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3-D Pose Estimation of Articulated Instruments
in Robotic Minimally Invasive Surgery

M. Allan , S. Ourselin, D. J. Hawkes, J. D. Kelly, and D. Stoyanov

Abstract— Estimating the 3-D pose of instruments is an
important part of robotic minimally invasive surgery for
automation of basic procedures as well as providing safety
features, such as virtual fixtures. Image-based methods
of 3-D pose estimation provide a non-invasive low cost
solution compared with methods that incorporate external
tracking systems. In this paper, we extend our recent work
in estimating rigid 3-D pose with silhouette and optical
flow-based features to incorporate the articulated degrees-
of-freedom (DOFs) of robotic instruments within a gradient-
based optimization framework. Validation of the technique
is provided with a calibrated ex-vivo study from the da Vinci
Research Kit (DVRK) robotic system, where we perform
quantitative analysis on the errors each DOF of our tracker.
Additionally, we perform several detailed comparisons with
recently published techniques that combine visual methods
with kinematic data acquired from the joint encoders. Our
experiments demonstrate that our method is competitively
accurate while relying solely on image data.

Index Terms— Surgical instrument detection, articulated
pose estimation, robotic surgery.

I. INTRODUCTION

M
INIMALLY invasive surgery (MIS) has provided sur-

geons with a less invasive method of accessing the

surgical site with a cost of having less control and information

about the operation compared with open surgery. Laparoscopic

instruments reduce the surgeon’s dexterity and ability to sense

force feedback from applied tissue pressure and the limited

field of view of the surgical camera makes self-localization

challenging and increases the cognitive workload on the sur-

geon. In addition to this, the learning curve for MIS is steep

with surgeons taking significant periods of time to obtain mas-

tery of the techniques [1]. In recent years, computer assisted

surgery (CAS) and robotics have played a large role in reduc-

ing these complications through advanced instruments, control

and visualization. Using the surgical console or laparoscope
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display, pre- and intra-operative imaging can be integrated to

the surgical workflow improving planning and understanding

during the operation. In robotic systems, master manipulators

are used to control articulated instruments which provide the

surgeon with precision and dexterity which rival open surgery.

However, significant challenges remain with achieving full

integration of computer assistance and robotics within MIS.

An important aspect of this involves understanding the 3D

position and orientation of the instruments the surgeon is

working with during the operation. This can be used to provide

direct benefits such as dynamic motion constraints [2] or to

detect tool-tissue interactions [3] or alternatively the motion

data from tracked instruments can be used to help quantify the

training process for junior surgeons, giving specific feedback

on areas of weakness or to provide metrics for surgical

skill.

Early methods of instrument tracking involved attaching

external electromagnetic or optical markers to the instruments

and then estimating pose with a specialized tracking system

[4], [5] and these methods remain popular today. However,

the process of attaching markers to instruments as well as

introducing tracking systems to the operating room (OR)

complicates the surgical workflow and adds issues with ster-

ilization and cost. In contrast, image based solutions based

on computer vision provide an alternative that can be realised

entirely in software with no modification to the surgical setup.

This is hugely advantageous as methods can be easily trans-

lated to clinic use without an extensive process of distributing

markers to hospitals and training medical staff how to attach

them correctly [6].

Estimating the pose of instruments using the images from a

surgical camera involves a process of extracting image features

such as edges, points or regions and then solving alignment

cost functions which measure the agreement between parame-

terized models of the target object and the extracted features.

This has been achieved using pipelines of simple models [7]

where manually specified thresholds are iteratively applied

to estimate parameters. This has also been achieved from

an information maximization perspective [8]. More recent

methods achieve greater robustness and accuracy by building

much more complex cost functions where parametrized mod-

els are iteratively fit to image data however optimization in

the case of articulated instruments has proved challenging [9].

As an alternative to complex generative models, discriminative

models have also shown strong performance, particularly when

accompanied by larger training datasets. These usually take

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0002-6495-065X


ALLAN et al.: 3-D POSE ESTIMATION OF ARTICULATED INSTRUMENTS IN RMIS 1205

the form of 2D sliding window detectors [10], [11] but

dealing with in-plane rotation of laparoscopic instruments is

challenging. This can be achieved with rotated features [12]

however online updates to the window orientation requires

an additional tracker. As more procedures are carried out

with robotic instruments, interest in tracking these articulated

joints has increased. Using deep neural networks to directly

regress articulated joint locations has been demonstrated with

excellent results [13]–[15]. However, for surgical instruments

these methods are limited to 2D pose estimation and for 3D

localization, mainstream computer vision methods [16], [17]

have achieved success in learning pose distributions from

vast datasets which are used to find plausible candidates.

