but for the reader’s convenience we will

briefly describe it here. The Eulerian coordinates (r, t) are connected to the Lagrangian

coordinates (ξ , t) by the relation

r(ξ , t) = r(ξ ) +

∫ t



ṽ(ξ , t)dτ , r(ξ ) = r(ξ , ) = ξ , ()

where ṽ(ξ , t) is defined by ṽ(ξ , t) = v(r(ξ , t), t). Using the same procedure as in [] we then

introduce (see [], ()-()) the new function η by

η(ξ ) =

∫ ξ

a

sρ(s)ds, ()

define the new constant L by

η(b) =

∫ b

a

sρ(s)ds = L ()

and introduce the new coordinate x = L–η(ξ ). With this new coordinate the spatial do-

main becomes ], [ and we get the following initial-boundary problem:

∂ρ

∂t
= –



L
ρ ∂

∂x

(

rv
)

, ()

∂v

∂t
= –

R

L
r

∂

∂x
(ρθ ) +

λ + μ

L
r

∂

∂x

(

ρ
∂

∂x

(

rv
)

)

, ()

ρ
∂ω

∂t
= –

μr

jI
ω +

c + cd

jIL
rρ

∂

∂x

(

ρ
∂

∂x

(

rω
)

)

, ()

ρ
∂θ

∂t
=

k

cvL
ρ

∂

∂x

(

rρ
∂θ

∂x

)

–
R

cvL
ρθ

∂

∂x

(

rv
)

+
λ + μ

cvL

[

ρ
∂

∂x

(

rv
)

]

–
μ

cvL
ρ

∂

∂x

(

rv
)

+
c + cd

cvL

[

ρ
∂

∂x

(

rω
)

]

–
cd

cvL
ρ

∂

∂x

(

rω
)

+
μr

cv
ω, ()

ρ(x, ) = ρ(x), v(x, ) = v(x), ω(x, ) = ω(x), θ (x, ) = θ(x), ()

v(, t) = v(, t) = , ω(, t) = ω(, t) = ,
∂θ

∂x
(, t) =

∂θ

∂x
(, t) = , ()

considered on the domainQT = ], [× ],T[, where T >  is arbitrary.With the boundary

conditions () we describe the acting of the solid thermo-insulated walls.
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The positive constant jI is microinertia density. λ and μ are coefficients of viscosity and

μr , c, and cd are the coefficients of microviscosity. Because of the Clausius-Duhamel in-

equalities they must have the properties:

μ,μr , cd ≥ , λ + μ ≥ , c + cd ≥ . ()

By the constant k (k ≥ ) we denote the heat-conduction coefficient, the positive constant

R is the specific gas constant, and the positive constant cv denotes the specific heat for a

constant volume.

If () is considered in the Eulerian description (see () in []) and by using () we can

conclude as in [], p. that

∂r(x, t)

∂x
=

L

ρ(x, t)r(x, t)
. ()

Taking into account () and () we have

r(x) =

(

a + L

∫ x





ρ(y)
dy

)



, x ∈ ], [ ()

(a >  is the radius of the smaller boundary sphere), and

r(x, t) = r(x) +

∫ t



v(x, τ )dτ , (x, t) ∈ QT . ()

In this work we consider the properties of the so-called generalized solution to the prob-

lem ()-() which is introduced in [], p. as follows.

Definition . A generalized solution of the problem ()-() in the domainQT is a func-

tion

(x, t) �→ (ρ, v,ω, θ )(x, t), (x, t) ∈QT , ()

where

ρ ∈ L∞(

,T ;H
(

], [
))

∩H(QT ), inf
QT

ρ > , ()

v,ω, θ ∈ L∞(

,T ;H
(

], [
))

∩H(QT )∩ L
(

,T ;H
(

], [
))

, ()

that satisfies ()-() a.e. in QT and conditions ()-() in the sense of traces.

As was stated in [], Remark ., p., from the embedding and interpolation theorems

one can conclude that our generalized solution could be treated as a strong solution.

We assume that the initial data () have the following smoothness properties:

ρ, θ ∈H
(

], [
)

, v,ω ∈H


(

], [
)

, ()

and that there exists a constantm ∈ R+ such that

ρ(x)≥ m, θ(x)≥ m for x ∈ ], [. ()
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Because of the embedding Hm(], [) →֒ Ck([, ]), for m – k > 

from () and () we

find that there existsM ∈ R+, such that

ρ(x),
∣

∣v(x)
∣

∣,
∣

∣ω(x)
∣

∣, θ(x)≤ M, x ∈ [, ]. ()

In this work we use the following result which is proved in [] and [].

Theorem . Let the initial functions ρ, v, ω, and θ satisfy conditions () and ().

Then there exists small enough T ∈ R+ such that the problem ()-() has at most one

generalized solution (ρ, v,ω, θ ) in QT = ], [× ],T[, having the property

θ >  in QT
. ()

For the function r we have

r ∈ L∞(

,T;H

(

], [
))

∩H(QT )∩C(QT
), ()

a


≤ r ≤ M in QT

, ()

where the constant a is from () and the constant M from ().

Using Theorem . and extension principle in this work we shall prove the following

result.

Theorem . Let the initial functions ρ, v, ω, and θ satisfy conditions () and ().

