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Summary

Localization microscopy relies on computationally efficient
Gaussian approximations of the point spread function for the
calculation of fluorophore positions. Theoretical predictions
show that under specific experimental conditions, localization
accuracy is significantly improved when the localization is
performed using a more realistic model. Here, we show how
this can be achieved by considering three-dimensional (3-D)
point spread function models for the wide field microscope.
We introduce a least-squares point spread function fitting
framework that utilizes the Gibson and Lanni model and
propose a computationally efficient way for evaluating its
derivative functions. We demonstrate the usefulness of the
proposed approach with algorithms for particle localization
and defocus estimation, both implemented as plugins for
ImageJ.

Introduction

Localization-based fluorescence microscopy relies on sparse
activation of individual fluorophores within a sample (Betzig
et al., 2006; Hess et al., 2006; Rust et al., 2006). The activated
fluorophores are spatially well separated and can be imaged
individually. This activate-and-image process is then repeated
over many frames, after which the coordinates of each detected
fluorophore are determined computationally and combined
to yield the final super-resolved image. The point spread
function (PSF) model of the microscope plays a key role in these
techniques. Every point-source fluorophore gives rise to a PSF
pattern in the image domain, and a localization procedure
is applied to the individual patterns. The PSF model that is
being used for the localization task determines the accuracy
that can be achieved in describing the examined biological
structure (Manley et al., 2008; Hedde et al., 2009; Märki et al.,
2010; Geissbühler et al., 2011).
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Localization accuracy is also determined by the level and
type of noise. Poisson noise may appear in the acquired image
due to the photon emission characteristics of the fluorophore
and due to scattering background noise. Gaussian additive
noise, introduced by the imaging sensors, may further reduce
the localization accuracy. This matter has been investigated
within the context of estimation theory, giving rise to Cramér-
Rao lower bounds on the achievable localization accuracy
of the Gaussian, the Airy pattern and the Gibson and Lanni
models (Ober et al., 2004; Aguet et al., 2005). Many of
the currently available localization algorithms utilize the
Gaussian model (Bobroff, 1986; Betzig et al., 2006; Hess et al.,
2006; Rust et al., 2006; de Moraes Marim et al., 2008; Hedde
et al., 2009; Henriques et al., 2010; Wolter et al., 2010).

The Gaussian function provides a reasonable approx-
imation of the main lobe of the Airy pattern while
introducing relatively low computational complexity. Such
approximation, however, discards the side-lobes of the PSF,
which are particularly important in 3-D PSF modelling (Zhang
et al., 2007). The trade-off between choosing realistic and
simplified PSF models is execution time, and we propose
here to apply a two-stage approach: fast algorithms that rely
on simplified PSF models can be used to obtain preliminary
results as well as immediate feedback about the quality of the
experiment whereas more realistic 3-D PSF models can be used
for a more accurate analysis, performed at a later stage.

In this work we introduce a least-squares PSF fitting
framework that utilizes realistic 3-D PSF models. In particular,
the Gibson and Lanni model was shown to be very useful for
restoration problems in microscopy (Markham & Conchello,
2001; Preza & Conchello, 2004), and we demonstrate its
usefulness for particle localization and for defocus estimation,
too. The least-squares localization approach is likely to yield
less accurate results than the maximum-likelihood approach
in the presence of non-Gaussian noise sources (Aguet, 2009),
and a quantitative comparison of these two criteria was
carried out in Abraham et al. (2009) for the Gaussian
and for the Airy disc patterns. It was shown there that in
terms of performance, the least-squares fitting method follows
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the maximum-likelihood method quite closely, introducing
standard deviations that are larger by no more than 2 (nm)
for the estimated lateral position of a particle. An exception
to that is the case of relatively strong mismatch between the
width values of the simulated and the fitted PSFs. This can,
however, be taken into account by estimating this parameter
from the data itself, or by optimizing for it, too.

These findings make the least-squares criterion an attrac-
tive and nearly optimal method for PSF fitting tasks. It is a
simple yet powerful tool that depends on the fitted model
only. Its additional advantage is that it lends itself to a
fast minimization using the Levenberg–Marquardt algorithm.
The maximum-likelihood criterion, by contrast, requires
additional knowledge on the noise sources and relies on
optimization procedures that are in many cases more involved
in terms of the cost function and in terms of the numerical
implementation of the minimization procedure (Aguet et al.,
2005; Abraham et al., 2009).

