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Abstract— When measurements from multiple sensors are
combined for real-time motion estimation, the time instant
at which each measurement was recorded must be precisely
known. In practice, however, the timestamps of each sen-
sor’s measurements are typically affected by a delay, which
is different for each sensor. This gives rise to a temporal
misalignment (i.e., a time offset) between the sensors’ data
streams. In this work, we propose an online approach for
estimating the time offset between the data obtained from
different sensors. Specifically, we focus on the problem of
motion estimation using visual and inertial sensors in extended
Kalman filter (EKF)-based methods. The key idea proposed
here is to explicitly include the time offset between the camera
and IMU in the EKF state vector, and estimate it online along
with all other variables of interest (the IMU pose, the camera-
to-IMU calibration, etc). Our proposed approach is general,
and can be employed in several classes of estimation problems,
such as motion estimation based on mapped features, EKF-
based SLAM, or visual-inertial odometry. Our simulation and
experimental results demonstrate that the proposed approach
yields high-precision, consistent estimates, in scenarios involving
both constant and time-varying offsets.

I. I NTRODUCTION

Autonomous vehicles moving in 3D, such as aerial vehi-
cles or ground robots on uneven terrain, require accurate 3D
pose estimates even in the absence of GPS. In this work, we
focus on methods that provide such estimates by fusing the
measurements from an inertial measurement unit (IMU) with
those obtained from a vision sensor. To date, several different
methods for this task (often termedvision-aided inertial nav-
igation) have been proposed, tailored for different application
scenarios. For instance, some techniques rely on observations
of landmarks with known world coordinates [1, 2], others
perform simultaneous localization and mapping in unknown
environments [3, 4], while yet others focus on visual-inertial
odometry with unknown features [5, 6].

In all cases, for the algorithms yield precise pose estimates,
the timing of the sensor measurements must be precisely
known. For this reason, a timestamp for each measurement
is typically obtained, either on the computer used to record
the data or from the sensor itself. However, these timestamps
are oftentemporally misaligned, for a number of reasons. For
example, if different clocks are used for timestamping (e.g.,
on different sensors), these clocks may suffer from clock
skew. Moreover, due to the time needed for data transfer,
sensor latency, and operating-system overhead, a delay –
different for each sensor – exists between the actual sampling
of a measurement and the generation of its timestamp. These
effects give rise to an unknowntime offset, td, between the

timestamps of the camera and the IMU. This offset means
that, if the two sensors record measurements simultaneously
at a given instant, these measurements will be reported
as if they occurredtd seconds apart. If this effect is not
compensated for, it will introduceunmodelled errors in the
estimation process, and reduce its accuracy (see Section IV).

The existence of a time offset between sensors is a
common occurrence in several applications, and therefore a
significant amount of research has focused on it. However,
the vast majority of work has concentrated on the problem
of processing the sensor data when the time offset isknown
in advance, either precisely (e.g., [7]–[9] and references
therein), or approximately [10, 11]. All these algorithms treat
the time offset between the sensors as aninput: they do
not attempt to estimate this offset, or to improve a prior
estimate using additional data. To date, relatively littlework
has focused on solving this problem in a principled manner.
Presumably, developers of vision-aided inertial navigation
algorithms often resort to ad-hoc methods, or to simple trial-
and-error to identify the time offset on a case-by-case basis.
An exception can be found in recent work by Kelly and
Sukhatme [12], who propose a principled offline method for
estimating the time offset between a camera and an IMU.
Their approach relies on computing rotation estimates from
each individual sensor, and temporally aligning the individual
rotation trajectories via batch ICP-like registration in the
space of rotations. Batch registration-based techniques for
other sensors (e.g., laser scanner and odometry) have also
appeared [13].

Both batch estimation methods and simpler ad-hoc so-
lutions have two key disadvantages: First, being offline in
nature, they cannot deal with time-varying offsets. These
may arise due to changes in the computing environment (e.g.,
changing processor load), or due to clock drift, when multiple
clocks are used for timestamping. Second, they do not
provide a means for taking into account the uncertainty of the
time-offset estimate during the subsequent pose estimation.
To address these limitations, in this work we propose an
online approach to estimating the time offset between the
data streams of the camera and IMU. Specifically, we show
that it is possible toexplicitly include this offset in the state
vector of an extended Kalman filter (EKF), and estimate it
along with all other quantities of interest. In addition to being
able to track time-varying offsets, the proposed EKF-based
formulation also models the uncertainty of the time-offset
estimate in a natural way, via the EKF covariance matrix.
Thus, the uncertainty is accounted for during pose estimation.