Then for any T ∈ R+ there exists a generalized solution of the problem ()-() on the do-

main QT with the property

θ >  in QT . ()

3 The proof of Theorem 2.2

The proof of Theorem . is based on the extension principle. The idea of this principle is

explained for example in [], in the proof of Theorem ., p.. For the reader’s conve-

nience let us explain it briefly. Theorem . ensures the existence of a unique solution of

our problem on the time domain ]t, t + T[ with initial functions ρ(·, t), v(·, t), ω(·, t),
and θ (·, t). So, we have the existence on the time domain ],T[, where T = t +T. After

we repeat the procedure for k steps, we will have the existence on the time domain ],Tk[,

so we can continue this procedure as long as through a priori estimates we can ensure

that ρ(·, t), v(·, t), ω(·, t), and θ (·, t) satisfy the conditions for initial functions for any
t ∈ ],Tk[. We make this principle more formal in the following proposition, as was done

for example in [].

Proposition . Let T ∈ R+ and let the function

(x, t) �→ (ρ, v,ω, θ )(x, t), (x, t) ∈QT ′ ()

be the generalized solution of the problem ()-() on the domain QT ′ , for any T ′ < T with

the property θ >  in QT ′ . Then () is the generalized solution of the same problem on the

domain QT with the property θ >  in QT .
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As it is explained in the book [], p., to be able to use the Proposition . it is crucial to

find a set of global a priori estimates in which the constants are independent of the length

of time domain from the local existence theorem. The constants can depend on initial data

and the constant T from the Proposition . only. We shall note these constants by C or

Ci where i = , , . . . and in different places they can take over different values.

3.1 Lower bounds for density and temperature

Following the procedure from the book [], Chapter  we first shall derive some proper-

ties of the functions ρ and θ . To be precise we have to show that these two functions are

bounded from below which is the hardest part of this paper. We will also show the upper

boundedness for the function ρ and derive some important properties for the function θ .

Apart from the book [], in this part of the work we also use the ideas from articles []

and []. In the cases when we will use the results from other papers we will omit the

proofs or details of proofs, but we will refer to them appropriately.

In almost all lemmas hereafter we use the lower boundedness of the function r:

Lemma . (Lemma . in [], p.) The function r defined by () satisfies the estimate

r(x, t)≥ a, (x, t) ∈QT , ()

where a >  is the radius of the smaller boundary sphere of the starting domain.

.. The ‘energy’ estimate

We first introduce the function

U(x, t) =
v


+ jI

ω


+ Rψ

(



ρ

)

+ cvψ(θ ), ()

where

ψ(x) = x – lnx –  ()

is a non-negative and convex function. Let us note that the functionU is the generalization

of the energy function. The estimate of the energy function is crucial for obtaining the

estimates and properties of the functions ρ , v, ω, and θ in the following sections.

Lemma . There exists a constant C ∈ R+ such that

∫ 



U(x, t)dx +

∫ t



∫ 



[

k

L
rρ

θ

(

∂θ

∂x

)

+

(

λ +



μ

)

ρ

θ

(

∂

∂x

(

rv
)

)

×
(

c +



cd

)

ρ

θ

(

∂

∂x

(

rω
)

)]

dxdτ ≤ C. ()

Proof Multiplying (), (), (), and (), respectively, by R(– 
ρ

+ 
ρ
), v, jIωρ–, and cv( –


θ
)ρ–, after addition and integration over [, ] we obtain

∫ 



∂

∂t
U dx +

λ + μ

L

∫ 



ρ

θ

[

∂

∂x

(

rv
)

]

dx

+
c + cd

L

∫ 



ρ

θ

[

∂

∂x

(

rω
)

]

dx
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+
k

L

∫ 



rρ

θ

[

∂θ

∂x

]

dx + μr

∫ 



ω

ρθ
dx

=
μ

L

∫ 





θ

∂

∂x

(

rv
)

dx +
cd

L

∫ 





θ

∂

∂x

(

rω
)

dx. ()

Integrating () over [, t], using () as well as the equality

∂

∂x

(

rv
)

=


r
v

∂

∂x

(

rv
)

–
Lv

ρr
, ()

which is also valid for the function ω, after some calculations we get

∫ 



U(x, t)dx +

(

λ +



μ

)



L

∫ t



∫ 



ρ

θ

[

∂

∂x

(

rv
)

]

dxdτ

+

(

c +



cd

)



L

∫ t



∫ 



ρ

θ

[

∂

∂x

(

rω
)

]

dxdτ

+
k

L

∫ t



∫ 



rρ

θ

[

∂θ

∂x

]

dxdτ ≤
∫ 



U(x, )dx. ()

Taking into account () we easily conclude the following estimate:

∫ 



U(x, )dx≤ C
(

 +
∥

∥(ρ, v,ω, θ)
∥

∥



L(],[)

)

≤ C, ()

which together with () immediately gives (). �

Lemma . Let α and α be two positive solutions of the equation

ψ(x) = Cc–v , ()

where C is the same constant as in (), and ψ is the function defined by (). Then, for any

t ∈ ],T[ we have

α ≤
∫ 



θ (x, t)dx≤ α ()

and there exists a function a : [,T]→ [, ] such that

α ≤ θ
(

a(t), t
)

≤ α. ()

Proof From () we immediately get

∫ 



(θ – ln θ – )(x, t)dx≤ Cc–v . ()

As the function ψ is convex, we are able to utilize the Jensen inequality and conclude that

∫ 



θ (x, t)dx – ln

∫ 



θ (x, t)dx –  ≤ Cc–v . ()

From () we easily get () and (). �
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.. Some auxiliary constructions

The aim of this section is to derive a useful representation of the function ρ , which is

known in literature as the representation of the Kazhikov type. We will also list all impor-

tant properties of the functions connected to this representation.