However, for robotic surgical instruments, training data in the

quantities required to perform this type of modelling does not

yet exist and in this case the most straightforward method

of achieving 3D pose estimation is to use the kinematics of

the robot, for which the several mm of absolute positioning

error at the tip is corrected by 2D detections, for instance

using learned texture features on the instrument head [18] and

with rendered templates [19]. Although these methods achieve

excellent accuracy, they are limited as they require real-time

access to the robot API to read the joint data. Although this

is feasible in controlled laboratory setups, in the operating

room this access is uncommon. In addition to this, articulated

laparoscopic instruments are unlikely to support joint access

at any point reducing the scope of this type of method.

In our recent work [20], we demonstrated a region-based

tracking method which solved for 3D pose by aligning a rigid

CAD model with image features and optical flow. In this

work we have made several significant improvements. Firstly,

the original work was limited as it could not track the

articulated DOF of robotic instruments as the optimization was

only performed over a parameter set of a single rigid Euclidean

transform. Here we incorporated the articulated DOFs which

can be achieved naturally within the CAD model alignment

system. This involves extending the jacobians to take into

account the rotation of the wrist and claspers of the robotic

instruments. To the best of our knowledge, this is the first

method of gradient-based optimization which is capable of

tracking articulated robotic instruments in 3D without the need

for external markers or kinematic data from the robot. This is

a significant advantage of our method as it is applicable to

both articulated laparoscopic instruments and robotic systems

that generally do not give access to public APIs to read joint

encoder data. Additionally, our method enables the tracking

of flexible [21] and hydraulic [22] surgical robots which

typically provide very inaccurate encoder based tracking. Our

method also allows retrospective analysis of the numerous

available datasets where only video data has been captured.

A further improvement of our method is that we introduce an

online learning system to dynamically update the color models

used to generate segmentations. This enables our method to

handle more complex appearance and lighting changes. A final

contribution of our current work is the extensive comparative

evaluation against 2 currently published 3D robotic instru-

ment tracking methods, this is a meaningful contribution as

Fig. 1. (a) The feature distribution for each of the K = 3 classes
with output classification. Region based pose estimation seeks to align
projections of 3D CAD models with classifications images. (b) The typical
shaft/head divide for many robotic surgical instruments. Together we refer
to the the wrist and the claspers as the head. Points P1,2,3 refer to the
3 reference points used in the experiments section.

very few published works make direct comparison to other

methodologies.

II. METHOD

A. 3D Tracking With Level Sets

3D instrument tracking attempts to estimate the parameters

of the transform c
Tm between the camera coordinate frame Fc

and a model centric instrument coordinate system Fm (see

Figure 2a). When the target object is fully rigid, this transform

is composed of a 6 DOF Euclidean transform made up of a

rigid rotation R ∈ SO3 and a translation t ∈ R3. However,

for complex articulated and deforming objects, c
Tm contains

the standard rigid transformation but is augmented with a

separate transform which articulates the model relative to its

base coordinate frame m
Twarp . The entire rigid transform is

parameterized by a vector θ however we generally omit this

for brevity and refer to c
Tm

m
Twarp(θ) as T.

Region-based methods of estimating the parameters of T

involve using an estimate of this transform to position the

vertices of a CAD model of the instrument in Fc and gen-

erating one or more silhouette regions from the projection

of these vertices onto the camera plane using the classic

pinhole camera model (see Figure 2). Pose estimation is then

formulated by finding the set of parameters such that the

generated model silhouettes match data silhouettes obtained

from a pixel-wise classification of the image pixels [23]–[27].

Many methods [27], [28] perform a 2 step estimation process

whereby a full data silhouette is extracted from the image

and backprojected to allow reverse engineering of the pose

parameters in a separate step. However, [23], [29] proposed

a direct method of which bypasses obtaining a full data

silhouette and instead assesses the model silhouette using local

information from around the projection. This formulation is
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Fig. 2. (a) Shows 2 instruments in front of a camera where a transform from model coordinates to camera coordinates is performed with T.
(b) Shows the workflow of the entire algorithm, where the projection of the instrument is aligned with the RF output and 2D tracked points to estimate
3D pose.

greatly simplified over working with a 2 step process as it

does not require complex regularizations to maintain a suitable

shape when finding the data silhouette, instead relying on

a strict shape prior provided by the CAD model projection.