The proposed approach is general, and can be employed in
different types of vision-aided inertial navigation problems1.
Specifically, we show that the proposed EKF formulation can
be used both when the positions of the observed features
are known (e.g., when using fiducial points), and when they
are unknown (e.g., in visual-inertial odometry). We present
EKF estimators for both cases, which jointly estimate (i)
the IMU state, (ii) the extrinsic calibration (position and
orientation) between the camera and IMU frames, and (iii)
the time offset between the sensors, in an online fashion.
Note that, even though EKF-based estimators have appeared
in the past for concurrent pose estimation and extrinsic
calibration [3, 14, 15] they all assume the timing between
the sensors to be known. Our simulation and experimental
results demonstrate that the proposed approach yields high-
precision, consistent estimates, in scenarios involving either
known or unknown features, with both constant or time-
varying offsets.

In what follows, we present the details of our work. We
begin in Section II, by studying the simpler case of map-
based pose estimation, in which the positions of the observed
features in the world are known. This section presents the
main idea of our work, which is the inclusion of the time
offset in the EKF state vector. Next, in Section III we show
how the same key idea can be applied in scenarios where
the feature positions are not known in advance.

II. M AP-BASED POSEESTIMATION

We first consider the case where a system comprising a
camera and IMU is moving in an environment containing
features with known 3D coordinates. Each sensor provides
measurements at a constant frequency, which is known at
least to a good approximation. However, there exists an
unknown time offset,td, between the two sensors’ reported
timestamps. Specifically, we definetd as the amount of time
by which we should shift the camera timestamps, so that the
camera and IMU data streams become temporally consistent.
Note thattd may have a positive or negative value: if the
IMU has a longer latency than the camera, thentd will
be positive, while in the opposite casetd will be negative.
In what follows, we describe how the time offset can be
estimated concurrently with all other quantities of interest.

A. State vector formulation

Our main objective is to estimate the 3D pose of the
system with respect to the global coordinate frame,{G}.
To this end, we track the motion of the IMU coordinate
frame,{I}, with respect to{G}, using an EKF. To achieve
precise estimation, in addition to the IMU state we include
td in the EKF state vector. Moreover, to address situations in
which the spatial configuration between the camera frame,
{C}, and the IMU frame (i.e., the extrinsic calibration of the
sensors) is not accurately known, we include the camera-to-
IMU transformation in the filter state vector, and estimate it

1In fact, the idea of explicitly including the time offset in the EKF’s
state vector is not specific to the case of pose estimation using cameras and
IMUs, and can be employed in other localization problems as well.

jointly with all other state variables. Therefore, the EKF’s
state vector is defined as2:

x(t) =
[

xT
I (t)

C
I q̄

T CpT
I td

]T
(1)

wherexI(t) is the IMU state at timet, the unit quaternionCI q̄
describes the rotation from the IMU to the camera frame, and
CpI is the position of the IMU with respect to the camera.
Note that, by convention, we use the “IMU time” to define
the time reference. That is,x(t) is the system state at the
time the IMU measurement with timestampt was recorded.

Following standard practice, we define the IMU state as
the 16× 1 vector:

xI =
[

I
Gq̄

T GpT
I

GvT
I bT

g bT
a

]T
(2)

where the4 × 1 unit quaternionI
Gq̄ describes the rota-

tion from the global frame to the IMU frame,GpI and
GvI are the IMU’s position and velocity expressed in the
global frame, andbg andba are the IMU’s gyroscope and
accelerometer biases, modeled as random walk processes
driven by zero-mean white Gaussian noise vectorsnwg and
nwa, respectively. Using (2) the filter state vector becomes:

x =
[

I
Gq̄

T GpT
I

GvT
I bT

g bT
a

C
I q̄

T CpT
I td

]T

Based on the above, we obtain the following22 × 1 error-
state vector for the EKF:

x̃ =
[

θ̃
T Gp̃T

I
GṽT

I b̃T
g b̃T

a φ̃
T C p̃T

I t̃d

]T

(3)

where for the position, velocity, and bias, as well as for
the time offsettd, the standard additive error definition has
been used (e.g.,GṽI = GvI − Gv̂I ). On the other hand,
for the orientation errors we use a minimal 3-dimensional
representation, defined by the equations [6, 17]:

I
Gq̄ ≃

I
G
ˆ̄q⊗

[

1
2 θ̃

1

]

and C
I q̄ ≃

C
I
ˆ̄q⊗

[

1
2 φ̃

1

]

(4)

B. EKF propagation

The IMU measurements are used to propagate the IMU
state estimates. Specifically, the IMU gyroscopes and ac-
celerometers provide measurements of the rotational velocity,
ωm, and acceleration (more precisely, specific force),am,
respectively, described by the equations:

ωm = Iω + bg + nr (5)

am = I
GR

(

Ga− Gg
)

+ ba + na (6)

where Iω is the IMU’s rotational velocity,Gg is the grav-
itational acceleration, andnr and na are zero-mean white
Gaussian noise vectors. Using these measurements, we can
write the dynamics of the state vector as:

I
G
˙̄q(t) =

1

2
Ω
(

ωm(t)− bg(t)− nr(t)
)

I
Gq̄(t) (7)

2Notation: The preceding superscript for vectors (e.g.,G in Ga) denotes
the frame of reference with respect to which quantities are expressed.A

B
R

is the rotation matrix rotating vectors from frame{B} to {A}, andA

B
q̄ is

the corresponding unit quaternion [16].⊗ denotes quaternion multiplication,
⌊c×⌋ is the skew symmetric matrix corresponding to vectorc, and0 and
I are zero and identity matrices respectively. Finally,â is the estimate of a
variablea, and ã

.
= a− â the error of the estimate.



Gv̇(t) = I
GR(t)T (am(t)− ba(t)− na(t)) +

Gg (8)
GṗI(t) =

GvI(t) (9)

ḃg(t) = nwg(t), ḃa(t) = nwa(t) (10)
C
I
˙̄q(t) = 0, C ṗI(t) = 0 (11)

ṫd(t) = 0 (12)

whereΩ(ω) is the quaternion multiplication matrix corre-
sponding to the angular velocity vectorω [16]. In the above,
the first three lines describe the dynamics of the IMU motion,
the fourth line describes the random walk processes that
model the biases’ slowly time-varying nature, (11) describes
the fact that the camera-to-IMU transformation remains
constant in time, while the last line expresses the fact that
the time offset between the camera and IMU also remains
constant. If the time offset is known to be time-varying, we
can model it as a random-walk process by replacing the last
line of the dynamics withṫd(t) = nd(t), wherend(t) is a
white Gaussian noise process, whose power spectral density
expresses the variability oftd.

Equations (7)-(12) describe the continuous-time evolution
of the true states. For propagating the state estimates in
a discrete-time implementation, we follow the approach
described in [17]. Specifically, for propagating the orientation
from time instanttk to tk+1, we numerically integrate the
differential equation:

I
G
˙̄̂q(t) =

1

2
Ω
(

ωm(t)− b̂g(tk)
)

I
G
ˆ̄q(t), t ∈ [tk, tk+1]

The velocity and position estimates are propagated by:

Gv̂k+1 = Gv̂k + G
I R̂(tk) ŝk +

Gg∆t (13)

Gp̂k+1 = Gp̂k + Gv̂k∆t+ G
I R̂(tk) ŷk +

1

2
Gg∆t2 (14)

where∆t = tk+1 − tk, and

ŝk =

∫ tk+1

tk

Ik
Iτ
R̂

(

am(τ) − b̂a(tk)

)

dτ (15)

ŷk =

∫ tk+1

tk

∫ s

tk

Ik
Iτ
R̂

(

am(τ)− b̂a(tk)

)

dτds (16)

Besides the IMU position, velocity, and orientation, all other
state estimates remain unchanged during propagation. In
addition to the state estimate, the EKF propagates the state
covariance matrix, as follows:

P(tk+1) = Φ(tk+1, tk)P(tk)Φ(tk+1, tk)
T +Qd

whereP is the state covariance matrix,Qd is the covariance
matrix of the propagation noise, andΦ(tk+1, tk) is the error-
state transition matrix, given by:

Φ(tk+1, tk) =

[

ΦI(tk+1, tk) 015×7

0T
15×7 I7×7

]

(17)

with ΦI(tk+1, tk) being the15 × 15 error-state transition
matrix for the IMU state, derived in [6, 17].