Lemma . Let A be the constant defined by

A =

∫ 





ρ(x)
dx. ()

For the function ρ and for any t ∈ ],T[ we have

∫ 





ρ(x, t)
dx = A. ()

Also, there exists a function g ,  ≤ g(t)≤  such that

ρ
(

g(t), t
)

= A–, t ∈ [,T]. ()

Proof In the same way as in Lemma . in [], p., from () we obtain () and ().

�

In the next lemmawe use the same procedure as in [], p., as well as some ideas from

[], p. in order to make the aforementioned representation of the function ρ .

Lemma . For the function ρ on QT we have

ρ(x, t) =
ρ(x) · Y (t) · B(x, t)

 + R
λ+μ

ρ(x)
∫ t


θ (x, τ ) · Y (τ ) · B(x, τ )dτ

, ()

where

Y (t) =


Aρ(g(t))
exp

{

R

λ + μ

∫ t



ρ
(

g(t), τ
)

θ
(

g(t), τ
)

dτ

}

()

and

B(x, t) = exp

{

–
L

λ + μ

∫ x

g(t)

∫ t



r–(y, τ )
∂v(y, τ )

∂t
dτdy

}

. ()

(The constant A and the function g are from Lemma ..)

Proof Let us write () in the form



L
ρ

∂

∂x

(

rv
)

= –
∂

∂t
lnρ ()

and insert it in (). After we integrate the obtained equality over [, t], t ∈ ],T[, we get

∂

∂x

(

λ + μ

L
lnρ +

R

L

∫ t



ρ(x, τ )θ (x, τ )dτ

)

=
λ + μ

L

∂

∂x
lnρ(x) –

∫ t



r–(x, τ )
∂v(x, τ )

∂t
dτ . ()
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Now, we integrate () over [g(t),x], x ∈ ], [ for fixed t and get

λ + μ

L
lnρ +

R

L

∫ t



ρ(x, τ )θ (x, τ )dτ

=
λ + μ

L
lnρ

(

g(t), t
)

+
R

L

∫ t



ρ
(

g(t), τ
)

θ
(

g(t), τ
)

dτ

+
λ + μ

L
ln

ρ(x)

ρ(g(t))
–

∫ x

g(t)

∫ t



r–(y, τ )
∂v(y, τ )

∂t
dτdy. ()

Taking into account (), (), and () we easily get (). �

Lemma . There exists C ∈ R+ such that for (x, t) ∈QT we have

∣

∣

∣

∣

∫ x

g(t)

∫ t



r–(y, τ )
∂v(y, τ )

∂t
dτdy

∣

∣

∣

∣

≤ C, ()

where the function g is defined by ().

Proof In the same way as in [], p., (.), with the help of () and () we obtain

(). �

Lemma . The function B defined by () has the properties:

C– ≤ B(x, t)≤ C, ()

∂B(x, t)

∂x
= B(x, t)ϕ(x, t), ()

where

ϕ(x, t) =
–L

λ + μ

∫ t



r–(y, τ )
∂v(y, τ )

∂t
dτ , ()

for (x, t) ∈QT and C ∈ R+.

Proof Using () and () from () we immediately get () and (). �

Lemma . There exist constants C,C ∈ R+ such that for any t ∈ ],T[ we have

C ≤ Y (t) ≤ C. ()

Proof In the same way as in [], Lemma ., p., using (), (), (), and the Gronwall

inequality from () we get (). �

Now we introduce the notations analogous to the one in [], p. for the maximal and

minimal values of the functions ρ and θ for fixed t:

mρ(t) = min
x∈[,]

ρ(x, t), Mρ(t) = max
[,]

ρ(x, t),

mθ (t) = min
x∈[,]

θ (x, t), Mθ (t) = max
x∈[,]

θ (x, t).
()
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The following relationships of the functions from () are crucial for deriving the bounds

of the function ρ .

Lemma . There exist positive constants C and C such that

Mρ(t)≤ C

(

 +

∫ t



mθ (τ )dτ

)–

()

and

mρ(t) ≥ C

(

 +

∫ t



Mθ (τ )dτ

)–

. ()

Proof In the same way as in Lemma . in [], p., using () and () from () we

immediately get () and (). �

To derive the further properties of the function θ we will need the following result.

Lemma . (Lemma . in [], p.) For any ε >  there exists a constant Cε > , such

that for any t ∈ ],T[ we have

M
θ (t)≤ εI(t) +Cε

(

 + I(t)
)

, ()

where

I(t) =

∫ 



rρ

(

∂θ

∂x

)

dx, I(t) =

∫ t



I(τ )dτ . ()

Let usmention that we slightly adapted the form of inequality () comparing to the one

in [], as well as the form of the function I, but the proof remains the same.