The paper is organized as follows: we describe the Gibson
and Lanni model and compute its partial derivative functions
while taking into account the stage displacement, the particle
axial position and the defocus measure of the detector plane.
We then introduce an efficient way of evaluating these
functions. As an example application, we utilize the Gibson
and Lanni 3-D PSF model for localizing particles in a z-stack.
We fit the data with the 3-D position coordinates and with
an amplitude value that accounts for the random nature
of the photon emission rate. Our algorithm uses adaptive
threshold values for local maxima identification, and an
adaptive window size for the least-squares fit. Motivated by
multiplane imaging (Prabhat et al., 2004; Ram et al., 2008),
we also introduce an algorithm for estimating the defocus
distance of the detector plane. All of our algorithms were
implemented as ImageJ plugins1; they are briefly described
in Appendix B.

Gibson and Lanni model

The Gibson and Lanni model generalizes the Born and Wolf
model by accommodating for a refractive index mismatch
between the three imaging layers (Appendix A). It assumes
an optical path that includes a biological sample, a cover
slip layer and an immersion layer (Fig. 1). It relies on
the Li and Wolf approximation of the Kirchhoff diffraction
integral

h (θ ) =
(

ka 2 A0

z2
d

)2
∣∣∣∣∣

∫ 1

0
J 0

(
kar (θ )ρ

zd

)
ei W(ρ;θ )ρ dρ

∣∣∣∣∣

2

, (1)

where θ is a set of parameters given in Table 1, J 0 is the Bessel
function of the first kind of order zero and k = 2π/λ is the
wave number of the emitted light; a is the radius of the circular

1 The software is available at http://bigwww.epfl.ch/algorithms/psfgenerator.

Fig. 1. The Gibson and Lanni model assumes three layers for the optical
path.

Table 1. Parameters of the Gibson and Lanni model.

Name Description

NA Numerical aperture of the microscope
ns Refractive index of the specimen layer
ni Refractive index of the immersion layer
λ Emission wavelength in vacuum
%ti Stage displacement relative to the nominal working

distance of the objective lens, i.e. axial step size
A0 average magnitude of the spherical wave that impinges on

the back focal plane of the microscope
xp , yp Lateral position of the point source relative to the optical

axis
z p Axial location of the point-source fluorophore in the

specimen layer relative to the cover slip
xd , yd Lateral position of a pixel in the image domain relative to

the optical axis
zd , z∗

d Axial distance of the detector plane from the back principle
plane. The nominal value z∗

d can be approximated by the
tube length value of the microscope

aperture at the back focal plane and it can be approximated by

a ∼= NAz∗
d /M. (2)

W(ρ; θ ) describes the optical path difference

W(ρ; θ ) = kns z p

√

1 −
(

NAρ

ns

)2

+ kni %ti

√

1 −
(

NAρ

ni

)2

+ ka 2(z∗
d − zd )

2z∗
d zd

ρ2, (3)

and r (θ ) is the lateral distance between the particle position
and the detector in the image domain

r (θ ) =
√

(xp − xd )2 + (yp − yd )2. (4)
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Fig. 2. A cross-section of the Gibson and Lanni PSF pattern. The PSF parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ = 520 (nm), xp = yp =
0, z p = 1000 (nm), zd = z∗

d , xd = 0. The horizontal axis is %ti and the vertical one is yd . The upper left corner is (%ti , yd ) = (−12775, −12275) in (nm)
and both the pixel size and the z-step value are 50 (nm). Pixel values are in the range [0, 1] and the saturation level was set to 0.001 (left) and to 0.1
(right) as to demonstrate the nonsymmetric nature of the PSF due to the refractive index mismatch. The focal plane corresponds to %ti = −1350 which
is approximately z p ni /ns .

The original expression of W(ρ; θ ) in Gibson & Lanni (1992)
distinguishes between nominal and actual refractive indices
values of the immersion layer. Here, we assume that they
are both equal, and nominal conditions are also applied
to the cover slip thickness value. The Gibson and Lanni
model assumes a homogenous sample layer and this is one
of its limitations. Variations in refractive index values can
be measured by differential interference contrast techniques
(Kam et al., 2001) or be modelled as a stochastic process
(Schmitt & Kumar, 1996). This means that W(ρ; θ ) is no
longer a deterministic function, so one can interpret ns as
an effective refractive index value.

