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Abstract—When measurements from multiple sensors are timestamps of the camera and the IMU. This offset means
combined for real-time motion estimation, the time instant that, if the two sensors record measurements simultaneousl
at which each measurement was recorded must be precisely at a given instant, these measurements will be reported
known. In practice, however, the timestamps of each sen- . ! . .
sor's measurements are typically affected by a delay, which as if they occurrethd _Se_conds apart. If this ef‘fth IS not
is different for each sensor. This gives rise to a temporal compensated for, it will introducenmodelled errors in the
misalignment (i.e., atime offset) between the sensors’ data estimation process, and reduce its accuracy (see Sectjon IV
streams. In this work, we propose anonline approach for The existence of a time offset between sensors is a
estimating the time offset between the data obtained from -, mon occurrence in several applications, and therefore a
different sensors. Specifically, we focus on the problem of ~. .. .
motion estimation using visual and inertial sensors in exteded significant a_m‘?um of research has focused on it. However,
Kalman filter (EKF)-based methods. The key idea proposed the vast majority of work has concentrated on the problem
here is to explicitly include the time offset between the camera of processing the sensor data when the time offskhdsvn
and IMU in the EKF state vector, and estimate it online along in advance, either precisely (e.g., [7]-[9] and references
with all other variables of interest (the IMU pose, the camer- therein), or approximately [10, 11]. All these algorithmest

to-IMU calibration, etc). Our proposed approach is general . . g
and can be employed in several classes of estimation problem '€ time offset between the sensors asimput: they do

such as motion estimation based on mapped features, EKF- Not attempt to estimate this offset, or to improve a prior
based SLAM, or visual-inertial odometry. Our simulation and  estimate using additional data. To date, relatively litierk

experimental results demonstrate that the proposed apprazh  has focused on solving this problem in a principled manner.
yields hlgh-pre0|5|on_, consistent estimates, in scenasanvolving Presumably, developers of vision-aided inertial navigati
both constant and time-varying offsets. . . .
algorithms often resort to ad-hoc methods, or to simplé-tria

and-error to identify the time offset on a case-by-casesbasi
An exception can be found in recent work by Kelly and

Autonomous vehicles moving in 3D, such as aerial vehiSukhatme [12], who propose a principled offline method for
cles or ground robots on uneven terrain, require accurate 33timating the time offset between a camera and an IMU.
pose estimates even in the absence of GPS. In this work, Waeir approach relies on computing rotation estimates from
focus on methods that provide such estimates by fusing tleach individual sensor, and temporally aligning the irdlisl
measurements from an inertial measurement unit (IMU) withotation trajectories via batch ICP-like registration imet
those obtained from a vision sensor. To date, several difter space of rotations. Batch registration-based techniqaes f
methods for this task (often termeision-aided inertial nav-  other sensors (e.g., laser scanner and odometry) have also
igation) have been proposed, tailored for different applicatioappeared [13].
scenarios. For instance, some techniques rely on obsemsati  Both batch estimation methods and simpler ad-hoc so-
of landmarks with known world coordinates [1, 2], otherdutions have two key disadvantages: First, being offline in
perform simultaneous localization and mapping in unknownature, they cannot deal with time-varying offsets. These
environments [3, 4], while yet others focus on visual-ir@rt may arise due to changes in the computing environment (e.g.,
odometry with unknown features [5, 6]. changing processor load), or due to clock drift, when mldtip

In all cases, for the algorithms yield precise pose estisjateclocks are used for timestamping. Second, they do not
the timing of the sensor measurements must be preciselyovide a means for taking into account the uncertainty ef th
known. For this reason, a timestamp for each measuremeime-offset estimate during the subsequent pose estimatio
is typically obtained, either on the computer used to recorfio address these limitations, in this work we propose an
the data or from the sensor itself. However, these timestampnline approach to estimating the time offset between the
are oftentemporally misaligned, for a number of reasons. For data streams of the camera and IMU. Specifically, we show
example, if different clocks are used for timestamping.(e.gthat it is possible taxplicitly include this offset in the state
on different sensors), these clocks may suffer from clockector of an extended Kalman filter (EKF), and estimate it
skew. Moreover, due to the time needed for data transfealong with all other quantities of interest. In addition teirg
sensor latency, and operating-system overhead, a delayable to track time-varying offsets, the proposed EKF-based
different for each sensor — exists between the actual sagpliformulation also models the uncertainty of the time-offset
of a measurement and the generation of its timestamp. Thesstimate in a natural way, via the EKF covariance matrix.
effects give rise to an unknowime offset, ¢4, between the Thus, the uncertainty is accounted for during pose estimati