.. Lower bound for the function θ

In the proof of the following lemma we used the adapted approach from [], Lemma .,

p., as well as some ideas from Lemma ., p. in [] and Lemma ., p. in [].

Lemma . There exists a constant C ∈ R+ such that for any t ∈ ],T[ we have

mθ (t)≥ C. ()

Proof Multiplying () by –θ–ρ– we get

∂

∂t

(



θ

)

=
k

cvL
∂

∂x

(

rρ
∂

∂x

(



θ

))

–
k

cvL
ρr

θ

(

∂θ

∂x

)

+
R

cvL

ρ

θ

∂

∂x

(

rv
)

–


θ

{

λ + μ

cvL
ρ

[

∂

∂x

(

rv
)

]

–
μ

cvL

∂

∂x

(

rv
)

}

–


θ

{

c + cd

cvL
ρ

[

∂

∂x

(

rω
)

]

–
cd

cvL

∂

∂x

(

rω
)

}

–
μr

cv

ω

ρθ
, ()
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which implies the inequality

∂

∂t

(



θ

)

≤
k

cvL
∂

∂x

(

rρ
∂

∂x

(



θ

))

+
R

cv(λ + 

μ)

ρ

–
ρ

θ

[



L

√

λ + 

μ

cv

∂

∂x

(

rv
)

–
R


√
cv

√

λ + 

μ

θ

]

, ()

i.e.

∂

∂t

(



θ

)

≤
k

cvL
∂

∂x

(

rρ
∂

∂x

(



θ

))

+
R

cv(λ + 

μ)

ρ. ()

After multiplying () by pθ–p+, p≥ , we have

∂

∂t

(



θp

)

≤
kp

cvL
∂

∂x

(

rρ
∂

∂x

(



θ

))(



θ

)p–

+
Rp

cv(λ + 

μ)

ρ

(



θ

)p–

()

which, after integration over ], [, gives

d

dt

∥

∥

∥

∥



θ (t)

∥

∥

∥

∥

p

Lp(],[)

≤
Rp

cv(λ + 

μ)

∫ 



ρ

(



θ

)p–

dx. ()

After applying the Hölder inequality to the right-hand side of () we get

d

dt

∥

∥

∥

∥



θ (t)

∥

∥

∥

∥

p

Lp(],[)

≤
Rp

cv(λ + 

μ)

∥

∥ρ(t)
∥

∥

Lp(],[)

∥

∥

∥

∥



θ (t)

∥

∥

∥

∥

p–

Lp(],[)

, ()

hence we have

d

dt

∥

∥

∥

∥



θ (t)

∥

∥

∥

∥

Lp(],[)

≤
R

cv(λ + 

μ)

∥

∥ρ(t)
∥

∥

Lp(],[)
. ()

Now we integrate () over [, t], t ∈ ],T[ and obtain

∥

∥

∥

∥



θ (t)

∥

∥

∥

∥

Lp(],[)

≤
∥

∥

∥

∥



θ ()

∥

∥

∥

∥

Lp(],[)

+
R

cv(λ + 

μ)

∫ t



∥

∥ρ(τ )
∥

∥

Lp(],[)
dτ , ()

which implies the assertion of the lemma, analogously to the proof of Lemma . in [],

p.. �

With the help of () and () we immediately get the following property of the func-

tion ρ .

Corollary . There exists a constant C ∈ R+ such that for any t ∈ ],T[ we have

Mρ ≤ C. ()



Dražić and Mujaković Boundary Value Problems  ( 2015)  2015:98 Page 12 of 21

.. Lower bound for the function ρ

In obtaining the lower bound for the density we were not able to use themethod proposed

in [], p. which is used in [], p., for the one-dimensional model, so we adapted

here the idea from [], Lemma ., p..

Lemma . There exists a constant C ∈ R+ such that for any t ∈ ],T[ we have

mρ(t) ≥ C. ()

Proof By using the Cauchy-Schwarz inequality as well as (), (), and () we get

∣

∣

√

θ (x, t) –
√

θ
(

a(t), t
)
∣

∣ ≤ C

∫ x

a(t)


√

θ

∣

∣

∣

∣

∂θ

∂x

∣

∣

∣

∣

dy

≤ C

(∫ 



rρ

θ

(

∂θ

∂x

)

dx

)


(∫ 



θ

rρ
dx

)



≤ C

(∫ 



rρ

θ

(

∂θ

∂x

)

dx

)

 
√
mρ

. ()

Taking into account estimate (), from () we obtain

θ (x, t)≤ C

(

 +

(∫ 



rρ

θ

(

∂θ

∂x

)

dx

)



mρ

)

, ()

which we insert into () and get



mρ(t)
≤ C

(

 +

∫ t



∫ 



rρ

θ

(

∂θ

∂x

)

dx


mρ(τ )
dτ

)

. ()

After we apply the Gronwall inequality to () and use estimate () we immediately get

(). �

3.2 A priori estimates for derivatives

To be able to derive the estimates of derivatives for functions ρ , v, ω, and θ we will apply

the energy method. Therefore, we will make the estimate of the function

� =



v +




jIω

 + cvθ , ()

adapting the procedure used in the proof of Lemma . in [], p..