C. EKF Updates

We now describe how the camera measurements are used
for EKF updates. Note that, if no time offset existed (or,
equivalently, if it was perfectly knowna priori), the EKF
update would present no difficulty. The complications arise
from the fact that the image received by the filter at timet
was in fact recorded at timet + td, wheretd is a random
variable. Let us consider the observation of thei-th feature
in the image timestamped att. This is described by:

zi(t) = h
(

Cpfi(t+td)
)

+ ni(t+td) (18)

where h(·) is the perspective camera model,h(f) =
[fx/fz fy/fz]

T , ni is the measurement noise vector,
modelled as zero-mean Gaussian with covariance matrix
σ2
imI2×2, andCpfi(t+td) is the position of the feature with

respect to the camera at the time the image was sampled:
Cpfi(t+td)=

C
I R

I
GR(t+td)

(

Gpfi−
GpI(t+td)

)

+CpI (19)

In this equationGpfi is the known position of thei-th feature
in the global frame.

To usezi(t) for an EKF update, we must formulate the
residual between the actual measurement and the measure-
ment expected based on the filter’s estimates [18]:

ri = zi(t)− h
(

̂Cpfi(t+td)
)

(20)

where ̂Cpfi(t+td) denotes the estimate ofCpfi(t+td). To
first-order approximation (as dictated by the EKF paradigm),
this estimate is given by:

̂Cpfi(t+td) =
C
I R̂

I
GR̂(t+ t̂d)

(

Gpfi−
Gp̂I(t+ t̂d)

)

+Cp̂I

The above equation shows that, in order to compute the
residualri, we must have access to the estimates of the state
at time t+ t̂d. Therefore, to process the measurementzi(t),
we propagate using the IMU measurements up tot+ t̂d, at
which point we computeri, and perform an EKF update.
For this update, the Jacobian ofh

(

Cpfi(t+td)
)

with respect
to the filter state is necessary. This is given by:

Hx,i(t+ t̂d) =
[

Hθ,i Hp,i 02×9 Πφ,i Πp,i Πtd,i

]

where the nonzero blocks are the Jacobians with respect to
the IMU rotation, IMU position, camera-to-IMU rotation,
camera-to-IMU translation, and time offset, respectively:

Hθ,i = Ji
C
I R̂

I
GR̂(t+ t̂d)⌊(

Gpfi−
Gp̂I(t+ t̂d))×⌋

Hp,i = −Ji
C
I R̂

I
GR̂(t+ t̂d)

Πφ,i = Ji
C
I R̂⌊

I
GR̂(t+ t̂d)(

Gpfi−
Gp̂I(t+ t̂d))×⌋

Πp,i = Ji

Πtd,i = −Ji
C
I R̂⌊

ˆIω(t+ t̂d)×⌋
I
GR̂(t+ t̂d)

(

Gpfi−
Gp̂I(t+ t̂d)

)

− Ji
C
I R̂

I
GR̂(t+ t̂d)

Gv̂I(t+ t̂d) (21)

In the above,Ji is the Jacobian of the perspective model:

Ji =
∂h(f)

∂f

∣

∣

∣

∣

∣

f= ̂Cpfi
(t+td)

=
1

C ẑfi





1 0 −
C x̂fi
C ẑfi

0 1 −
C ŷfi
C ẑfi





Note that all the matrices shown above are computed using
the EKF state estimates available at timet+ t̂d. In addition,



the Jacobian with respect to the time offset,Πtd,i, requires
the rotational velocity vector, which is available from the
IMU measurements. We thus see that all the Jacobians can
be computed in closed form, using quantities available to the
filter at t+ t̂d. Using the above expression forHx,i(t+t̂d), we
can now proceed to carry out the EKF update. Specifically,
the state and covariance matrix are updated as:

x̂(t+ t̂d)← x̂(t+ t̂d) +Kiri

P(t+ t̂d)← P(t+ t̂d)−KiSiK
T
i

where:

Ki = P(t+ t̂d)Hx,i(t+ t̂d)
TS−1

i , with (22)

Si = Hx,i(t+ t̂d)P(t+ t̂d)Hx,i(t+ t̂d)
T + σ2

imI (23)

If more than one features are observed in the same image,
their residuals can be processed in the same manner.

A few interesting comments can be made at this point. We
start by noting that the camera measurement was recorded
at time t + td, but it is being processed att + t̂d. Since
the estimate of the time offset will inevitably contain some
error, the measurement will inevitably be processed at a
slightly incorrect time instant. However, the EKFexplicitly
accounts for this fact. Specifically, sincetd is included in the
estimated state vector, the filter keeps track of the uncertainty
in t̂d, via the state covariance matrixP. Therefore, when
computing the covariance matrix of the residual (Si in (23))
the uncertainty in the time offset is explicitly modelled, and
is accounted for in the computation of the state update. As
a result, we are able to obtain both more accurate pose
estimates and a better characterization of their uncertainty.