Bayesian approaches using learned shape spaces have also

been used to this end [30]–[32].

In typical 3D tracking frameworks, a single contour is used

to model the entire shape [24], [33], [34]. This allows the

problem to be cast as contour matching using silhouettes.

This simplification affords a great deal of invariance with

respect to the chosen object and typically works well when

the appearance model between foreground and background is

strong, resulting in a clean contour. However, for manufactured

robotic instruments, this simplification ignores strong internal

homogeneous regions which can be useful in generating strong

delineating contours (see Figure 1b) between the plastic shaft

and the metallic clevis. A particular advantage of this addi-

tional contour is that it constructs a fully visible single contour,

which is not the case for a binary silhouette as this contour

intersects the edge of the image, and this can in principal

provide information about foreshortening and additionally

constrain the instrument when the clevis is occluded by tissue.

Estimating the optimal 3D pose using region-based methods

involves defining an energy functional Er (r denotes region)

which measures the alignment of K data silhouettes obtained

from statistical models over the image data with K model

silhouettes generated from projections of a surgical instrument

CAD model. This functional is composed of a sum over

K binary alignments, where the form of each summed-cost

mirrors a standard region-based segmentation [35]:

Er (θ) = −

K
∑

i

∫

�

log(H (φi(x, Ci (θ))) f (I (x), χi )

+ (1 − H (φi(x, Ci (θ))) f (I (x), χn(i)))dx (1)

where the terms f (I (x), χi ) and f (I (x), χn(i)) are functions

which return the probability that the pixel data I (x) belongs

to either the class i or the set of all other classes n(i). Each

statistical model is dependent on appearance parameters for

the i th region χi . The term H (.) represents the smoothed

Heaviside function, which is commonly used in mathematical

models to filter other functions by discreet membership and

in this case is used to indicate if a pixel x belongs to the

silhouette i or the background. This silhouette is described

by a closed contour Ci which is described as a level set

by embedding it in a signed distance function φ. This is a

beneficial representation over parametric competitors such as

splines as it allows greater mathematical flexibility and does

not suffer from numerical problems during optimization. This

distance function is directly generated from the projection

of the model and hence this function, and the contour, are

parameterized by θ .

We use random forests (RFs) to provide the response

f (.) allowing data silhouettes to be extracted from a single

background region. RFs are popular for solving many chal-

lenging problems including pose estimation [36], semantic

image segmentation [37] and camera relocalization [38]. They

have been shown to be fast, parallelizable and accurate while

providing simplicity to the user and an ability to handle even

high dimensional data [39]. An RF is an ensemble learner

where a collection of randomized decision trees vote on a

hypothesis for an input x which is aggregated into a single

output using an averaging scheme. The decision trees are

constructed as a sequence of linear classifiers y = wx which

direct input samples to one of two child nodes depending a

thresholding of y. This parent to child splitting is applied

recursively until x reaches a leaf node where a posterior

distribution is assigned.

Rather than using RGB pixel intensities directly, we instead

transform our training data into the Opponent 1, Red, a from
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the CIE Lab color space and Gabor filter output. A small

but important modification which we make to our training

implementation compared with [20] is to use class balancing.

In normal MIS images, background data are much more com-

mon than instrument data which, in the case of a 0-1 indicator

loss function, leads to learning decision boundaries which

favor selecting background labels over foreground labels in

ambiguous cases. However, when working within our silhou-

ette based framework, correctly labelling foreground examples

so that a complete silhouette is observed is more important

than eliminating isolated regions of noise (effectively false

negatives are much more detrimental than false positives).

To improve the quality of the segmentation used to drive the

region-based pose estimation, we can make improvements to

the RF. Firstly, as we only wish to classify the background and

foreground in regions near the model contour, it makes sense

to learn a highly specific model for the appearance using only

pixels which sit close to this boundary. As we have a full 3D

model of the instrument, we can generate automatic ground

truth segmentations from the signed distance function φ and

select training data from a 30 pixel wide boundary, this value

was chosen experimentally. After 5 frames, we retrain the

forest. For further details, see Figure 3. Preliminary experi-

ments showed that the most effective strategy was to learn

a constant foreground model from the first frame and update

the background model data online by sampling from the first

frame. This prevents model drift from affecting the training

data significantly by incorrectly placing background pixels into

the foreground class and vice-versa. This works as we use a

bag-of-pixels model which is resilient to movements of the

tissue that occur in normal operating interaction. However,

upon camera motion the background model would have to

be relearned. We could in principal detect this motion with

optical flow and reinitialize the model from the segmentation

boundary once the camera motion ceases. This technique was

discovered to be much more effective than using the current

frame to update the background model as this leads to drift

when tracking begins to fail.