|. INTRODUCTION



The proposed approach is general, and can be employedamtly with all other state variables. Therefore, the EKF’
different types of vision-aided inertial navigation prebis.  state vector is defined &s
Specifically, we show that the proposed EKF formulation can _ T
be used both when the positions of the observed features x(t) = [X?(t) rat “pr td} (1)
are known (e.g., when using fiducial points), and when theywherex; (t) is the IMU state at time, the unit quaterniof'q
are unknown (e.g., in visual-inertial odometry). We preéserdescribes the rotation from the IMU to the camera frame, and
EKF estimators for both cases, which jointly estimate (if'p; is the position of the IMU with respect to the camera.
the IMU state, (ii) the extrinsic calibration (position andNote that, by convention, we use the “IMU time” to define
orientation) between the camera and IMU frames, and (iithe time reference. That is(¢) is the system state at the
the time offset between the sensors, in an online fashiotime the IMU measurement with timestampvas recorded.
Note that, even though EKF-based estimators have appearedrollowing standard practice, we define the IMU state as
in the past for concurrent pose estimation and extrinsitie 16 x 1 vector:
calibration [3, 14, 15] they all assume the timing between 1T .7 c.T T 17T
the sensors to be known. Our simulation and experimental xr = 64 pr Vi bg by (2)
results demonstrate that the proposed approach yields higbhere the4 x 1 unit quaternion’,q describes the rota-
precision, consistent estimates, in scenarios involvititgee tion from the global frame to the IMU frame;p; and
known or unknown features, with both constant or time“v; are the IMU’s position and velocity expressed in the
varying offsets. global frame, and, andb, are the IMU’s gyroscope and

In what follows, we present the details of our work. Weaccelerometer biases, modeled as random walk processes
begin in Section II, by studying the simpler case of maperiven by zero-mean white Gaussian noise vectays and
based pose estimation, in which the positions of the obderva,,., respectively. Using (2) the filter state vector becomes:
features in the world are known. This section presents the B B T
main idea of our work, which is the inclusion of the time * = [ca” “pi “vi by by fa’ “pl td
offset in the EKF state vector. Next, in Section Ill we showsased on the above, we obtain the followia® x 1 error-
how the same key idea can be applied in scenarios whetgte vector for the EKE:
the feature positions are not known in advance. o oy T
X = [0 “p; ¢vI bl bl ¢ “p] td] ©))
[I. MAP-BASED POSEESTIMATION

where for the position, velocity, and bias, as well as for

We first consider the case where a system comprisingige time offsetr,;, the standard additive error definition has
camera and IMU is moving in an environment containingyeen used (e.g.G\H — Gy, — G{,I)_ On the other hand
features with known 3D coordinates. Each sensor providgs, the orientation errors we use a minimal 3-dimensional

measurements at a constant frequency, which is known @presentation defined by the equations [6, 17]:
least to a good approximation. However, there exists an

unknown time offset{;, between the two sensors’ reported Lag~Lqe [%0} and fq~%q® [%Qb] (4)
timestamps. Specifically, we defing as the amount of time
by which we should shift the camera timestamps, so that the gxg propagation

camera and IMU data streams become temporally consistent
Note thatt; may have a positive or negative value: if the The IMU measurements are used to propagate the IMU

IMU has a longer latency than the camera, thanwil (0% R BEER RRE TN 8 e o
be positive, while in the opposite casg will be negative. provi u : Ng,

In what follows, we describe how the time offset can b rerg'eir:ic\j/e?ccgleirgtilk?g d(81otrﬁeperezlgtei(ljyﬁss.pemflc forae,,
estimated concurrently with all other quantities of intgre P Y y q :
Wm='w+bg +n, (5)