The optical path difference (3) can be alternatively expressed
by means of the defocus measure in the object space (Aguet
et al., 2005). The advantage of expressing W(ρ; θ ) by means of
stage displacement values, as done here, is the straightforward
calculations for z-stack acquisitions. We also included a
defocus measure in the image space, allowing one to compute
the PSF pattern of the multiplane design (Prabhat et al., 2004).

One of the advantages of the the Gibson and Lanni model is
its ability to predict nonsymmetric PSF patterns. Such patterns
occur due to refractive index mismatch between the sample
layer and the immersion layer (Fig. 2). Another advantage is
the distinction between stage displacements, detector location
and particle depth. Each parameter has a different effect in
terms of defocusing. The defocus measure can be approximated
by the value of the Taylor coefficient of ρ2 in W(ρ; θ ), giving
rise to the following relation:

z p

ns
+ %ti

ni
= a 2(z∗

d − zd )
NA2z∗

d zd
. (5)

This criterion implies that focusing can be achieved by moving
the stage, the detector or the particle itself.

Numerical evaluation and fitting

We consider the task of fitting the Gibson and Lanni PSF model
to light patterns that originate from single point sources. We
minimize the least-squares criterion by using the Levenberg–
Marquardt method. To this aim we express (1) as follows:

h(θ ) = C (θ )
[
(I1(θ ))2 + (I2(θ ))2], (6)

where

C (θ ) =
(

ka 2 A0

z2
d

)2

, (7)

I1(θ ) =
∫ 1
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I2(θ ) =
∫ 1

0
J 0

(
kar (θ )ρ

zd

)
sin(W(ρ; θ ))ρ dρ. (9)

This, in turn, allows one to write
∂h(θ )
∂υ

= ∂C (θ )
∂υ

[
(I1(θ ))2 + (I2(θ ))2]

+ C (θ )
[

2I1
∂ I1(θ )

∂υ
+ 2I2

∂ I2(θ )
∂υ

]
,

(10)

where υ is one of the parameters of θ . The work of Ram
et al. (2005) introduces generalized expressions for the
Fisher information matrix with respect to the 3-D particle
position. Starting from the Kirchhoff diffraction integral (1),
the authors computed the partial derivative of the PSF as a
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Table 2. Derivative expressions for the Gibson and Lanni PSF model.

Parameter Derivative expressions
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function of W(ρ; θ ). We apply these results to the Gibson and
Lanni model and provide in Table 2 explicit expressions for
∂ I1(θ )/∂υ, ∂ I2(θ )/∂υ.

To evaluate such integrals accurately, one needs to adapt
the integration step to the oscillatory nature of the integrands.
For example, as the particle is located deeper into the sample,
the integrands in Table 2 oscillate more rapidly, requiring
more sampling points for the numerical approximation. A
possible approach for the integral calculation was suggested
in Aguet et al. (2005). There, the number of sampling points
was determined by the highest possible oscillation rate of
either the optical path difference or the Bessel function. Such
a Nyquist-based approach assumes that the integrands are
essentially band-limited, although they are better modelled as
chirp functions. For this reason, the bandwidth values of the
integrands are relatively large and so is the required number
of sampling points. We therefore take a different point of view
that relies on approximation theory.

We approximate the integrals in a progressive manner. Let
the sampling interval at the nth iteration be (1/2)n, and let
ĥn(θ ) be the approximated value for h(θ ). The integrands that

appear in I1, I2 are smooth functions and we approximate
them by a piecewise quadratic function using the Simpson
method. This means that the approximation error εn(θ ) =
h(θ ) − ĥn(θ ) has a certain rate of decay. In particular, there
exists N > 0 for which for all n > N

|εn(θ )| ≤ D (θ )(2−n)L . (11)

D (θ ) does not depend on n, nor does the decay rate L which
reflects the approximation order of the Simpson method. We
define

ηn(θ ) = ĥn−1(θ ) − ĥn(θ ), (12)

and observe that

|ηn(θ )| = |εn−1(θ ) − εn(θ )| (13)

≤ 3
2 D (θ )(2−n)L . (14)

This means that ηn(θ ) has a decay rate that is not larger
than the decay rate of εn(θ ). As L and D (θ ) are not known
in practice, we extract them from ηn(θ ) as demonstrated in
Figure 3. In particular, we can find D̃ (θ ) and L̃ such that

|ηn| ≤ D̃ (θ )(2−n)L̃ . (15)