Finally, we note that the proposed EKF-based approach
to time-offset estimation requires minimal modifications:
compared to the “standard” filter which only contains the
IMU state and the camera-to-IMU extrinsic parameters, the
proposed filter requires one additional state variable, and
the computation of one additional block in the Jacobian
matrix (see (21)). These small additions make it possible
to seamlessly estimate the time offset online, along with all
other variables of interest.

III. M OTION ESTIMATION WITH UNKNOWN FEATURES

The preceding section describes time-offset estimation
when the feature positions in the world are knowna priori. In
many cases, however, we are interested in motion estimation
in previously unknown environments, for which it is not
possible to have a feature map. Several algorithms have
been developed for vision-aided inertial navigation in this
type of applications. Broadly, these methods use the visual
measurements in one of two ways [17, 19]:feature-based
methods include feature positions in the state vector being
estimated (as in the EKF-SLAM paradigm [3, 4]), and
employ the feature observations directly for state updates. On
the other hand,pose-based methods do not include feature
positions in the state vector, and instead maintain a state
vector containing a number of poses [5, 6]. In these methods,
the feature measurements are first used to define constraints
between two or more poses (e.g., to estimate the relative

motion between consecutive images), and these constraints
are subsequently used for filter updates.

As we explain in what follows, the proposed approach for
time-offset estimation by explicitly includingtd in the filter
state vector can be readily applied in both types of methods.

A. Feature-based methods

In feature-based EKF algorithms (often referred to as
EKF-SLAM algorithms) the state vector of the system is
augmented with the positions of the features detected by
the camera. Thus, the state vector contains the IMU state,
the camera-to-IMU transformation (if its online estimation
is needed), andN features:

x =
[

xT
I

C
I q̄

T CpT
I fT1 fT2 · · · fTN

]

where the feature parameterization,fi, i = 1, . . .N can have
a number of different forms (e.g., XYZ position, inverse
depth, homogeneous coordinates). To estimate the time offset
between the sensors we can again include it in the state:

x =
[

xT
I

C
I q̄

T CpT
I td fT1 fT2 · · · fTN

]

With this augmented state vector, the feature measurements,
zi, can be directly employed for EKF updates. The only
difference compared to the standard feature-based EKF al-
gorithms is that an additional Jacobian block (the Jacobian
with respect totd, shown in (21)) must be computed for
each measurement. Apart from this modification, no further
changes are needed, in order to implement the online esti-
mation of td in EKF-based SLAM.

B. Pose-based methods

In pose-based EKF algorithms, the state vector typically
contains the current IMU state, as well asM poses (with
M ≥ 1), corresponding to the time instantsM images were
recorded. For instance, in [5, 6] the state vector is formulated
as:

x =
[

xT
I cT1 · · · cTM

]T
(24)

wherecj is the camera pose at the time thej-th image was
recorded:

cj =
[

C
Gq

T
j

GpT
Cj

]T
(25)

Every time a new image is received, the state vector is
augmented to include a copy of the current camera pose, and
the oldest pose is removed. The features are tracked for up
to M images, and are used for deriving constraints between
the poses in the sliding window.

In order to estimate the extrinsic calibration and time offset
between the camera and IMU in this setting, we can include
these parameters in the state vector:

x =
[

xT
I

C
I q̄

T CpT
I td cT1 · · · cTM

]T
(26)

To account for these additional parameters, only minimal
modifications are needed in the EKF equations. More specif-
ically, the only filter operation that needs to be changed
is state augmentation: when a new image is received with
timestampt, we augment the state vector to include an
estimate of the camera pose at timet + td (instead of time



TABLE I: RMS errors in map-based simulations

RMS errors
GpI

I

G
q̄ GvI

CpI
C

I
q̄ td

0.096 m 0.10o 0.021 m/sec 0.088 m 0.036o 1.519 msec

t, as in the original method). We therefore use the IMU
measurements to propagate up tot+ t̂d, at which point we
augment the state with the estimate of the camera pose at
t+ td:

ĉnew =

[

̂C
Gq(t+td)
̂GpC(t+td)

]

=

[

C
I q̂⊗

I
G
ˆ̄q(t+ t̂d)

Gp̂I(t+ t̂d) +
I
GR̂(t+ t̂d)

T I p̂C

]

The filter covariance matrix is also augmented, as:

P(t+ t̂d)←

[

P(t+ t̂d) P(t+ t̂d)J
T
new

JnewP(t+ t̂d) JnewP(t+ t̂d)J
T
new

]

(27)

whereJnew is the Jacobian ofcnew with respect to the state
vector. This matrix has the following structure:

Jnew =
[

JI JIC Jt 0
]

whereJI is the Jacobian with respect to the IMU state:

JI =

[

I3×3 03×3 03×9

−⌊ IGR̂(t+ t̂d)
T I p̂C×⌋ I3×3 03×9

]

JIC is the Jacobian with respect to the camera-to-IMU
transformation:

JIC =

[

I
GR̂(t+ t̂d)

T 03×3

03×3
I
GR̂(t+ t̂d)

T

]

andJt is the Jacobian with respect totd:

Jt=

[

I
GR̂(t+ t̂d)

T Iω̂(t+ t̂d)
I
GR̂(t+ t̂d)

T ⌊Iω̂(t+ t̂d)×⌋
Ip̂C+Gv̂I(t+ t̂d)

]

(28)

Compared to [5, 6], the above equations differ in that ad-
ditional Jacobians are computed with respect to the camera-
to-IMU extrinsic parameters, and with respect to the time
offset td. This is the only change that is needed: after the
augmentation has been performed in this fashion, the feature
measurements can be used in exactly the same way for EKF
updates as in [5, 6], with no further alterations. Since the
dependence of the camera poses ontd has been modelled
(via the JacobianJt), when the measurements are used to
update the camera pose estimates,td will also be updated,
as normal in the EKF.

IV. EXPERIMENTS

In this section we present the results of Monte-Carlo sim-
ulation tests and real-world experiments, which demonstrate
the performance of the online time-offset estimation, bothin
mapped and unknown environments.
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Fig. 1: Map-based simulations: average NEES values over
50 Monte-Carlo simulations.

A. Map-based motion estimation

1) Simulations: We performed Monte-Carlo simulation
tests, to examine the accuracy and consistency of the esti-
mates computed by the algorithm described in Section II. For
the simulations of map-based localization, in each simulated
image six landmarks with known locations, with depths
uniformly distributed between5 and20 meters, were visible.
The sensor noise parameters were chosen to be identical to
those of the sensors we used for the real-world experiment
described in Section IV-A.2. The IMU provided measure-
ments at 100Hz, while the images were recorded at 10Hz.

To examine the statistical properties of our proposed
algorithm, we carried out 50 Monte-Carlo trials. In each trial,
the extrinsic parameters (rotation and translation) between
the IMU and the camera were set equal to known nominal
values, with the addition of random errorsδp and δφ̃. In
each trial, δp and δφ̃ were randomly drawn from zero-
mean Gaussian distributions with standard deviations equal
to σp = 0.1 m andσφ = 1.0o along each axis, respectively.
In addition, td was randomly drawn from the Gaussian
distributionN (0, σ2

t ), with σt = 50 msec, and kept constant
for the duration of the trial. Time offsets in the order of tens
of milliseconds are typical of most systems in our experience.

Table I shows the RMS errors for the IMU position,
orientation, and velocity, as well as for the camera-to-IMU
extrinsic parameters and the time offset. The values shown
are averages over all Monte-Carlo trials, and over the last
half of the trajectory (i.e., after the estimation uncertainty
has reached steady state). This table shows that the proposed
approach allows for precise estimation of all the variablesof
interest, including the time offsettd.

Additionally, in Fig. 1 we plot the normalized estimation
error squared (NEES) for the IMU state, the sensors’ extrin-
sic calibration and the time offset, each averaged over all
Monte-carlo trials. For a variablea, the NEES at time step
k of a given trial is computed as̃aTkP

−1
ak

ãk, whereãk is the
estimation error andPak

is the covariance matrix reported
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Fig. 2: Map-based estimation: real-world experiment. (a) The area where the motion took place. (b) The estimated trajectory.
The red circle is the starting point of the trajectory, and the blue asterisks the LED lights. (c) The estimation result for td.

by the filter. If the estimator is consistent, i.e., if it reports
an appropriate covariance matrix for its state estimates, the
NEES should have an average value equal to the dimension
of a (the NEES for a consistent estimator is aχ2-distributed
random variable withdim(a) degrees of freedom) [20].
Fig. 1 shows that the average NEES values for the three
variables examined are close to their theoretical values of
15, 6, and 1, respectively. This indicates that the estimator
is consistent, and that the covariance matrix reported by the
EKF is an accurate description of the actual uncertainty of
the estimates.