. L . . Am = éR (Ga_ Gg) +ba +n, (6)

Our main objective is to estimate the 3D pose of the ;o . o
system with respect to the global coordinate frarigy. Where'w is the IMU's rotational velocity,"g is the grav-
To this end, we track the motion of the IMU coordinatgtational acceleration, and, andn, are zero-mean white
frame, {1}, with respect to{ G}, using an EKF. To achieve Gaussian noise vectors. Using these measurements, we can
precise estimation, in addition to the IMU state we includ&Vrite the dynamics of the state vector as:
tq in the EKF state vector. Moreover, to address situationsin =~ ; . 1 I
which the spatial configuration between the camera frame, ca(t) = §Q(wm(t) —bg(t) - nr(t))Gq(t) 7
{C}, and the IMU frame (i.e., the extrinsic calibration of the ‘ _ ‘ _
sensors) is not accurately known. we include the camera-t(a 2Notation: The preceding superscript for vectors (ein ©a) denotes

! hi

. . . . e frame of reference with respect to which quantities amessed.gR
IMU transformation in the filter state vector, and estimate i the rotation matrix rotating vectors from franf} to {A}, andAq is

the corresponding unit quaternion [16}.denotes quaternion multiplication,
Un fact, the idea of explicitly including the time offset imet EKF's  |cx | is the skew symmetric matrix corresponding to veatpand 0 and
state vector is not specific to the case of pose estimatiorgusimeras and I are zero and identity matrices respectively. Finallys the estimate of a
IMUs, and can be employed in other localization problems a. w variablea, anda = a — a the error of the estimate.

A. Sate vector formulation



“V(t) = GRA)" (am(t) — ba(t) — na(t)) + “g  (8)
“Pi(t) = “vi(t) ©)
Bg (t) = nwg(t), ba(t) =nwa(t) (10)
fat)=0,  “pi(t)=0 (11)
ta(t) =0 (12)

where Q(w) is the quaternion multiplication matrix corre-

sponding to the angular velocity vector[16]. In the above,

the first three lines describe the dynamics of the IMU motion,
the fourth line describes the random walk processes that
model the biases’ slowly time-varying nature, (11) dessib where h(-) is the perspective camera moddi(f)
the fact that the camera-to-IMU transformation remain$f,/f.

C. EKF Updates

We now describe how the camera measurements are used
for EKF updates. Note that, if no time offset existed (or,
equivalently, if it was perfectly knowm priori), the EKF
update would present no difficulty. The complications arise
from the fact that the image received by the filter at titne
was in fact recorded at time+ ¢4, wheret, is a random
variable. Let us consider the observation of thid feature
in the image timestamped &t This is described by:

z;(t) = h(“py, (t+ta)) + ni(t+tq) (18)

fy/fZ]T, n; is the measurement noise vector,

constant in time, while the last line expresses the fact thatodelled as zero-mean Gaussian with covariance matrix
the time offset between the camera and IMU also remaing’, Iy, andcpfl. (t+tq) is the position of the feature with
constant. If the time offset is known to be time-varying, waespect to the camera at the time the image was sampled:

can model it as a random-walk process by replacing the lagt

line of the dynamics with;(t) = ng4(t), whereny(t) is a

ps, (t+ta) =FR R (t+ta) (“ps,—CPr(t+ta))+pr (19)

white Gaussian noise process, whose power spectral denditythis equatior’py, is the known position of theth feature

expresses the variability af;.

in the global frame.

Equations (7)-(12) describe the continuous-time evofutio T0 usez;(t) for an EKF update, we must formulate the
of the true states. For propagating the state estimates f@sidual between the actual measurement and the measure-
a discrete-time implementation, we follow the approacient expected based on the filter's estimates [18]:

described in [17]. Specifically, for propagating the oraitn
from time instantt, to ¢;.1, we numerically integrate the
differential equation:

Lal(t)

= 29 (wn(t) ~ Bltr)) A1), 1 € [t r]

The velocity and position estimates are propagated by:
1 = e+ FR(tr) 8, + “gAt (13)