B. Optical Flow Tracking

When using a silhouette to estimate the pose of any object,

a significant challenge arises because of ambiguities in the

mapping between pose and silhouette. A simple example being

when a sphere is rotated to any angle, the silhouette does not

change. A similar problem occurs with the near cylindrical

shape of the instruments used in minimally invasive surgery

which, when undergoing rotation around the roll axis, do not

change their silhouette significantly.

To solve this problem, we propose to combine the silhouette

based features, which represent the surface appearance of

the instrument as a bag of pixels, with multiple independent

Lucas-Kanade optical flow features [40]. This retains enough

surface spatial information to allow the ambiguous DOF to

be estimated without the penalty of a highly non-convex cost

function, which is common in full photo-consistency based

object tracking. The idea of tracking 2D information on the

instrument surface as an additional method of constraining the

pose estimation is very simple and works on the principal that

Fig. 3. The online forest algorithm. (a) For each new frame N, we check
if the forest needs to be re-learned and generate a ground truth mask
from the projection of the estimate of the pose at frame N (b) onto the
frame 1. By only using pixels from a fixed size region around the contour,
we are able to generate background samples to learn a new model (c) the
output of which is shown in (d). The foreground samples are not refreshed
from the first frame. The advantage of resampling from the first frame is
that we obtain robustness to model drift which causes the projection at
frame N to be inaccurate.

if we can match several 2D tracked image points to 3D points

on the model surface, we can estimate the 3D transformation

to the instrument by minimizing the reprojection error between

the predicted 2D point locations [x, y]T and their correspon-

dences [x̂, ŷ]T in the image. This can be defined by with

objective energy function E p , where similarly to Equation 1,

p denotes the use of a point-based cost:

E p(θ) =
∑

i∈W t+1

||KTX
t
i − [x̂ t+1

i , ŷt+1
i ]T ||22 (2)

where ||.||22 denotes the squared L2 norm, although other dis-

tance metrics are commonly used [41]. [x̂ t+1
i , ŷt+1

i ]T denotes

a corresponding point location in the frame at time t +1 which

was matched with the point projected from the vertex location

X
t
i at t . W t+1 is the set of matched points between frames at

times t and t + 1. K is the calibration matrix for the classic

pinhole camera model.

C. Modelling Articulation With Kinematic Chains

In MIS, manufactured robotic manipulators such as surgical

instruments have a known set of possible transformations

which constrain the vertices of each joint to rotate or translate

around or along a single axis (see Figure 5). Hence, this

allows the warping transform m
Twarp to be represented as

a composition of several single axis transforms n−1
Tn which

are applied consecutively to different subsets of the model

vertices.

A kinematic chain is the most common method of describ-

ing a robot manipulator by dividing it into an assembly of

Ŵ links or rigid bodies each of which define a coordinate
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frame F . These links are connected together at a shared axis

known as a joint, where for an Ŵ link chain there are at most

Ŵ − 1 joints. The coordinate frames of consecutive links are

related with a single 4×4 transform n−1
Tn which is described

with one or more DOFs, which specifies how many parameters

are required to fully locate the geometry of the connected nth

link in the reference frame of the parent n − 1th link [42].

The most common case for robotic manipulators is to use

a single DOF joint where the transform is defined to rotate

around 1 axis (rotary) or translate along 1 axis (prismatic)

and in fact any K DOF joint can be modelled as a series of

single DOF joints [42].

When combined together, the links and joints of a kinematic

chain describe how a point X defined in the local coordinate

system of the j th : j ≤ Ŵ link F j can be transformed into

the coordinate system of the base frame of the robot as:

XF0
= 0

T1
1
T2 . . . j−1

T j XF j
(3)

where 0
T1

1
T2 . . . j−1

T j can be compactly represented as
0
T j , XF j

is the representation of X in F j and XF0
is the

representation of X in F0.

