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Abstract. We present numerical results of 3-D MHD model

of a dipole active region field containing a loop with a higher

density than its surroundings. We study different ways of ex-

citation of vertical kink oscillations by velocity perturbation:

as an initial condition, and as an impulsive excitation with

a pulse of a given position, duration, and amplitude. These

properties are varied in the parametric studies. We find that

the amplitude of vertical kink oscillations is significantly am-

plified in comparison to horizontal kink oscillations for ex-

citers located centrally (symmetrically) below the loop, but

not if the exciter is located a significant distance to the side

of the loop. This explains why the pure vertical kink mode

is so rarely observed in comparison to the horizontally polar-

ized one. We discuss the role of curved magnetic field lines

and the pulse overlapping at one of the loop’s footpoints in

3-D active regions (AR’s) on the excitation and the damping

of slow standing waves. We find that footpoint excitation be-

comes more efficient in 3-D curved loops than in 2-D curved

arcades and that slow waves can be excited within an interval

of time that is comparable to the observed one wave-period

due to the combined effect of the pulse inside and outside the

loop. Additionally, we study the effect of AR topology on

the excitation and trapping of loop oscillations. We find that

a perturbation acting directly on a single loop excites oscil-

lations, but results in an increased leakage compared to ex-

citation of oscillations in an AR field by an external source.
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1 Introduction

Observations with recent instruments such as SUMER on-

board SOHO and TRACE in EUV wavelength resulted in

the detection of various oscillations in solar coronal loops.

Among them several kinds of waves have been identified, e.g.

propagating (De Moortel et al., 2002) and standing (Wang et

al., 2002) slow magnetosonic waves. Wang et al. (2003a,

b) reported detailed statistical study of several events where

waves were detected. The observations show that slow stand-

ing waves excitation is related to footpoint brightening in

coronal loops. The properties of slow standing waves were

described by Wang et al. (2005). Other observations were

interpreted as evidence for fast sausage waves (Nakariakov

et al., 2003; Aschwanden et al., 2004) as well as different

polarizations of fast kink magnetosonic waves: horizontal

(Nakariakov et al., 1999; Aschwanden et al., 1999, 2002;

Schrijver et al., 2002) and vertical (Wang and Solanki, 2004).

Recently, high cadence STEREO EUVI observations of the

quiet sun (QS) (Patsourakos and Vourlidas, 2007) and AR’s

(Verwichte et al., 2009) found additional evidence of coro-

nal loop oscillations. Recently Wang et al. (2008) recon-

sidered oscillations described by Aschwanden et al. (2002)

and found that out of three oscillations previously identi-

fied as fundamental horizontal mode oscillations, two cases

appeared to be fundamental vertical mode oscillations (but

possibly combined with the fundamental horizontal mode),

and one case appeared to be a combination of the funda-

mental vertical and horizontal modes, while in three cases

it was not possible to clearly distinguish between the fun-

damental mode and the second harmonic of the horizontal

oscillation. In five other cases it was not possible to clearly

distinguish between a fundamental horizontal mode and the

second-harmonic of a vertical mode. Wang et al. (2008)

study concluded that pure modes are observed less often than

the combination of different polarizations, and that pure ver-

tical coronal loop oscillations happen less often than pure

horizontal ones.
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One common feature of these observations is that the de-

cay of the oscillations is very rapid. Several mechanisms

were suggested as an explanation of the fast damping of

transverse loop oscillations, e.g. enhanced viscosity (Nakari-

akov et al., 1999), wave leakage (Smith et al., 1997; Selwa et

al., 2007a), phase mixing (Ofman and Aschwanden, 2002)

and resonant absorption (Ruderman and Roberts, 2002).

More detailed theoretical description of the damping mecha-

nisms and other kink waves properties can be found in Rud-

erman and Erdélyi (2009).

Two polarizations of kink oscillations were studied the-

oretically by Van Doorsselaere et al. (2004). The authors

solved linearized ideal MHD equations in zero β regime and

found that quasi-mode frequencies are unchanged up to first

order in the curvature. The imaginary part of the frequency,

however, does change in first order, and quasi-modes are

slightly more damped in realistically curved coronal loop

configurations compared to loops modeled as straight cylin-

ders. Since vertical oscillations are confined to a single plane,

there are several 2-D numerical studies of vertical oscillation

properties in curved loops, e.g. Selwa et al. (2005b, 2006,

2007a). The full 3-D resistive MHD simulation of simulta-

neously excited vertical and horizontal oscillations were per-

formed by McLaughlin and Ofman (2008). That model in-

cluded several approximations, relaxed in the present study.