Lemma . There exists a constant C ∈ R+ such that for any t ∈ ],T[ we have

∫ 



(

� + v +ω
)

dx + I ≤ C, ()

where the function I is defined by ().



Dražić and Mujaković Boundary Value Problems  ( 2015)  2015:98 Page 13 of 21

Proof First we multiply (), (), and (), respectively, by v, jIωρ– and cvρ
–, and inte-

grate them over ], [. After addition of the obtained equalities, making use of boundary

conditions and (), we get





d

dt

∫ 



�(x, t)dx = –

∫ 



(

λ + μ

L
ρr

∂�

∂x
+
λ

L
rv –

R

L
ρθrv +

co

L
rω

+

(

c + cd

L
– jI

λ + μ

L

)

ρrω
∂ω

∂x

+

(

k

L
– cv

λ + μ

L

)

rρ
∂θ

∂x

)

∂�

∂x
dx, ()

which, using the Young inequality, implies





d

dt

∫ 



�(x, t)dx

+

∫ 



ρr
[

λ + μ

L

(

∂�

∂x

)

dx +

(

k

L
– cv

λ + μ

L

)

∂θ

∂x

∂�

∂x
dx

]

≤ C

ε–



∫ 



(

(

ρr
)–

v + ρθv +
(

ρr
)–

ω + ρrω

(

∂ω

∂x

))

dx

+ Cε

∫ 



ρr
(

∂�

∂x

)

, ()

where ε >  is arbitrary.

To simplify (), using elementary algebraic operations, we derive the following inequal-

ity:

(A – B)(a + b + c) + (C –A)c(a + b + c)

≥ (C – B)c –

(

B +
(A – B +C)

B

)

a –


B

[

(A – B) +
(A – B +C)



]

b, ()

where A,B,C,a,b, c ∈ R, and A > B > . In () we insert a = v ∂v
∂x
, b = jIω

∂ω
∂x
, c = cv

∂θ
∂x
, A =

λ+μ

L
, B = Cε, C = k

cvL
, and choose ε such that A – B >  and C – B > . For simplicity

reasons we denote D = C – B and

C = max

{

B +
(A – B +C)

B
,



B

[

(A – B) +
(A – B +C)



]

+C

ε–


·C

ε–



}

. ()

We get





d

dt

∫ 



�(x, t)dx +D

∫ 



ρr
(

∂θ

∂x

)

dx

≤ C

∫ 



(

(

ρr
)–

v + ρθv +
(

ρr
)–

ω

+ ρrv
(

∂v

∂x

)

+ ρrω

(

∂ω

∂x

))

dx. ()
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Using (), (), and (), from () we obtain





d

dt

∫ 



�(x, t)dx +D

∫ 



ρr
(

∂θ

∂x

)

dx

≤ C

∫ 



(

v + θv +ω + rv
(

∂v

∂x

)

+ rω

(

∂ω

∂x

))

dx. ()

To be able to bound the terms v and ω on the right-hand side of () we multiply ()

and (), respectively, by v and ω, integrate over ], [ and utilize the Young inequality.

After some calculations and making use of (), (), and (), we get





∫ 



∂v

∂t
dx +C

∫ 



rv
(

∂v

∂x

)

dx ≤ C

∫ 



(

v + θv
)

dx, ()





∫ 



∂ω

∂t
dx +C

∫ 



rω

(

∂ω

∂x

)

dx≤ C

∫ 



ω dx. ()

Now, we multiply () by CC
–
 and () by CC

–
 . After the addition of the obtained

inequalities with (), we find

d

dt

[∫ 



(

�(x, t) +
CC

–



v +

CC
–



ω

)

dx + D

∫ t



∫ 



ρr
(

∂θ

∂x

)

dxdτ

]

≤ C

∫ 



((

 +CC
–


)(

v + θv
)

+
(

 +CC
–


)

ω
)

dx. ()

To finish the proof we need the following inequality which is the direct consequence of

():

∫ 



θv dx≤ Cǫ

∫ 



rρ

(

∂θ

∂x

)

dx +Cǫ

(

 +

∫ t



∫ 



ρr
(

∂θ

∂x

)

dxdτ

)

()

which we insert into () and use the suitable ǫ. Hence we have

d

dt

∫ 



(

�(x, t) +
CC

–



v +

CC
–



ω +D

∫ t



ρr
(

∂θ

∂x

)

dτ

)

dx

≤ C

∫ 



(

�(x, t) +
CC

–



v +

CC
–



ω +D

∫ t



ρr
(

∂θ

∂x

)

dτ

)

dx + . ()

Using the Gronwall inequality, from () we immediately get (). �

Equations () and () imply an important property of the functionMθ , which is given

in the next corollary.

Corollary . There exists a constant C ∈ R+ such that we have

‖Mθ‖L(],T[) ≤ C. ()

Let us notice that (), () and () imply

∂θ

∂x
∈ L(QT ). ()
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Wewill derive the estimates for the first spatial derivatives of other functions (ρ , v, and ω)

in the following two lemmas.