There are several methods to define the transform between

neighbouring links and for general transforms, 6 DOFs are

required to fully specify the relative orientation. However, for

single DOF joints, the Denavit Hartenberg (DH) representa-

tion [43] defines the nth joint to be parallel to the x = 0

plane of Fn−1, effectively cancelling out 2 degrees of freedom,

1 in rotation and 1 in translation reducing the number of

parameters to 4, 2 distances and 2 angles [44]. 1 distance

parameter is required to describe how far along the x axis

of Fn−1 the plane defined by joints n − 1 and n lies and

1 angle parameter describes the rotation between the joints

in this plane. These 2 parameters are denoted an−1 and αn−1

respectively. Describing how Fn is attached to the z axis of Fn

and orientated relative to Fn−1 involves a further 2 parameters.

Firstly, the distance along this common axis between where

an−1 from link n−1 intersects the common axis and where an

from link n intersects the common axis is defined as dn and

describes the vertical shift between the two links. Additionally,

the rotation around the z axis of Fn between the 2 links is

defined as θn . When applied to a prismatic joint i ai , αi , θi

are fixed and di is the DOF whereas for a revolute joint i ,

ai , αi , di are fixed and θi is the DOF. These 4 rotation and

translation operations are applied consecutively to provide a

single transform n−1
Tn as:

n−1
Tn = Rxn−1(αn−1) · Txn−1(an−1) · Rzn (θn) · Tzn (dn) (4)

where Rxn−1 refers to a 4 × 4 transform composing a rotation

matrix around the x axis of frame Fn−1 with a zero translation

and Rzn has the same meaning but the rotation component is

defined around the z axis of frame Fn . Txn−1 and Tzn refer

to same concept but the rotation part of the transform is the

identity matrix and the translation part is a translation along

the x and z axes of frames Fn−1 and Fn respectively.

D. DH Parameters for da Vinci Robotic Instruments

In this work we focus solely on working with the instru-

ments of the da Vinci robotic system, particularly the LND

TABLE I

LARGE NEEDLE DRIVER DH PARAMETERS FOR THE ARTICULATED

WRIST. THESE REFER TO THE LAST 3 JOINTS IN A 7 DOF DA VINCI

ARM. THE MEANINGS OF THE TERMS CAN BE SEEN IN FIGURE 4

AND THE RELATIONSHIP OF EACH FRAME TO THE INSTRUMENT

LINKS CAN BE SEEN IN FIGURE 5

Fig. 4. The coordinate system transforms used in modified DH parame-
ter setup. A point defined in the frame Fn can be transformed into the
frame Fn−1 with the transform n-1

Tn.

instrument which is commonly used in surgical procedures to

control a suturing needle. However, the methods are easily

applicable to any robotic instrument with the appropriate

minor modifications. The LND, like any da Vinci instrument,

has 3 DOFs on the wrist: firstly, the wrist pitch (WP) which

articulates the entire wrist to mimic the motion of a human

wrist enabling the mirroring of motions such as stitching to

be captured more precisely. The second DOF is the wrist

yaw (WY) which corresponds to a coordinated motion of two

mechanical joints representing the claspers and enables the

claspers to be oriented towards a target. The final DOF allows

the clasper to open and close so that the instrument can grasp

and hold objects. This results in the final parameterisation of

our instrument being the 6 rigid DOFs of the model to camera

rotation and translation and a further 3 DOFs which describe

how the instrument wrist is oriented relative to the shaft of

the instrument. For reference, the DH parameters for the LND

are shown in Table I.

E. Optimization

We jointly optimize over the region based energy, referred

to from here on as Er (θ), and point based energy computed

optical flow, E p(θ) using gradient descent and a weighting

factor λ to allow both terms to have more equitable influence.

In our experiments we set λ so that the Jacobians from the

point estimates have 0.8 of the magnitude of the Jacobians

from the region-based energy:

E(θ) = Er (θ) + λE p(θ) (5)
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Fig. 5. (a) The base frame F0 for the robotic instrument which is oriented relative to the surgical camera with the rigid body transform c
Tm.

(b) The wrist frame F1 which enables the instrument head to rotate around the z axis of this frame. (c) The claspers rotate together around the
z axis of F1 defining a new frame F� which has its x axis pointing in the direction of the claspers. (d) The claspers rotate around the z axis of this
frame in opposite directions allowing opening and closing.

where the derivative is computed as:

∂ E(θ)

∂θ
=

∂ Er (θ)

∂θ
+ λ

∂ E p(θ)

∂θ
(6)

and the individual cost derivatives are:

∂ Er (θ)

∂θ
= −

∑

k∈K

∑

i∈�

f (I (x), χk) − f (I (x), χn(k))

W

∂ H

∂θ
(7)

where

W = H (φk(x, θ)) f (I (x), χk)

+ (1 − H (φk(xθ)) f (I (x), χn(k)) (8)

and

∂ H

∂θ
= δ(x)

[

∂φk(x, θ)

∂x

∂x

∂θ
,
∂φk(x, θ)

∂y

∂y

∂θ

]

(9)

where ∂φk(x, θ)/∂x, y can be computed using finite differ-

ences and δ(.) is the derivative of the smoothed Heaviside

function and corresponds to a smoothed Dirac delta function

which has the effect of weighting the derivative terms so

that only the points around the contour contribute to the

optimization.