“Prir = “pr + AL+ TR(t) 91 + %GgAt2 (14)

where At = ¢4 — t, and
tr41 . R
& = / ?cR(am(T) — ba(tk)) dr
tr

-
k

tht1 s

Ye = / /

tr tr

Besides the IMU position, velocity, and orientation, athet

(15)

IR (am (1) — f)a(tk)) drds  (16)

state estimates remain unchanged during propagation.

r; =2;(t) — h(Cpr(Etd))

whereCpy, (t+t,) denotes the estimate 6fpy, (t+tq). To
first-order approximation (as dictated by the EKF paradigm)
this estimate is given by:

Opy,(t+ta) =FR ER(t+1a) (Tps~CPr(t+1a)+P1
The above equation shows that, in order to compute the
residualr;, we must have access to the estimates of the state
at timet + ¢4. Therefore, to process the measuremgiit),
we propagate using the IMU measurements up tot,, at
which point we compute;, and perform an EKF update.

For this update, the Jacobianlof“py, (t-+t4)) with respect
to the filter state is necessary. This is given by:

H, i(t+ta) = [He; Hp; 0zxo Iy, Iy; II, ;]

where the nonzero blocks are the Jacobians with respect to
the IMU rotation, IMU position, camera-to-IMU rotation,
camera-to-IMU translation, and time offset, respectively

He.i = J; R LR(t+14)[(ps,—Pr(t+1a))x]

(20)

addition to the state estimate, the EKF propagates the stabdp.i = —Ji ¥R GR(t+£a)

covariance matrix, as follows:
P(tes1) = ®(tisr, )P () @ (tes1, te) " + Qu

whereP is the state covariance matri®,; is the covariance
matrix of the propagation noise, ade(ty 1, tx) is the error-
state transition matrix, given by:

Dr(trpr,tr)
OT
15x7

O15x7

B (tpt1,te) = I...

(17)

with ®;(tx11,t,) being thel5 x 15 error-state transition
matrix for the IMU state, derived in [6, 17].

My, = J; TR GR(t+1a) (Ops—Pr(t+1a)) x|

Iy, = J;

0, = -3, R Tw(t+ig) < | ER(t+14) (Cpr.~CPr(t+i4))
—J; SR LR(t+1y) OV (t+1y) (21)

In the aboveJ; is the Jacobian of the perspective model:

C -

Tfi

1 1 0 - Céfi
C2

C o~
“fi

3, _ h()

—

£=Cpy, (tHa)

Note that all the matrices shown above are computed using
the EKF state estimates available at timet,. In addition,

0 1

—
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the Jacobian with respect to the time offsHy,, ;, requires motion between consecutive images), and these constraints
the rotational velocity vector, which is available from theare subsequently used for filter updates.

IMU measurements. We thus see that all the Jacobians cams we explain in what follows, the proposed approach for
be computed in closed form, using quantities available ¢o thime-offset estimation by explicitly including, in the filter

filter at¢+#4. Using the above expression fH, ;(++,), we  state vector can be readily applied in both types of methods.
can now proceed to carry out the EKF update. Specn‘lcally,

the state and covariance matrix are updated as: Feature-based methods

. . In feature-based EKF algorithms (often referred to as

X(t+1a) < X(t+1a) + Kir; EKF-SLAM algorithms) the state vector of the system is

P(t+tq) « P(t+t) — K;S; K} augmented with the positions of the features detected by
the camera. Thus, the state vector contains the IMU state,

where: the camera-to-IMU transformation (if its online estimatio
K; = P(t+tq)Hy;(t+ta)"S; !, with (22) is needed), andV features:
Si = Hy i (t+ia)P(t+ig)Hy i(t+t0)" + 02,1 (23) x=[xI' ¢q" CpT fF f .. ff]

If more than one features are observed in the same imagghere the feature parameterizatidn,: = 1,... N can have
their residuals can be processed in the same manner.  a number of different forms (e.g., XYZ position, inverse