Lemma . There exists a constant C ∈ R+ such that for any t ∈ ],T[ we have

∥

∥

∥

∥

∂ρ

∂x
(t)

∥

∥

∥

∥

≤ C. ()

Proof Taking into account () and (), for the derivative of () we get

∂ρ

∂x
= ρϕ – ρY–B–

[

d

dx

(



ρ

)

+
RL

λ + μ

∫ t



BY

(

∂θ

∂x
+ θϕ

)

dτ

]

. ()

With the help of (), (), and (), after integration over ], [, () implies

∥

∥

∥

∥

∂ρ

∂x

∥

∥

∥

∥



≤ C

(

‖ϕ‖ +
∫ 





ρ


(

ρ ′


)
dx +

∫ t



∫ 



(

∂θ

∂x

)

dxdτ +

∫ t



M
θ‖ϕ‖ dτ

)

. ()

Using (), integration by parts and properties of the initial data, from () we obtain

∥

∥ϕ(t)
∥

∥

 ≤ C

(

 + ‖v‖ +
∫ t



∫ 



v dxdτ

)

. ()

Inserting () into (), using the properties of the initial data as well as (), (), (),

and (), we immediately get (). �

Lemma . There exists a constant C ∈ R+ such that for any t ∈ ],T[ we have

∥

∥v(t)
∥

∥


+

∫ t



∥

∥

∥

∥

∂v

∂x
(τ )

∥

∥

∥

∥



≤ C, ()

∥

∥ω(t)
∥

∥


+

∫ t



∥

∥

∥

∥

∂ω

∂x
(τ )

∥

∥

∥

∥



≤ C. ()

Proof After we multiply () by v and integrate over ], [, we get





d

dt

∥

∥v(t)
∥

∥


+

λ + μ

L

∫ 



ρ

(

∂

∂x

(

rv
)

)

dx =
R

L

∫ 



ρθ
∂

∂x

(

rv
)

dx. ()

Using the Young inequality, () and () from () we obtain

d

dt

∥

∥v(t)
∥

∥


+

∫ 



(

∂

∂x

(

rv
)

)

dx ≤ CM
θ . ()

To simplify the left hand side of () we use the inequality

[

∂

∂x

(

rv
)

]

≥




(

∂v

∂x

)

–Cv, ()

which can easily be derived using (), (), and (). After inserting () into (), inte-

grating over ], t[ and using () and () we immediately get ().
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Now we prove (). Let us first notice that () is also valid for the function ω. After we

multiply () by ρ–ω and integrate over ], [, we obtain





d

dt

∥

∥ω(t)
∥

∥


+
c + cd

jIL

∫ 



ρ

(

∂

∂x

(

rω
)

)

dx =
μr

jI

∫ 



ω

ρ
dx, ()

from which, by using () and the same procedure as before, we immediately arrive at

(). �

Lemma . enables us to derive the upper boundedness of the function r, which is

crucial for the estimates of the second spatial derivatives.

Corollary . There exists a constant C ∈ R+ such that for any (x, t) ∈ QT we have

r(x, t)≤ C. ()

Proof From () and (), using the Gagliardo-Ladyzhenskaya inequality as well as the

Young inequality together with (), we get

r(x, t)≤ C

(

 +

∫ t



∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

)

dx ()

from which, using () we obtain the assertion of the lemma. �

Lemma . There exists a constant C ∈ R+ such that for any t ∈ ],T[ we have

∥

∥

∥

∥

∂v

∂x
(t)

∥

∥

∥

∥



+

∫ t



∥

∥

∥

∥

∂v

∂x
(τ )

∥

∥

∥

∥



dτ ≤ C, ()

∥

∥

∥

∥

∂ω

∂x
(t)

∥

∥

∥

∥



+

∫ t



∥

∥

∥

∥

∂ω

∂x
(τ )

∥

∥

∥

∥



dτ ≤ C, ()

∥

∥

∥

∥

∂θ

∂x
(t)

∥

∥

∥

∥



+

∫ t



∥

∥

∥

∥

∂θ

∂x
(τ )

∥

∥

∥

∥



dτ ≤ C. ()

Proof Multiplying () by ∂v
∂x

and integrating over ], [, we get





d

dt

∥

∥

∥

∥

∂v

∂x
(t)

∥

∥

∥

∥



+
λ + μ

L

∫ 



rρ

(

∂v

∂x

)

dx

=
R

L

∫ 



rθ
∂v

∂x
∂ρ

∂x
dx +

R

L

∫ 



rρ
∂v

∂x
∂θ

∂x
dx

+ (λ + μ)

∫ 



v

rρ

∂v

∂x
dx –

λ + μ

L

∫ 



r
∂ρ

∂x

∂v

∂x

∂v

∂x
dx

–
(λ + μ)

L

∫ 



r
∂v

∂x

∂v

∂x
dx. ()

Using the Hölder, Gagliardo-Ladyzhenskaya, and Young inequalities as well as () and

(), we obtain the estimates of the integrals on the right-hand side of () as follows:

∣

∣

∣

∣

R

L

∫ 



rθ
∂v

∂x
∂ρ

∂x
dx

∣

∣

∣

∣

≤ CMθ

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

∥

∥

∥

∥

∂ρ

∂x

∥

∥

∥

∥

≤ ε

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



+CM
θ , ()
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∣

∣

∣

∣

R

L

∫ 



rρ
∂v

∂x
∂θ

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



+C

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



, ()