∂ E p(θ)

∂θ
=

∑

i∈Wt+1

∂

∂θ
||KTX

t
i − [x̂ t+1

i , ŷt+1
i ]||22

=
∑

i∈Wt+1

2[KTX
t
i − [x̂ t+1

i , ŷt+1
i ]

]

=

[

x t
i − x̂ t

i , yt
i − ŷt

i ]

]T

·

[

∂x

∂θ
,
∂y

∂θ

]

(10)

Equations 9 and 10 requires derivatives of 2D pixel coordi-

nates with respect to the transform T.

∂x

∂θ
= fu

1

Z2

(

Z
∂ X

∂θ
− X

∂ Z

∂θ

)

(11)

∂y

∂θ
= fv

1

Z2

(

Z
∂Y

∂θ
− Y

∂ Z

∂θ

)

(12)

where [X, Y, Z ]T = c
Ti XFi

is the representation of the

vertex which generated the pixel (x, y) transformed from the

link frame Fi into camera coordinates. The derivatives of

these terms with respect to the translation and rotation are

well known [24] however the derivatives of the parameters

of the articulated components merit further discussion. They

are obtainable in closed form by differentiating the kinematic

chain with respect to each articulated component parameter.

The variables of Equation 11 and 12 which depends on

these components is the projected 3D vertex position x =

K
c
Ti XFi

, where XFi
is defined in the local coordinate system

of the link i on which X lies and c
Ti defines the transform

from the camera frame to this frame. The Jacobian of the

frame to camera transform part of this equation breaks down

as:

∂ c
Ti XFi

∂θ j

=
∂

∂θ j

c
T0

0
T j−1

j−1
T j

j
Ti XFi

(13)

where j−1
T j is the transform from the parent of frame F j

to F j . If we consider the parameter θ j which is responsible

for rotating the jth link around the z axis of its frame (see

Section II-C), then the derivative becomes:

∂c
Ti (θ)Xi

∂θ j

= c
T0

0
T j−1

(

∂

∂θ j

j−1
T j

)

j
Ti XFi

(14)

= c
T0

0
T j−1

(

z × XF j

)

(15)

where the product rule is applied to each transform of the

kinematic chain and, as each parameter influences directly

only a single T, all but a single term is zero. The vertex

XFi
is effectively transformed into the coordinate frame F j as

this equation measures how motion of the frame j influences

vertices in frames towards the distal end of the kinematic

chain.

III. EXPERIMENTS

To evaluate the accuracy of the articulated tracking we

perform quantitative ex-vivo and qualitative in-vivo studies.

However, as several recently published methods of articulated

instrument tracking provide comparison datasets, we can also

perform a quantitative comparison with these methods.

A. Implementation Details

Our implementation1 makes use of OpenGL/GLSL and

we describe our model as a tree of nodes in a parent-child

relationship. For the example da Vinci LND model, this

consists of a base frame containing the shaft which has a

single child node containing the wrist model (see Fig. 5).

This again has a single child node containing the clasper axis

but no geometry which in turn has 2 child nodes containing

1https://github.com/surgical-vision/ttrack/
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each clasper. At each successive pose iteration, the vertices

of each node are projected to an index image which contains

the numerical index of node which owns the geometry of the

vertex. This is used to determine which vertices influence each

term in the Jacobian computation. Currently our non-optimized

method is not real-time, with processing time for a single

720×576 image taking ≈ 0.3 seconds per gradient descent step

with between 10-20 steps required for convergence. However,

the cost function gradients are evaluated as an independent

sum-over-pixels and is therefore highly parallelizable, with

similar implementations achieving real-time performance [24].

We solve our cost-function by reinitializing from the pose

in the previous frame but do not incorporate any motion

modelling to make forward predictions. Our method requires

manual initialization in the first frame, which we achieve with

a GUI based tool.2 This is used to initialize the pose of the

instrument model which in turn is used to generate the initial

ground truth image segmentation to train the RF.