A few interesting comments can be made at this point. Wgepth, homogeneous coordinates). To estimate the timetoffs
start by noting that the camera measurement was recordggtween the sensors we can again include it in the state:
at time t + ¢4, but it is being processed at+ ¢;. Since oo T er .
the estimate of the time offset will inevitably contain some x=[xj fa p; ta I £ - 1]
error, the measurement will inevitably be processed at ajith this augmented state vector, the feature measurements
slightly incorrect time instant. However, the EKplicitly  z;, can be directly employed for EKF updates. The only
accounts for this fact. Specifically, sincg; is included in the difference compared to the standard feature-based EKF al-
estimated state vector, the filter keeps track of the uniogyta gorithms is that an additional Jacobian block (the Jacobian
in tq, via the state covariance matrR. Therefore, when with respect tot;, shown in (21)) must be computed for
computing the covariance matrix of the residu8j (n (23)) each measurement. Apart from this modification, no further
the uncertainty in the time offset is explicitly modellethda changes are needed, in order to implement the online esti-
is accounted for in the computation of the state update. Agation oft; in EKF-based SLAM.
a result, we are able to obtain both more accurate pose
estimates and a better characterization of their uncéytain B Pose-based methods

Finally, we note that the proposed EKF-based approachIn pose-based EKF algorithms, the state vector typically
to time-offset estimation requires minimal modificationscontains the current IMU state, as well a8 poses (with
compared to the “standard” filter which only contains the\/ > 1), corresponding to the time instant$ images were
IMU state and the camera-to-IMU extrinsic parameters, theecorded. For instance, in [5, 6] the state vector is forteda
proposed filter requires one additional state variable, aras:
the computation of one additional block in the Jacobian x=[xI' o - cT]T 24)
matrix (see (21)). These small additions make it possible Lo M
to seamlessly estimate the time offset online, along with awherec; is the camera pose at the time th¢h image was
other variables of interest. recorded:

T C

c_ . T G T
[1l. M OTION ESTIMATION WITH UNKNOWN FEATURES ¢;=lea; “pg, } (25)

The preceding section describes time-offset estimatidavery time a new image is received, the state vector is
when the feature positions in the world are knaayoriori. In~ augmented to include a copy of the current camera pose, and
many cases, however, we are interested in motion estimatitire oldest pose is removed. The features are tracked for up
in previously unknown environments, for which it is notto M images, and are used for deriving constraints between
possible to have a feature map. Several algorithms hatke poses in the sliding window.
been developed for vision-aided inertial navigation insthi In order to estimate the extrinsic calibration and timeeiffs
type of applications. Broadly, these methods use the visubétween the camera and IMU in this setting, we can include
measurements in one of two ways [17, 18jature-based these parameters in the state vector:
methods include feature positions in the state vector being T C-T C.T T 71T
estimated (as in the EKF-SLAM paradigm [3, 4]), and =[x fa P; fa ef ooy (26)
employ the feature observations directly for state upd@es To account for these additional parameters, only minimal
the other handpose-based methods do not include feature modifications are needed in the EKF equations. More specif-
positions in the state vector, and instead maintain a statzlly, the only filter operation that needs to be changed
vector containing a number of poses [5, 6]. In these methods, state augmentation: when a new image is received with
the feature measurements are first used to define constraititsestamp¢, we augment the state vector to include an
between two or more poses (e.g., to estimate the relatiestimate of the camera pose at time t; (instead of time



TABLE I: RMS errors in map-based simulations

RMS errors
Spr La Gy “pr Yaq tq
0.096 m | 0.1¢° | 0.021 m/sec| 0.088 m | 0.036 1.519 msec

t, as in the original method). We therefore use the IMLU 8MW
6 4

measurements to propagate uptte 74, at which point we
augment the state with the estimate of the camera pose

t+tq:
o= BT [ Fasbai
" Cpo(ttta) Cpy(t+tg) + LR(t+)T Tpe

The filter covariance matrix is also augmented, as:

P(t+tq) P(t+ta)J?l,,,

JnewP(t+ty) JnewP(t+1g)IL

new

P(t+tq) + [ ] (27)

wherelJ,,.,, is the Jacobian of,,.,, with respect to the state

vector. This matrix has the following structure:
Jnew = [JI JIC Jt 0]
whereJ; is the Jacobian with respect to the IMU state:

03x9 }
03x9

3, - ) 1333 033
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Fig. 1. Map-based simulations: average NEES values over
50 Monte-Carlo simulations.