2) Real-world Experiment: In addition to the simulation
tests, we carried out a real-world experiment to validate
the proposed map-based EKF. The vision-inertial system
consisted of a PointGrey Bumblebee2 stereo pair (only a
single camera was used) and an Xsens MTI-G unit. The
environment is shown in Fig. 2a. The blue LED lights,
whose positions are accurately known, are used as the visual
features. During the experiment, the sensor platform started
from a known initial position, and was moved in two loops
around the room, returning to its initial location after each
one. Since no high-precision ground truth was otherwise
available, this motion pattern gives us three known positions
in the trajectory. The estimated trajectory is shown in Fig.2b.
For the known positions in the trajectory, the maximum
estimation error was4.6 cm, in the same order of magnitude
as what we observed in the simulations.

In Fig. 2c we plot the estimate of the time offset,td, as
well as the uncertainty envelope defined by±3 times the
standard deviation reported by the EKF. We can see that
within the first few seconds the estimate converges very close
to its final value, and that the uncertainty in the estimate
drops rapidly. In addition to being practically significant,
this also suggests thattd is observable, a result that we will
seek to prove in future work. We point out that the standard
deviation oftd over the last one minute of the experiment is
only 0.40 msec, which shows the high precision attainable
by the proposed online estimation method.

B. Motion estimation with unknown features

For the tests presented in this section, we implemented
the online estimation of the time offset and camera-to-IMU
extrinsic parameters in the modified MSCKF (multi-state
constraint Kalman filter) algorithm presented in [6]. This
algorithm performs visual-inertial odometry, and is a pose-
based method (Section III-B).

1) Monte-Carlo simulations: To obtain realistic simula-
tion environments, we generated the simulation data based on
a real-world dataset. Specifically, the ground truth trajectory
(position, velocity, orientation) for the simulation is gener-
ated by using the estimates computed by a GPS-INS system
in a real-world dataset, which was about 13 minutes, 5.5 km
long. Using these trajectories, we subsequently generated
IMU measurements corrupted with noise and biases, as well
as visual feature tracks with characteristics identical tothose
in the real-world data. For each trial the camera-to-IMU
extrinsic parameters and the time offset were generated in
a way identical to the map-based simulations, by perturbing
known nominal values.

In the tests presented here, we compare the estimation
performance in four cases. (i) camera-to-IMU calibration
enabled, buttd estimation disabled, (ii)td estimation en-
abled, but camera-to-IMU calibration disabled, (iii) bothtd
and camera-to-IMU estimation enabled, and (iv) the case
wheretd and the camera-to-IMU transformation are perfectly
known and not estimated. In the first three cases (termed
the “imprecise” ones), the precise values of the camera-to-
IMU extrinsic parameters andtd are not known (only their
nominal values are known). When a particular parameter
is not estimated, it is assumed to be equal to the nominal
value. By comparing these three cases, we can evaluate
the necessity and effectiveness of the online estimation of
individual parameters. Moreover, by comparing against case
(iv), where all parameters are perfectly known (the “precise”
scenario), we can assess the loss of accuracy incurred due
to the uncertainty in the knowledge of these parameters.

Table II shows the average RMSE and NEES for the
four cases, averaged over 50 Monte-Carlo trials. For clarity,
the position errors are reported in the NED (North-East-
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Fig. 3: Visual-inertial odometry with unknown features anddrifting time-offsettd: estimation errors (blue lines) and associated
±3σ envelopes (red dashed lines). (a) The IMU position errors inthe North, East, Down directions, (b) The IMU orientation
errors in roll, pitch, and yaw, (c) The error in the estimate of td. Note that the position and yaw uncertainty gradually
increases, as normal in visual-inertial odometry without any known landmarks.