The main approximation is that the high density loop in the

AR has constant cross section, and does not expand with

height, as expected for a flux tube in a dipole field. Thus,

the oscillation modes of such a loop are not eigenmodes of a

particular flux-tube.

There are several unresolved questions about the nature of

loops oscillations. One problem is why only a small fraction

of TRACE flare observations show oscillating loops. An-

other open question is the excitation mechanism of vertical

and horizontal kink oscillations, and in particular it is not

clear why most of detected oscillations are horizontally po-

larized. The last question considered here, concerns slow

standing waves and their excitation mechanism within single

wave-period. The present study addresses these questions by

performing 3-D simulations of loop oscillations, and show-

ing that the topology of the field and the location of the flare

in the AR have strong effect on loop oscillations.

There are several studies of waves in coronal loops that

use 3-D MHD model, including several damping mecha-

nisms as well as other important features summarized be-

low. For the detailed review see Ofman (2009a). Propagat-

ing waves were studied by Selwa et al. (2004). Terradas and

Ofman (2004) studied density enhancements produced non-

linearly by loop oscillations using 1-D, 2-D and 3-D MHD

models. Ofman (2005, 2009b) studied kink and fast ma-

gentosonic waves and presented several 3-D models of the

loops including straight cylinder and 4 cylindrical straight

and twisted loops. McLaughlin and Ofman (2008) studied

excitation of waves in 3-D cylindrical curved loop. Ofman

and Thompson (2002a) and Ofman (2007) studied wave be-

havior in 3-D active regions with gravity based on a dipole

field and magnetogram data, respectively. However, their

models did not include a denser loop structure, which is nec-

essary to examine behavior of trapped modes in a single loop.

Numerical studies of slow standing waves concentrate

mainly on explaining the process of excitation and attenu-

ation of the slow standing waves. For instance, Ofman and

Wang (2002) showed that nonlinear slow standing waves are

strongly damped by thermal conduction. Mendoza-Briceño

et al. (2004) discussed the effect of gravity on attenuation

of slow standing waves. Selwa et al. (2005a) showed that

footpoint leakage may be an efficient damping mechanism

of slow standing waves. This result was also confirmed by

Ogrodowczyk and Murawski (2007). Selwa et al. (2007a) re-

ported that lateral leakage can also lead to damping of slow

standing waves. Recently Sigalotti et al. (2007) studied dis-

sipation of slow standing waves by thermal conduction, com-

pressive viscosity, radiative cooling, and heating for nonstrat-

ified and stratified loops.

Excitation of slow standing waves was numerically mod-

eled by Nakariakov et al. (2004) and Tsiklauri et al. (2004)

who showed that only the second harmonic is excited, regard-

less of a spatial position of heat deposition. However, Selwa

et al. (2005a) showed that pulses close to a footpoint ex-

cite the fundamental mode of the slow standing wave, while

pulses close to the apex excite the second harmonic. Ad-

ditionally, these authors studied the influence of the pulse

and loop parameters on the excitation and attenuation of

slow standing waves. Taroyan et al. (2005) also showed

that the observed slow standing waves may have their ori-

gin in footpoints of the loop, however the duration of the

pulse was too long to be in agreement with observations (one

wave period) and depended strongly on the temporal profile

of the pulse. Selwa et al. (2006) results showed that foot-

point excitation in a curved loop may lead to excitation of

the fundamental slow standing mode, while excitation below

the apex of the loop leads to the excitation of the first har-

monic. Ogrodowczyk and Murawski (2007) found that slow

waves are excited faster and attenuated more efficiently in 2-

D straight slab than in 1-D loop due to coupling between the

fast and slow magnetosonic waves. Selwa et al. (2007b) re-

ported the excitation of slow standing mode in a 2-D curved

arcade loop within 1.6 wave-periods from the heat pulse. Re-

cently Haynes et al. (2008) showed that the kink instability

in a straight loop initially sets up the second mode that is

converted through the rearrangement of the magnetic field

into two out-of-phase fundamental slow modes. These slow

modes are in the two entwined flux tubes created during the

kink instability. However, this excitation mechanism leads to

fundamental standing mode after ∼2 wave-periods, so this

model still does not fully explain the observations.