B. Ex-Vivo Experiments

We construct 2 ex-vivo experiments using the da Vinci LND

instrument and several different animal tissue samples. The

camera maintains a static position and observes 1000 frame

sequences showing an instrument moving with articulation

of the wrist and claspers. The DVRK platform is used to

capture synchronised joint and video data and we use the GUI

based manual initialization technique to correct errors in the

joint configuration and obtain a more accurate ground truth.

Plots showing the translation and rotation parameters of the

instrument reference frames, the errors in the wrist and clasper

position and errors in the relative position of 3 static points

on the MR LK tracked model and the ground truth model

(see Figure 1b) are shown in Figures 6 and 8. We evaluate

parameter errors in 3D space directly, rather than measur-

ing 2D projection error given that most applications of 3D

tracking are impacted more heavily by errors in world space.

Furthermore, using the error between corresponding points

allows us to represent the accuracy of our algorithm without

dependence on an arbitrarily chosen origin. We also show

renderings of the instrument pose over the video frames are

shown in Figures 7 and 9.

C. Quantitative Comparison Results

Recent articulated robotic tracking methods [9], [19], [45]

allow us to provide a quantitative comparison method between

our fully visual technique and methods that combine visual

tracking with robotic kinematic information. Our first compar-

ison is between our method and that of [9] which provided a

method of tracking general 3D articulated object and contained

a validation section on robotic surgical instruments. This

method used a similar region overlap type metric to our

technique incorporating multiple instrument regions to provide

added robustness. However, this was formulated within a

gradient-free optimization as the simple overlap metric did

not allow for analytical Jacobians to be computed. This lead

to slow and often inaccurate solutions for robotic instruments

although the method worked well for retinal instruments and

2https://github.com/surgical-vision/viz/

TABLE II

OVERLAP PRECISION, RECALL AND F1 SCORE FOR THE 4 FRAMES

USED IN THE EVALUATION IN [9]. AS WE PERFORMED THIS

EVALUATION OURSELVES USING HAND-CRAFTED MASKS THE

RESULTS REPORTED IN THIS TABLE FOR THE METHOD

OF [9] ARE SLIGHTLY DIFFERENT, ALBEIT BETTER

THAN THE RESULTS IN THE ORIGINAL PAPER

human hands. We show results using the 4 frame evaluation

used in the original paper where the 25th, 75th, 125th and

175th frames are manually segmented. We use classification

metrics of precision, recall and the F1 score to compare the

overlap between the manual segmentation and the rendering

of the instrument in that frame. Precision (P), Recall (R) and

F1 score (F1) are computed as

P =
T P

T P + F P

R =
T P

T P + F N
F1 = 2(P × R)/(P + R) (16)

where the F1 score is the harmonic mean of the precision

and recall and is often used as a weighted average of the two

measures. Quantitative results of these scores are shown in

Table II and corresponding qualitative results in Figure 10. The

original work of [9] tends to underlap the ground truth slightly,

whereas our method tends to overlap slightly which is reflected

in the higher precision value for [9] and the higher recall value

for our work. However, when taken together, the F1 score

shows much higher performance in our method. In this dataset,

we make one modification to our method, as the first frame

of video does not show a good view of the instrument clasper

meaning the color distribution for this class was badly learned

from the first frame. To counter this, we chose a later frame

to learn our RF, however this is similar to the original authors

who chose frames from across the video to learn their color

model.

The recent method and data of [19] allows us to compare

with the state-of-the-art for 3D articulated instrument tracking

which combines robot kinematics with a point based detec-

tor to provide accurate real-time tracking. We evaluate on

2 phantom sequences with LND instruments which contain

complex articulations which make visual tracking extremely

challenging. The results are evaluated quantitative in Table III

where the authors manually labelled the centre locations of

several tool parts that were used in their point-based detection

system to obtain a ground truth. The authors then computed

the relative pose between the predicted instrument location

and the manually labelled instrument location for all frames

in the video. Qualitative evaluation is show in Figure 11. In our

analysis of dataset 2, we encountered 1 tracking failure for our

method at frame 1200 when the left instrument obtained an

inaccurate pose due to a challenging period of articulation.
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Fig. 6. The top row shows the trajectories for our tracker and the kinematics compared with the
hand corrected ground truth of dataset 1. There are some large rotation errors using the MR LK tracker and around 1.5 cm of tz error. The ty error
increases and decreases over the sequence which occurs as the instrument converges to the correct pose and then loses tracking. Row 2 shows
the trajectories for each of the 3 articulated degrees of freedom at the wrist and also the error distributions for corresponding points, where the blue
line shows the mean error and the standard deviation is shown in light blue. Although the error in tz is large the qualitative results in 7 show that the
visual quality of the alignment is still good.