A. Map-based motion estimation

1) Smulations: We performed Monte-Carlo simulation
tests, to examine the accuracy and consistency of the esti-
mates computed by the algorithm described in Section II. For
the simulations of map-based localization, in each siredlat
image six landmarks with known locations, with depths
uniformly distributed betweef and20 meters, were visible.
The sensor noise parameters were chosen to be identical to

J;c is the Jacobian with respect to the camera—to-IMLghose of the sensors we used for the real-world experiment

transformation:

IR P N\T
Jre — [GR(t—i—td)

03x3 }
03x3

LR(t+t4)T
and J, is the Jacobian with respect tg:

LR(t+1a)T T (t+1a)
T

Jt‘[éfumd) Vw<t+fd>fopc+Gw<t+£dJ (8)

described in Section IV-A.2. The IMU provided measure-
ments at 100Hz, while the images were recorded at 10Hz.
To examine the statistical properties of our proposed
algorithm, we carried out 50 Monte-Carlo trials. In eachltri
the extrinsic parameters (rotation and translation) betwe
the IMU and the camera were set equal to known nominal
values, with the addition of random errofp and 8. In
each trial,op and ¢ were randomly drawn from zero-
mean Gaussian distributions with standard deviationslequa
to 0, = 0.1 m andoy = 1.0° along each axis, respectively.

Compared to [5, 6], the above equations differ in that adn addition, ¢, was randomly drawn from the Gaussian

ditional Jacobians are computed with respect to the cameigstribution\/(0, 02), with o, = 50 msec, and kept constant
to-IMU extrinsic parameters, and with respect to the timgor the duration of the trial. Time offsets in the order ofgen
offset ¢;. This is the only change that is needed: after thgf milliseconds are typical of most systems in our expemenc
augmentation has been performed in this fashion, the featur Taple | shows the RMS errors for the IMU position,
measurements can be used in exactly the same way for El§Fientation, and velocity, as well as for the camera-to-IMU
updates as in [5, 6], with no further alterations. Since thgxtrinsic parameters and the time offset. The values shown
dependence of the camera posestgrhas been modelled are averages over all Monte-Carlo trials, and over the last
(via the Jacobiarl;), when the measurements are used t@aif of the trajectory (i.e., after the estimation uncetgi
update the camera pose estimatgswill also be updated, has reached steady state). This table shows that the pbpose
as normal in the EKF. approach allows for precise estimation of all the varialolies
interest, including the time offsey.

Additionally, in Fig. 1 we plot the normalized estimation
error squared (NEES) for the IMU state, the sensors’ extrin-

In this section we present the results of Monte-Carlo simsic calibration and the time offset, each averaged over all
ulation tests and real-world experiments, which demotestraMonte-carlo trials. For a variable, the NEES at time step
the performance of the online time-offset estimation, both £ of a given trial is computed afsfP;klék, whereay, is the
mapped and unknown environments. estimation error and®,, is the covariance matrix reported

IV. EXPERIMENTS
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Fig. 2: Map-based estimation: real-world experiment. (la¢ &rea where the motion took place. (b) The estimated toajec
The red circle is the starting point of the trajectory, ane tiue asterisks the LED lights. (c) The estimation resuittfo

by the filter. If the estimator is consistent, i.e., if it refso B. Motion estimation with unknown features
an appropriate covariance matrix for its state estimates, t For the tests presented in this section, we implemented

NEES should have an average valge equgl o 'Fhe_dimensi% online estimation of the time offset and camera-to-IMU
of a (the NE.ES fore_lco.n5|stent estimator is &distributed extrinsic parameters in the modified MSCKF (multi-state
random variable withdim(a) degrees of freedom) [20]. ¢ongiraint Kalman filter) algorithm presented in [6]. This

F'g_' 1 shows that the average NEE.S values_for the threa gorithm performs visual-inertial odometry, and is a pose
variables examined are close to their theoretical values gt ..y method (Section I1I-B)