In this paper we extend the Ofman and Thompson (2002)

and McLaughlin and Ofman (2008) models by modeling

a dipolar AR with a flux tube denser than the surround-

ing corona. Our model includes the effect of non-constant
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cross-section of the loop due to flux tube expansion with

height, and provides an approximation of realistic AR loop

oscillation, where such expansion is present.

The paper is organized as follows: the numerical model is

described in Sect. 2. The numerical results are presented in

Sect. 2.1. This paper is concluded by a short summary of the

main results in Sect. 3.

2 Numerical model

We model the solar coronal plasma with the normalized,

three-dimensional, nonlinear, resistive MHD equations:

∂̺

∂t
+ ∇ · (̺V) = 0 , (1)

̺

[

∂V

∂t
+ (V · ∇) V

]

= −Eu∇p + (∇ × B) × B , (2)

∂B

∂t
= ∇ × (V × B) +

1

S
∇

2B . (3)

Here ̺ denotes the mass density, V is plasma velocity, B is

divergence free (∇·B=0) magnetic field vector, p is plasma

pressure. Euler number, Eu and Lundquist number, S, are

given as:

Eu =
β

2
=

c2
s

γV 2
A0

, (4)

S =
LsVA0

η
, (5)

where plasma β is the ratio of the thermal to the magnetic

pressures, cs and VA0 denotes sound and Alfvén speed, re-

spectively. Ls is a typical length scale in the system and

η denotes resistivity. We neglect viscosity and gravity in the

model presented here. For simplicity we study the isothermal

case (γ=1) and therefore p=nkBT0, eliminating the need to

solve the energy equation. Here n is particle density, kB de-

notes Boltazmann’s constant and T0 is plasma temperature.

This assumption is justified since most of TRACE loops were

observed to be nearly isothermal.

We take the magnetic field strength of the dipole

as B0=93 Gauss, temperature T0=1 MK and density

n0=̺0/mp=109 cm−3, where mp is the proton mass. These

values correspond to the Alfvén speed VA0=6414 km/s, the

isothermal sound speed cs=128.5 km/s and Alfvén time

τA=10.9 s. Furthermore, the spatial unit in our normalization

is Ls=Rs/10=69.55 Mm, where Rs is solar radius. For the

cylindrical loop we hold the density and temperature fixed

while we choose magnetic field strength as B0=15 Gauss to

make the plasma β≤0.1 and magnetic field strength at the

apex of the dipole loop comparable to cylindrical loop mid-

point values.

Numerical code

We use the numerical code NLRAT that implements the mod-

ified Lax-Wendroff scheme with a fourth-order smoothing

term for solving time-dependent resistive isothermal MHD

equations. The solenoidality condition (∇·B=0) is satisfied

by using Powell’s (1994) method. More detailed description

of the code can be found in Ofman and Thompson (2002).

Equations (1–3) are solved numerically in an

Eulerian box with the x-, y- and z-dimensions

(xmin, xmax)×(ymin, ymax)×(zmin, zmax)=(−3.5, 3.5)×

(−3.5, 3.5)×(3, 6.5). All spatial coordinates are given

in units of Ls . This box is covered by a uniform grid of

150×150×150 numerical cells. Grid convergence studies

showed that this resolution is sufficient to get results

independent of the grid.

We apply open boundary conditions, with a zero-gradient

extrapolation of all plasma variables at all the boundaries ex-

cept zmin photospheric boundary to allow a wave signal to

leave freely the simulation region. At the bottom of the sim-

ulation region (zmin) we model wave reflection from photo-

spheric layer for z<zmin by keeping magnetic field, velocity

and density fixed:

B (x, y, zmin, t) = B0 (x, y, zmin) , (6)

V (x, y, zmin, t) = 0 , (7)

̺ (x, y, zmin, t) = ̺0 (x, y, zmin) . (8)

Initial conditions

As the initial equilibrium magnetic field of our active region

we take an idealized 3-D potential dipole. Magnetic field-

lines are shown in the right panel of Fig. 1. Detailed analyt-

ical expressions describing this magnetic configuration can

be found in Ofman and Thompson (2002). For simplicity we

assume a constant equilibrium density. The loop density is 3

times larger than in the surrounding AR plasma (see below).