TABLE II

Scenario imprecise precise
Extrinsic calib. on off on N/A
td estimation off on on N/A

Pose RMSE

54.60 18.39 8.11 7.93 North (m)
81.82 13.50 5.18 5.00 East (m)
14.53 45.07 0.64 0.53 Down (m)
0.39 0.18 0.06 0.06 roll (o)
0.33 0.18 0.05 0.05 pitch (o)
1.19 1.22 0.70 0.69 yaw (o)

IMU state NEES 85.4 2046 14.6 14.5

Calib. RMSE
0.07 N/A 0.01 N/A CpI (m)
0.31 N/A 0.05 N/A C

I
q̄ (o)

N/A 0.28 0.25 N/A td (msec)

Down) frame, and IMU orientation in roll-pitch-yaw. In
these results, we first observe that, to be able to accurately
estimate the IMU’s motion, both the extrinsic calibration
and the time offset between the camera and IMU must
be estimated. If either of these is falsely assumed to be
perfectly known, the estimation accuracy and consistency are
degraded considerably (see the first two columns in Table II).
Moreover, by comparing the third and fourth columns, we
can see that the accuracy obtained by our online estimation
approach is very close to that obtained when the the camera-
to-IMU configuration and time offset are perfectly known.
This is significant from a practical standpoint: it shows that
there may not be a pressing need to perform tedious offline
calibration or precise measurements of these parameters. By
using the proposed online estimation approach, initialized
with rough estimates, we can obtain pose estimates of quality
almost indistinguishable to what we would get if an oracle
provided us with the exact values of the parameters.

2) Time-varying td: For all the results presented up to
now, a constant time offset was used. Next, we examine the
case of a time-varyingtd. Instead of presenting Monte-Carlo
simulation results (which are similar to those in Table II),it
is interesting to show the results of a single representative
trial. In this trial, the time offset varies linearly from50 msec

at the start, to300 msec at the end, modelling a severe
clock drift (250 msec in 13 minutes). Fig. 3 presents the
estimation errors and associated±3 standard deviations for
the IMU position, the IMU orientation, and the time offset.
We can see that even in this challenging situation (unknown
features, uncertain camera-to-IMU transformation, largeand
time-varying offset) the estimates remain consistent.

3) Real-world Experiment: The visual-inertial odometry
approach with concurrent estimation of the camera-to-IMU
transformation and the time offsettd was also tested in a
real-world experiment. For this test, the camera-IMU system
was mounted on the roof of a car driven for approximately
7.3 km. Feature extraction is performed via an optimized
version of the Shi-Tomasi algorithm [21, 22] and match-
ing is done by normalized cross-correlation. The estimated
trajectory is plotted on a map of the area in Fig. 4, and
compared to (i) ground truth obtained by a GPS-INS system,
and (ii) the estimate computed without online estimation
of the camera-to-IMU extrinsic parameters andtd (for the
extrinsic parameters manual measurements were used, and
td = 0 was assumed in this case).

Similarly to what was observed in the previous cases,
we see that the estimates obtained with online calibration
are very precise (the error remains below0.5% of the
traveled distance). Moreover, these estimates are significantly
better than the estimates obtained if online estimation is
not used. In Fig. 5, we plot the estimate oftd during the
experiment. Similarly to Fig. 2c, we see that the estimate
of td quickly converges close to its final value, and remains
almost unchanged for the remainder of the trajectory. This
shows that high-quality estimates for the time offset can be
obtained quickly with the proposed approach, even in the
absence of known landmark points.

V. D ISCUSSION

In this paper we have proposed an approach for the online
estimation of the time offset,td, between the camera and
IMU during EKF-based vision-aided inertial navigation. The



−500 0 500 1000 1500 2000
−600

−400

−200

0

200

400

600

800

1000

1200

1400

North−South  (m)

W
es

t−
E

as
t (

m
)

 

 

Ground truth trajectory
Trajectory estimate without online calibration
Trajectory estimate with online calibration

Fig. 4: Visual-inertial odometry experimental results. The
trajectory estimate with the proposed approach (red dashed
line), the estimate obtained without online calibration (blue
dash-dotted line), and the ground truth (black solid line).

0 100 200 300 400 500 600
−60

−50

−40

−30

−20

−10

0

10

Ti
m

e 
of

fs
et

 (m
se

c)

Time (sec)

 

 

t
d
 estimate

± 3σ uncertainty envelope

Fig. 5: The estimate fortd and its uncertainty during the
experiment.

key component of our formulation is that the variabletd
is explicitly included in the EKF state vector. This makes
it possible to track time-varying offsets, characterize the
uncertainty in the estimate oftd, and model the impact of this
uncertainty on the pose estimation accuracy. Our simulation
and experimental results indicate that the proposed approach
leads to high-precision estimates for both the system motion,
as well as for the temporal and spatial alignment between the
camera and IMU. These results indicate that, at least in the
trajectories used in our experiments, the time offset can be
estimated using the sensor data (i.e., it is observable). In
our future work, we plan to perform a detailed analysis to
identify the conditions that guarantee observability.
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