Fig. 7. Qualitative results from dataset � showing frames 100, 200, 350, 400, 500, 600, 700 and 1000. The top row shows the original frames,
the middle row shows the output from the uncorrected kinematics and the bottom row shows the MR LK tracker.

Fig. 8. The top row shows the trajectories for our tracker and the kinematics compared with the
hand corrected ground truth of dataset 2. The MR LK tracker is very accurate over this sequence, due to the excellent color classification against
the clean background. Row 2 has the same meaning as in Figure 6.

Although both instruments go through periods of the video

when they exhibit inaccurate tracking, this particular sequence

was followed by a period when the instruments crossed over

one another. This caused large drift in the left instrument which

was deemed unrecoverable and a manual initialization was

required.



1212 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 5, MAY 2018

Fig. 9. Qualitative results from ex-vivo dataset 2 showing frames 100, 200, 300, 400, 500, 600, 700 and 800. The top row shows the original frames,
the middle row shows the output from the raw, uncorrected kinematics and the bottom row shows the MR LK tracker. In frame 200, the instrument
head rotates in and out of view and the MR LK method correctly tracks this.

Fig. 10. Visual comparison for the dataset of [9]. This dataset shows a
challenging in-vivo sequence with � da Vinci LND instruments. The top
row shows the raw video frames 25, 75, 125 and 175, the corresponding
frames from the method of [9] are in row 2 and the frames from our
method are in row 3. Although the data is challenging, both methods
show good alignment. Typically our method has better alignment but the
right instrument fails to track the clasper opening in frame 175, which is
correctly tracked by [9].

TABLE III

THE NUMERICAL ACCURACY OF OUR METHOD COMPARED WITH [19].

THE ROTATION AND TRANSLATION ERROR IS COMPUTED FOR EACH

FRAME FROM THE MANUALLY LABELLED GROUND TRUTH PART

LOCATIONS. ALTHOUGH OUR RESULTS ARE NOT AS ACCURATE

AS THE METHOD OF [19], WE ARE STILL ABLE TO OBTAIN

GOOD TRACKING OVER THE MAJORITY OF THE SEQUENCE

AND CRITICALLY ARE NOT RELYING ON KINEMATICS

TO PERFORM OUR ESTIMATION

IV. CONCLUSION AND DISCUSSION

In this work, we present a novel system of tracking the

articulated DOFs of surgical robotic instruments in 3D using a

fully vision-based region and point based solution. Our system

trivially extends to different instrument models and color

Fig. 11. Visual comparison for the dataset � and � of [19] where the
first � images of the top row shows the results of [19] in frames 200,
400, 750 and 950 of dataset 1 and the last 4 images of the top row show
frames 350, 450, 900 and 1200 of dataset 2. The bottom row shows our
results where we overlay a skeleton of our pose estimation.

schemes which greatly increases the range of robotic systems it

can be tested on. Our extensive comparative evaluation draws

together data from a wide varies of sources and demonstrates

the superior performance of our method against the only

other published 3D articulated instrument tracking method

that does not make use of robot joint encoders demonstrating

the advantage of using gradient based searches for pose

estimation. We also obtain competitive results when compared

with state-of-the-art methods which unlike our method rely

heavily on the data from the robot joint encoders which is a

well documented drawback [20]. The method however shows

errors in the roll rotation DOF due to visual symmetry as this

this DOF is explorer which prevents the region based tracker

from locking onto reliable shape information. In principal

this is best solved by incorporating more reliable detection

information on the instrument surface, for instance making use
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of recent robust feature detection methods [13]. Additionally

depth estimation is a challenge, particularly due to the small

baseline of robotic surgical cameras. The main limitation of

our method is its requirement for a manual initialization,

however this can potentially be provided with user interaction,

for instance using the GUI tool we have developed, and

additionally we noticed in our experiments that the model

suffers from drift, which is a common problem in model based

tracking which incorporate temporal information. Future work

will look mainly at the integration of prior information to

restrain the rigid pose space from a 6 DOF transform to a

restricted space and in principal these priors can be learned

from kinematic data offline.
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