The loop

TRACE observations reveal the presence of dense loops

in the corona on small and large scale (compared to AR

case). Following McLaughlin and Ofman (2008) we include

a denser loop in our model by filling a flux tube with denser

plasma than in the surrounding AR (Fig. 1). Note that such

a loop has lower Alfvén speed in comparison to the ambient

corona and works as a waveguide in the system, capable of

trapping waves. It is important to note that individual coronal

loops appear to have a constant cross section (e.g., Klimchuk,

2000; López Fuentes et al., 2006, 2008). However, a collec-

tion of loops do expand with height in a manner consistent

with expanding flux tube in our model (López Fuentes et al.,

2008). Thus, our loop can be viewed as an unresolved col-

lection of small scale loops.

While McLaughlin and Ofman (2008) increased density

inside the loop was defined by a sharp gradient at the loop
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Fig. 1. Initial 3-D magnetic field configuration of the model AR with the high density loop as a flux-tube for straight (left panel) and dipole

(right panel) fields. Spatial coordinates are measured in units of Ls .

boundary, we use smooth density profile which is closer to

observations (Aschwanden et al., 2003):

̺i = ̺ed exp

[

−
(y − y0)

2 + (z − z0)
2

w

]

. (9)

Here subscripts i(e) denote the loop (ambient corona),

(x0, y0, z0) = (0, 0, 5.5) denotes the central point of the field-

line chosen as the axis of mass loaded loop, w=2r=0.375 is

the loop width at the apex and d=3 denotes density ratio be-

tween the loop and ambient corona. The contrast value is

chosen to be in agreement with observations of loops oscil-

lating in horizontal kink mode (Aschwanden et al., 2003) and

in vertical kink mode (Selwa et al., 2007). The length of the

loop was chosen to be ∼7Ls .

We initialize the high density loop in the flux-tube by trac-

ing field lines starting in the y−z plane at x=0. Each of the

fieldlines is parameterized with a factor associated with the

value of Gaussian density profile (Eq. 9) along the whole flux

tube. From the momentum Eq. (2) in equilibrium it follows

that for such an equilibrium configuration the sum of Lorentz

force and thermal pressure gradient force must vanish:

Eu∇p − (∇ × B) × B = 0 . (10)

Since the initial magnetic field is potential (∇×B) =0 and

plasma β (Euler number) is small in the system, the den-

sity variation across the loop does not affect significantly the

force balance. For this reason we can choose the density dis-

tribution across the fieldlines (e.g., flux-tube width that varies

with height) to satisfy Eq. (9). In equilibrium the increased

pressure inside the loop is balanced by the magnetic pressure

gradient. In low-β coronal loop, the perturbation due to the

increased loop density is small. Consequently, our loop is

near equilibium state at t=0. However, we expect small ad-

justments of the loop structure in the initial stage of the simu-

lation, as the small non-potential component of the magnetic

field is produced to balance the small thermal pressure at the

flux-tube boundary.

The two kinds of model ARs we consider are displayed

in Fig. 1. The color features show the isosurface of density

within the denser loop while black lines represent the mag-

netic fieldlines. Note the difference in fieldline length and

orientation for the two kinds of ARs.

The perturbation

We perturb our equilibrium model with two forms of exci-

tation. One form is the nearly eigenmode velocity profile

corresponding to the Gaussian loop profile launched inside

the loop. Alternative perturbation form is external velocity

pulse at x−z-boundary plane along ymin, which models the

impact of fast magnetosonic wave on our active region:

Vy = AV VA0 exp

[

−

(

x − x0

w

)2
]

× exp

[

−

(

z − z0

w

)2
]

× exp



−

(

2t −
(

t1 +
t2−t1

2

)

t2 − t1

)8


 . (11)

Here AV =0.1 (cylindrical loop) and AV =0.025 (dipole

loop) is the relative amplitude of the pulse, VA0 is the max-

imum Alfvén speed at the bottom of the simulation region,

t1=2.5τA, t2=5τA x0=0, z0=zmax/2 and w=0.7.

Additionally, we perturb the loop from below by launching

a Gaussian velocity pulse at x−y boundary plane (e.g. left

top panel of Fig. 2), depending on the problem.

2.1 Numerical results

2.1.1 Vertical vs. horizontal oscillations

We start our studies with the loop shown in right panel

of Fig. 1. At the beginning we perturb our loop with the
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Fig. 2. Left panels: Spatial profiles of the pulses launched in z component of velocity (top panel, xy plane) and in y component of velocity

(bottom panel, xz plane) (color scales). Red contours display the initial position of the loop (different plane than the pulse in bottom panel).