∣

∣

∣

∣

(λ + μ)

∫ 



v

rρ

∂v

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



+C‖v‖, ()

∣

∣

∣

∣

–
λ + μ

L

∫ 



r
∂ρ

∂x

∂v

∂x

∂v

∂x
dx

∣

∣

∣

∣

≤ C

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



∫ 



∣

∣

∣

∣

∂ρ

∂x

∂v

∂x

∣

∣

∣

∣

dx

≤ C

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



∥

∥

∥

∥

∂ρ

∂x

∥

∥

∥

∥

≤ ε

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



+C

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



, ()

∣

∣

∣

∣

–
(λ + μ)

L

∫ 



r
∂v

∂x

∂v

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



+C

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



. ()

Inserting ()-() into (), and by using the small enough ε >  we get





d

dt

∥

∥

∥

∥

∂v

∂x
(t)

∥

∥

∥

∥



+C

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



≤ C

(

 +M
θ + ‖v‖ +

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

)

, ()

from which by integration over ], t[ and by using the properties of the initial data, ()

and () we get the assertion ().

Now we prove (). By multiplying () by ρ– ∂ω

∂x
and integrating over ], [, we obtain





d

dt

∥

∥

∥

∥

∂ω

∂x
(t)

∥

∥

∥

∥



+
c + cd

jIL

∫ 



rρ

(

∂ω

∂x

)

dx

=
μr

jI

∫ 



ω

ρ

∂ω

∂x
dx + 

c + cd

jI

∫ 



ω

rρ

∂ω

∂x
dx

–
c + cd

jIL

∫ 



r
∂ρ

∂x

∂ω

∂x

∂ω

∂x
dx –

(c + cd)

jIL

∫ 



r
∂ω

∂x

∂ω

∂x
dx. ()

In the same way as before, we get the estimates

∣

∣

∣

∣

μr

jI

∫ 



ω

ρ

∂ω

∂x
dx

∣

∣

∣

∣

≤ C

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥

‖ω‖ ≤ ε

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥



+C‖ω‖, ()

∣

∣

∣

∣


c + cd

jI

∫ 



ω

rρ

∂ω

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥



+C‖ω‖, ()

∣

∣

∣

∣

–
c + cd

jIL

∫ 



r
∂ρ

∂x

∂ω

∂x

∂ω

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥



+C

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥

∥
∥

∥

∥

∂ρ

∂x

∥

∥

∥

∥



, ()

∣

∣

∣

∣

–
(c + cd)

jIL

∫ 



r
∂ω

∂x

∂ω

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥



+C‖ω‖. ()

By inserting ()-() into (), for small enough ε > , we get





d

dt

∥

∥

∥

∥

∂ω

∂x
(t)

∥

∥

∥

∥



+C

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥



≤ C

(

 + ‖ω‖ +
∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥

)

, ()
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from which, by integration over ], t[, using the properties of the initial data and (), we

obtain ().

To prove () we multiply () by ρ– ∂θ

∂x
. After integrating over ], [, we obtain





d

dt

∥

∥

∥

∥

∂θ

∂x
(t)

∥

∥

∥

∥



+
k

cvL

∫ 



rρ

(

∂θ

∂x

)

dx

= –
k

cvL

∫ 



r
∂θ

∂x

∂θ

∂x
dx

–
k

cvL

∫ 



r
∂ρ

∂x

∂θ

∂x

∂θ

∂x
dx

R

cv

∫ 



θv

r

∂θ

∂x
dx +

R

cvL

∫ 



rρθ
∂v

∂x

∂θ

∂x
dx

–
(λ +μ)

cv

∫ 



v

rρ

∂θ

∂x
dx –

λ

cvL

∫ 



rv
∂v

∂x

∂θ

∂x
dx

–
λ + μ

cvL

∫ 



rρ

(

∂v

∂x

)
∂θ

∂x
dx –

(c + cd)

cv

∫ 



ω

rρ

∂θ

∂x
dx

–
c

cvL

∫ 



rω
∂ω

∂x

∂θ

∂x
dx –

c + cd

cvL

∫ 



rρ

(

∂ω

∂x

)
∂θ

∂x
dx

–
μr

cv

∫ 



ω

ρ

∂θ

∂x
. ()

Analogously to before we conclude the following:

∣

∣

∣

∣

–
k

cvL

∫ 



r
∂θ

∂x

∂θ

∂x
dx

∣

∣

∣

∣

≤ C

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



, ()

∣

∣

∣

∣

–
k

cvL

∫ 



r
∂ρ

∂x

∂θ

∂x

∂θ

∂x
dx

∣

∣

∣

∣

≤ C

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



∥

∥

∥

∥

∂ρ

∂x

∥

∥

∥

∥

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



, ()

∣

∣

∣

∣

R

cv

∫ 



θv

r

∂θ

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+CM
θ‖v‖ ≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+CM
θ , ()

∣

∣

∣

∣

R

cvL

∫ 



rρθ
∂v

∂x

∂θ

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+CM
θ

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+CM
θ , ()

∣

∣

∣

∣

–
(λ +μ)

cv

∫ 



v

rρ

∂θ

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C
∥

∥v
∥

∥

 ≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C, ()