.15’ 6, "’?”d 1, respectively. This |_nd|cates that the estimator 1) Monte-Carlo smulations. To obtain realistic simula-
is consistent, and that the covariance matrix reported by th . : :
EKF is an accurate description of the actual uncertainty &on environments, we gengr_ated the simulation data b_at:sed °
. a real-world dataset. Specifically, the ground truth trajgc
the estimates. " . . . ) L
(position, velocity, orientation) for the simulation is rggr-
ated by using the estimates computed by a GPS-INS system
2) Real-world Experiment: In addition to the simulation in a real-world dataset, which was about 13 minutes, 5.5 km
tests, we carried out a real-world experiment to validateng. Using these trajectories, we subsequently generated
the proposed map-based EKF. The vision-inertial systefivlU measurements corrupted with noise and biases, as well
consisted of a PointGrey Bumblebee2 stereo pair (only @s visual feature tracks with characteristics identicahtise
single camera was used) and an Xsens MTI-G unit. The the real-world data. For each trial the camera-to-IMU
environment is shown in Fig. 2a. The blue LED lightsextrinsic parameters and the time offset were generated in
whose positions are accurately known, are used as the vis@away identical to the map-based simulations, by perturbing
features. During the experiment, the sensor platformesdartknown nominal values.
from a known initial position, and was moved in two loops In the tests presented here, we compare the estimation
around the room, returning to its initial location after leac performance in four cases. (i) camera-to-IMU calibration
one. Since no high-precision ground truth was otherwisenabled, butt; estimation disabled, (iif, estimation en-
available, this motion pattern gives us three known pasitio abled, but camera-to-IMU calibration disabled, (iii) bath
in the trajectory. The estimated trajectory is shown in Bly. and camera-to-IMU estimation enabled, and (iv) the case
For the known positions in the trajectory, the maximunwheret; and the camera-to-IMU transformation are perfectly
estimation error wag.6 cm, in the same order of magnitudeknown and not estimated. In the first three cases (termed
as what we observed in the simulations. the “imprecise” ones), the precise values of the camera-to-
IMU extrinsic parameters ant}; are not known (only their
In Fig. 2c we plot the estimate of the time offsei, as nominal values are known). When a particular parameter
well as the uncertainty envelope defined #p times the is not estimated, it is assumed to be equal to the nominal
standard deviation reported by the EKF. We can see thealue. By comparing these three cases, we can evaluate
within the first few seconds the estimate converges vengecloghe necessity and effectiveness of the online estimation of
to its final value, and that the uncertainty in the estimat@#dividual parameters. Moreover, by comparing againse cas
drops rapidly. In addition to being practically significant (iv), where all parameters are perfectly known (the “pretis
this also suggests thaf is observable, a result that we will scenario), we can assess the loss of accuracy incurred due
seek to prove in future work. We point out that the standart the uncertainty in the knowledge of these parameters.
deviation oft, over the last one minute of the experimentis Table Il shows the average RMSE and NEES for the
only 0.40 msec, which shows the high precision attainabléour cases, averaged over 50 Monte-Carlo trials. For glarit
by the proposed online estimation method. the position errors are reported in the NED (North-East-
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Fig. 3: Visual-inertial odometry with unknown features atrifting time-offsett,: estimation errors (blue lines) and associated
+30 envelopes (red dashed lines). (a) The IMU position errothénNorth, East, Down directions, (b) The IMU orientation
errors in roll, pitch, and yaw, (c) The error in the estimafet@ Note that the position and yaw uncertainty gradually
increases, as normal in visual-inertial odometry withaut &nown landmarks.

TABLE Il at the start, to300 msec at the end, modelling a severe
Scenaro Tprecise preciee clopk dll’lf'[ (250 msec in 13_m|nutes). Fig. 3 pre;ents the
Extrinsic calb. on off on N/A estimation errors and associatéd standard deviations for
tq estimation off on on N/A the IMU position, the IMU orientation, and the time offset.
o300 | 18391 811 793 ) Morth ((nT)) We can see that even in this challenging situation (unknown
bose RMSE 1453 | 45.07 | 0.64 | 053 | Down (m) f_eatures, _uncertain camera-to-IMU trans_,formati_on, lagd
0.39 | 0.18 | 0.06 | 0.06 roll (°) time-varying offset) the estimates remain consistent.
033 | 018 1 0051 005 F)’/';w g)) 3) Real-world Experiment: The visual-inertial odometry
MU staie NEEST 854 | 2046 | 146 145 approach with concurrent estimation of the camera—tp-IMU
007 | NA | 001| NA Cpr (M) transformation and the time offs¢f was also tested in a
Calib. RMSE | 0.31 | N/A | 0.05| N/A 7a () real-world experiment. For this test, the camera-IMU syste
N/A | 028 | 025] NIA | tq (msec) was mounted on the roof of a car driven for approximately