Letters in a top panel show various positions of the center of the pulse. Spatial coordinates are given in units of Ls . Right panels: Time

signatures of z (y) component of velocity at the loop apex (red (blue) lines, respectively). Top panel corresponds to the excitation by the

pulse shown in top panel of this figure (note difference in scales for Vz and Vy ). Bottom panel corresponds to the excitation by the pulse

shown in top panel (solid lines) and by the pulse shown in bottom panel of this figure (dashed lines), respectively. Note difference in vZ to

vY amplitude ratio for both kinds of excitation.

Gaussian pulse acting below the loop (presented in left top

panel of Fig. 2). The position of the center of the exciter

varies (different locations are marked with letters) in para-

metric studies. The position of the pulse does not change

difference images of the oscillations (not shown) and leads

to vertical oscillations of the loop. However, the ratio of

maximum amplitude of vertical to horizontal component of

velocity, Vz/Vy , at the loop’s apex varies with the position of

the pulse. For the pulses centered along y0=0 line (below the

loop’s apex) the ratio of amplitudes is close to ∼35, while it

decreases to ∼7 with the pulse center moved to y0=1 line.

It is noteworthy that moving the position along y0 line does

not affect the results (the ratio of maximum velocity ampli-

tudes for the pulse (A) is the same as for the pulse (C) and

for pulses (B) and (D) is also the same). Typical time sig-

nature of Vz (red line) and Vy (blue line) in case of pulse

(A) is shown in the top panel of Fig. 2. The pulse reaches

the detection point (the midpoint of the apex of the loop) at

t=15 and excites both horizontal (Vy) and vertical (Vz) os-

cillations. The small amplitude motions before t=15 are due

to the adjustment phase (Ofman, 2007; McLaughlin and Of-

man, 2008) as we do not start the simulations from a strict

equilibrium. Due to the very small amplitude of horizontal

oscillation in comparison to the vertical one this oscillation

is very unlikely to be observed compared to clearly seen ver-

tical oscillation (note the difference in scales in left bottom

panel of Fig. 2).

Switching to the excitation by the pulse from the side

(right top panel of Fig. 2) changes the scenario. Most

of the observed kink oscillations are horizontal oscillations

(Nakariakov et al., 1999; Aschwanden et al., 1999; Schrijver

et al., 2002). The next question that arises is: why they are

so easily excited in comparison to vertical ones? We showed

that moving the pulse to the side of the loop (but still act-

ing below the loop) can excite both vertical and horizontal

oscillation with the amplitude ratio lower than one order of

magnitude. The pulse acting below, but far away from the

loop may be modeled in the limit of distant pulse as the pulse

from the side boundary (as suggested McLaughlin and Of-

man, 2008). However, we modify it by using the Gaussian

shape pulse centered below the loop’s apex (right top panel

of Fig. 2). It is noteworthy that in such a case the maximum

www.ann-geophys.net/27/3899/2009/ Ann. Geophys., 27, 3899–3908, 2009
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Fig. 3. Time signatures along vertical axis of the loop (x=y=0) of perturbed mass density (left panel, color scale, units of ̺0) and y

component of velocity (right panel, color scale, units of VA0) in case of excitation with the pulse (A) shown in top panel of Fig. 2. The loop

is centered around y=0. Spatial coordinates are given in units of Ls .

Fig. 4. Time signatures of transversal component of velocity at the cylindrical (left panel) and dipole (right panel) loop’s apex. Blue lines

correspond to the excitation by the pulse inside the loop while red lines show the evolution after external excitation.

amplitudes in vertical component of velocity, Vz, (red lines)

and horizontal one, Vy , (blue lines) are of the same order of

magnitude (dashed lines) in contrast to the case of symmetric

pulse below the loop (case A, left top panel of Fig. 2). Such

a pulse is likely to excite a combination of global horizontal

and vertical oscillation.

As a possible damping mechanism we suggest energy

leakage (Smith et al., 1997). It was found by Selwa et

al. (2005b, 2007a) that vertical oscillations in 2-D arcade

loop are damped through energy leakage and confirmed by

McLaughlin and Ofman (2008) in 3-D geometry. Selwa et

al. (2005b, 2007a) detected short period (compared to global

kink mode period) waves propagating out of the loop in the

direction of decreasing Alfvén speed (above the loop) in the

form of sausage mode waves. In 3-D geometry the scenario

may be more complicated and energy leakage in the form of

horizontal sausage mode takes place (Fig. 3) and serves as

the damping mechanism for the loop oscillations.