∣

∣

∣

∣

–
λ

cvL

∫ 



rv
∂v

∂x

∂θ

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C

(

‖v‖ +
∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

)

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C, ()

∣

∣

∣

∣

–
λ + μ

cvL

∫ 



rρ

(

∂v

∂x

)
∂θ

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C

(
∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

)

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C

(

 +

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

)

, ()

∣

∣

∣

∣

–
(c + cd)

cv

∫ 



ω

rρ

∂θ

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C, ()

∣

∣

∣

∣

–
c

cvL

∫ 



rω
∂ω

∂x

∂θ

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C, ()

∣

∣

∣

∣

–
c + cd

cvL

∫ 



rρ

(

∂ω

∂x

)
∂θ

∂x
dx

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C

(

 +

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥

)

, ()
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∣

∣

∣

∣

–
μr

cv

∫ 



ω

ρ

∂θ

∂x

∣

∣

∣

∣

≤ ε

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+C. ()

By inserting ()-() into () and taking the sufficiently small ε > , we get





d

dt

∥

∥

∥

∥

∂θ

∂x
(t)

∥

∥

∥

∥



+C

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



≤ C

(

 +M
θ +

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥

)

, ()

which, after integration over ], t[, and making use of (), (), (), and () as well as

the properties of initial data, gives the assertion (). �

In the next lemma we estimate the time derivatives of the functions ρ , v, ω, and θ .

Lemma . There exists a constant C ∈ R+ such that for any t ∈ ],T[ we have

∫ t



∥

∥

∥

∥

∂ρ

∂t
(τ )

∥

∥

∥

∥



dτ ≤ C, ()

∫ t



∥

∥

∥

∥

∂v

∂t
(τ )

∥

∥

∥

∥



dτ ≤ C, ()

∫ t



∥

∥

∥

∥

∂ω

∂t
(τ )

∥

∥

∥

∥



dτ ≤ C, ()

∫ t



∥

∥

∥

∥

∂θ

∂t
(τ )

∥

∥

∥

∥



dτ ≤ C. ()

Proof From (), by integrating over ], [, using (), (), and () we get

∥

∥

∥

∥

∂ρ

∂t

∥

∥

∥

∥



=


L

∫ 



ρ

[

∂

∂x

(

rv
)

]

dx ≤ C

(

‖v‖ +
∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

)

. ()

Using () and () from () we can easily conclude ().

In a similar way, from (), using estimates (), (), (), (),(), (), and (), we

get the inequality

∥

∥

∥

∥

∂v

∂t

∥

∥

∥

∥



≤ C

∫ 



(

rρ

(

∂θ

∂x

)

+ rθ

(

∂ρ

∂x

)

+
v

rρ
+ r

(

∂ρ

∂x

)(
∂v

∂x

)

+ r
(

∂v

∂x

)

+ rρ

(

∂v

∂x

))

dx

≤ C

(

 +M
θ +

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+ ‖v‖ +
∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

)

. ()

Using (), (), (), and () from () we can easily conclude ().

To prove (), we multiply () by ρ– and using the same procedure as in (), we get

∥

∥

∥

∥

∂ω

∂t

∥

∥

∥

∥



≤ C

(

 + ‖ω‖ +
∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥

)

()

which, using () and () leads to ().
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Analogously, from () we derive

∥

∥

∥

∥

∂θ

∂t

∥

∥

∥

∥



≤ C

(

 +

∫ 



((

∂θ

∂x

)

+

(

∂θ

∂x

)

+

(

∂ρ

∂x

)(
∂θ

∂x

)

+ θv

+ θ

(

∂v

∂x

)

+ v
(

∂v

∂x

)

+

(

∂v

∂x

)

+ω

(

∂ω

∂x

)

+

(

∂ω

∂x

))

dx

)

. ()

Using (), (), (), (), and () as well as the Gagliardo-Ladyzhenskaya and the

Young inequalities, from () we get

∥

∥

∥

∥

∂θ

∂t

∥

∥

∥

∥



≤ C

(

 +M
θ +

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥

∥

∥

∥

∥

∂ρ

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥



‖v‖ +
∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥



‖ω‖ +
∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

∥
∥

∥

∥

∂v

∂x

∥

∥

∥

∥

+

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥

∥
∥

∥

∥

∂ω

∂x

∥

∥

∥

∥

)

≤ C

(

 +M
θ +

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥



+

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

+

∥

∥

∥

∥

∂ω

∂x

∥

∥

∥

∥

)

, ()

from which, using (), (), (), and (), we obtain the assertion (). �

3.3 Final proof of Theorem 2.2

Corollary . and Lemma . gives the assertion

ρ ∈ L∞(

,T ;H
(

], [
))

. ()

From Lemmas ., ., and . we have

v,ω, θ ∈ L
(

,T ;H
(

], [
))

∩ L∞(

,T ;H
(

], [
))

. ()

Using inclusion () and () as well as the results from Lemma . we get

ρ, v,ω, θ ∈H(QT ). ()

Now, using Lemmas . and . as well as inclusions (), (), and () in accor-

dance with the Proposition ., we have the statement of Theorem ..
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a and b are the radii of boundary spheres from (1).
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