7.3 km. Feature extraction is performed via an optimized
version of the Shi-Tomasi algorithm [21, 22] and match-

. ing is done by normalized cross-correlation. The estimated
these results, we first observe that, to be able to accurat(ﬂg-

; he IMU’ X both th S librati jectory is plotted on a map of the area in Fig. 4, and
estimate the s motion, both the extrinsic call ratloncompared to (i) ground truth obtained by a GPS-INS system,
and the time offset between the camera and IMU mu

#nd (i) the estimate computed without online estimation
be estimated. If either of these is falsely assumed to (i) P

L . the camera-to-IMU extrinsic parameters and(for the
perfectly known, the estimation accuracy and consisteney xtrinsic parameters manual measurements were used, and
degraded considerably (see the first two columns in Tahle II '

) : 4« = 0 was assumed in this case).
Mareover, by comparing the third and fourth columns, we Similarly to what was observed in the previous cases,

can see that the accuracy Obtameq by our online estimalig, see that the estimates obtained with online calibration
approach is very close to that obtained when the the camer,

o-IMU " i q fi oot foctly K He very precise (the error remains bel®ws% of the
0-IML configuration and time ONSel are pertectly kNown.y.oyee distance). Moreover, these estimates are signific
This is significant from a practical standpoint: it showstth

h b ' d ; di m%etter than the estimates obtained if online estimation is
there may not be a pressing need to perform tedious offl t used. In Fig. 5, we plot the estimate &f during the

calibration or precise measurements of these parametgrs. periment. Similarly to Fig. 2c, we see that the estimate

using the proposed online estimation approach, |n|t|dI|ze0f tq quickly converges close to its final value, and remains

Wl'th rou.gz.es-tlma}tehs,g;/e can ﬁbtam pose l((ejstlma_&es of wal"gllmost unchanged for the remainder of the trajectory. This
almost indistinguishable to what we would get It an oraclgy, s that high-quality estimates for the time offset can be

provided us Wl_th the exact values of the parameters. obtained quickly with the proposed approach, even in the
2) Time-varying tq4: For all the results presented up t0gpsence of known landmark points.
now, a constant time offset was used. Next, we examine the

case of a time-varying;. Instead of presenting Monte-Carlo V. DiscussioN

simulation results (which are similar to those in Table itl), In this paper we have proposed an approach for the online
is interesting to show the results of a single represemtatiestimation of the time offset,;, between the camera and
trial. In this trial, the time offset varies linearly frof msec IMU during EKF-based vision-aided inertial navigation.eTh

Down) frame, and IMU orientation in roll-pitch-yaw. In
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Fig. 4: Visual-inertial odometry experimental results.eTh

trajectory estimate with the proposed approach (red dashed
line), the estimate obtained without online calibratiofu¢p  [7]
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Fig. 5: The estimate fot, and its uncertainty during the [13]

experiment.

key component of our formulation is that the varialle (el
is explicitly included in the EKF state vector. This makes
it possible to track time-varying offsets, characterize thtS
uncertainty in the estimate of, and model the impact of this
uncertainty on the pose estimation accuracy. Our simuiatio
and experimental results indicate that the proposed appro 16
leads to high-precision estimates for both the system mptio
as well as for the temporal and spatial alignment between tlig]
camera and IMU. These results indicate that, at least in the
trajectories used in our experiments, the time offset can lpgy
estimated using the sensor data (i.e., it is observable). In
our future work, we plan to perform a detailed analysis t?lg]
identify the conditions that guarantee observability.
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