2.1.2 AR topology and kink oscillations

We start our studies with the perturbation of AR loops from

outside with a time dependent side boundary pulse. The cor-

responding time signatures are displayed in Fig. 4 with red

lines. In both cases we observe similar behavior of the loops:

initial perturbation is followed by a number of oscillations

that damp gradually. The whole loop dynamics can be de-

scribed in terms of exponentially decaying oscillations:

a(t) = a0 sin(ωt + φ)e−t/τ , (12)

where τ is damping time. The damping may be caused by

two mechanisms: energy leakage to surrounding medium

(enhanced by curvature and relatively low density contrast

of the loop) as well as by the resonant absorption due to the

Gaussian profile of the mass density across the loop. How-

ever, the resolution of this study is not sufficient to fully con-

sider the effects of resonant absorption. Therefore, energy

leakage is left as the main damping mechanism.

Next we perturb AR loops from inside with nearly eigen-

mode velocity profile. The time signatures are displayed with

blue lines in Fig. 4. While in cylindrical loop case we observe

Ann. Geophys., 27, 3899–3908, 2009 www.ann-geophys.net/27/3899/2009/
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Fig. 5. Left panel: Mass density profiles in x−z plane (for y=0) at the beginning of simulation, when the pulse appears. Spatial coordinates

are measured in units of Ls . Right panel (from Ofman and Selwa, 2009): Time-signatures of the mass density (red line) and the x-component

of velocity (blue line) at the loops apex. The dotted line shows the fit used to determine the period and normalized damping time. The density

is measured in units of ̺0 and velocity in units of VA0.

the same scenario as in case of external excitation (exponen-

tially damped harmonic oscillations), the dipole loop shows

different dynamics: after the large amplitude initial pulse

most of energy leaks to the surrounding plasma causing os-

cillations of the field which is not uniform. Such a differ-

ence in dynamics may result from the fact that collective

motion of individual fieldlines that are geometrically iden-

tical requires smaller amount of energy to be excited due to

the fact that their eigenmode frequencies matches each other.

On the other hand, when we excite oscillations in the external

field that are not coherent we need more energy at the begin-

ning due to difference in periods and orientation of fieldlines

with different eigenmode frequencies (a form of phase mix-

ing). It is noteworthy that during external excitation as the

energy trapped inside is not converted to the initial motion

of surrounding field, but only serves as a driver of existing

oscillation of the field.

Simplified cylindrical models of loops do not consider full

variety of AR features, e.g., loops with a range of lengths and

orientations and as such can not be used to study dynamics

of AR. However, in realistic models of AR loop kink oscilla-

tions the excitation should be produced by an external source

(e.g. flare).

2.1.3 Slow standing wave

Next we add gravity to our model (equations described e.g.

in McLaughlin and Ofman, 2008) and slightly change the pa-

rameters of the plasma in order to model a hot loop. In order

to excite slow standing wave we follow the idea of Selwa

et al. (2007b) and launch a pulse in one of the loop’s foot-

points and in surrounding plasma. The initial stage of the

pulse is shown in left panel of Fig. 5. We see clearly that a

single footpoint brightening can be observed at the beginning

of the event. The scenario corresponds to the observational

features reported by Wang et al. (2003b). Both the observa-

tional event of 29 September 2000 (10:27 UT) and our nu-

merical simulation start with the strong signal of footpoint

brightening.

Following the idea of Selwa et al. (2007b) we launch the

pulse in velocity in the way that it covers both the footpoint

of the loop and surrounding plasma. After the initial stage the

pulse is divided into two components. One component prop-

agates along the loop as a slow pulse until being reflected

from the photospheric layer in the opposite footpoint. The

other component of the pulse is a fast magnetosonic pulse

(which comes from the part of the pulse outside the loop) that

propagates across the fieldlines through the ambient corona

and reaches the opposite footpoint. As shown by Selwa et

al. (2007b) due to the larger fast magnetosonic speed com-

pared to the slow magnetosonic speed, the two parts of the

pulse reach both footpoints almost simultaneously (with re-

spect to the time scale of the slow wave period). Such an ex-

citation mechanism of slow standing waves is efficient only

for curved loops.

Following Selwa et al. (2007b) we study time signatures

of mass density and velocity along the loop at the apex of the

loop. Such a position of detection point allows us to measure

the amplitudes of fundamental mode and has the advantage

that x-component of velocity becomes also the longitudinal

component at that point. The time signatures are shown in

right panel of Fig. 5. We observe the periodic density and ve-

locity fluctuations with the period P≃160τA that after t≤1P

reveal quarter wave-period phase-shift indicating slow stand-

ing wave. Note, that at the initial stage of the evolution the

density and velocity perturbations are in anti-phase which

was also observed in coronal loops by Wang et al. (2003a)

(right panel of Fig. 5). At the end of simulation the time

www.ann-geophys.net/27/3899/2009/ Ann. Geophys., 27, 3899–3908, 2009
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signatures of mass density and velocity are slightly detuned

and the period of oscillations starts to vary. This may be the

effect of nonlinearity and dissipation. However, as the am-

plitude of the oscillation drops we are not able to study this

effect in detail.

To determine when the standing mode is generated we ap-

ply the excitation criterion (Selwa et al., 2005). According

to this criterion the standing wave is excited in the system if

phase-shift between the mass density and the velocity in the

time signatures differs by no more than 20% from the quar-

ter wave-period. Selwa et al. (2007b) reported the shortest

excitation time of the slow standing wave as 1.6P for a 2-

D curved loop. The same idea in 3-D geometry leads to the

excitation within one wave-period which is fully consistent

with observations (Wang et al., 2002, 2003a, b).

From the fit of the damped sine function we find that the

damping time is τ/P=0.6. This value is smaller than the

observational damping time for loops observed with SUMER

(Wang et al., 2002, 2003a, b). Damping in our curved 3-D

loop is faster than for the 2-D curved loop (τ/P=1.44, Selwa

et al., 2007b). Explanation of this phenomenon in terms of

lateral leakage (Selwa et al., 2007b) in all direction is very

likely. As plasma β>1 at the loop’s apex, slow waves can

easily leave the loop as they as they can propagate obliquely

to the field. The 3-D geometry provides additional degrees

of freedom for the wave to leak out of the loop (i.e., allowing

mode coupling) than 2-D models. Additional amplification

of damping comes from the density profile difference (top-

hat in 2-D study of Selwa et al. (2007b) and Gaussian in 3-D

simulation) and lower density ratio of the loop.

A possible extension of the present study could be based

on finding more appropriate parameter range for realistic

coronal loops, such that the plasma β within the loop remains

low with height. However, dipole field configuration leads to

rapid decrease of magnetic field intensity with height, while

in isothermal, gravity-free regime hydrodynamic pressure re-

mains constant, leading to rapid increase of plasma β with

height. Even when gravity is included, the plasma β in-

creases significantly with height in a dipole field configura-

tion (e.g., Ofman and Thompson, 2002). One way to deal

with the problem is by choosing very low Euler number (i.e.,

higher magnetic field at the base of the AR and/or lower

plasma temperature). However, in this case slow standing

wave excitation time becomes too long in units of the Alfvén

time, and difficult to reach in 3-D MHD model with current

computational resources. Another possibility is to use a dif-

ferent magnetic field configuration that does not decrease as

rapidly with height.

3 Conclusions

We model coronal loop oscillations in an active region by

means of 3-D MHD simulations. We solve the problem of

excitation of vertical and horizontal polarizations of kink

loop oscillations. We find that pure vertical mode can be ob-

served if the exciter is launched below the loop. If the pulse

acts further away from the loop, both vertical and horizontal

components are excited.

We also model two kinds of ARs: curved (more realis-

tic) and straight field with cylindrical loop one. We find that

perturbation acting directly on a single loop of AR excites

oscillations both in cylindrical and dipole loop. However,

the leakage of the wave energy is larger in a curved loop

compared to straight loop in the initial phase and remaining

amplitude of oscillation is not observed. We find that exter-

nal excitation of the whole AR is efficient in the excitation of

oscillation both in the straight cylindrical AR, and a dipole

AR loop and leads to more commonly observed scenario of

excitation of AR loop oscillations.

We performed first 3-D MHD simulation of slow standing

wave in a curved AR loop. We find that for a curved loop

footpoint excitation (with a broader pulse covering not only

the footpoint, but also the surrounding plasma) is an efficient

mechanism of producing slow standing mode. The main ob-

servational features (excitation within one wave-period, ini-

tial anti-phase in mass density and velocity signals and ini-

tial footpoint brightening) are reproduced by the 3-D MHD

model.
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