Now,

|εn(θ )| =
∣∣h(θ ) − ĥn(θ )

∣∣ (16)

=
∣∣∣∣∣

∞∑

k=n+1

ηk (θ )

∣∣∣∣∣ (17)

≤
∞∑

k=n+1

D̃ (θ )(2−L̃ )k (18)

≤ D̃ (θ )(2−n)L̃ 2−L

1 − 2−L . (19)

We approximate D̃ (θ )(2−n)L̃ by |ηn(θ )| and have |εn(θ )| ∼=
|ηn(θ )| 2−L

1−2−L .
In order to express the error in terms of percentage, we

use the relative error measure |ηn (θ )|
ĥn (θ )

as a stopping criterion.
The number of iterations is determined by a threshold on
the relative error, say 1%. To ensure that the approximation
error is governed by the decay rate (11), we require it to
meet this threshold for at least three consecutive iterations.
The numerical evaluation of the Bessel functions imposes no
limitation on εn(θ ); the Bessel functions J 0 is evaluated up to
an accuracy of 5 · 10−8 and the J 1 function up to 5 × 10−8

times its argument (Abramowitz & Stegun, 1972).
The advantage of such progressive evaluation resides in

the fact that less computational time is spent on calculating
integrals of low W(ρ; θ ) values while controlling the accuracy
level of their numerical approximation (Fig. 4). Extensions to
other 3-D PSF designs are possible, too. In particular, to the
biplane setup (Prabhat et al., 2004; Juette et al., 2008; Kirshner
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Fig. 3. Converging properties of the PSF numerical approximation. Shown here on the left column are PSF values for two sets of parameters θ1, θ2. The
following parameters are common to both of them: NA = 1.4, ni = 1.5, ns = 1.33, λ = 520 (nm), M = 100, xp = yp = 0, zd = z∗

d , yd = 0. The point
source depth value z p is 200 (nm) for θ1 and 800 (nm) for θ2. The detector lateral position xd is 0 and 1500 (nm), respectively. The right column depicts
relative difference values between every two consecutive iterations. All figures indicate logarithmic values, and the decay rate of the relative error is
L̃ ∼= 1/ ln 2.

et al., 2012), to the astigmatic PSF (Huang et al., 2008),
and to the double helix pattern (Pavani & Piestun, 2008).
The only modification is in the expression of the phase term
W(ρ; θ ). The Kirchhoff diffraction integral remains the same
so our numerical implementation can still be used for these
cases.

Applications

We consider two applications: 3-D particle localization, and
misalignment estimation. We introduce a least-squares fitting
algorithm and analyse its performance in the presence of
Poisson and Gaussian noise sources. The description of the
software that was developed for this work is described in
Appendix B.

3-D particle localization

One possible way of determining the 3-D location of a particle
is by acquiring several PSF images that correspond to different
sets of PSF parameters θ . A z-stack, for example, provides PSF
images with different thickness values of the immersion layer.
Another option is to have several detector planes located at
different positions along the optical path in the image domain.
The former corresponds to different values of %ti whereas the
latter to different values of zd . Assuming a z-stack of fixed point
sources, we introduce the following algorithm (Fig. 5).

Normalization: The z-stack is normalized to have a unit
maximum value.

Local maxima identification: We use different threshold
values for the different slices. This is because the amplitude
of the focused pattern fades away as the particle moves deeper
into the sample. The %ti parameter of a given slice provides
us with an initial estimation of the particle depth by means
of (5). We then calculate a PSF value for r (θ ) = 0, denoted
h(θslice), and a PSF value for the global maximum, denoted
h(θmax). The ratio between these two PSF values approximates
the expected ratio between a local maximum at a particular
slice and the global maximum. Deviations from this ratio may
occur due to sub-pixel axial and lateral positions, random
nature of the emission rate and noise. For these reasons we
choose the threshold to be

τslice = 1
2

· h(θslice)
h(θmax)

. (20)

For large stage displacement values, τslice may be lower than
the mean noise level, and for that reason the local maxima
should be higher than the noise level, too. We estimate the
mean m and variance σ of the noise from the z-stack itself
and set this threshold value to be m + 3σ . In addition to the
voxel value, the local maxima should be higher than its 26
3-D neighbours.

Least-squares fitting: The 3-D neighbourhood of each local
maxima is fitted with the Gibson and Lanni model, where
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Fig. 4. A cross-section of the Gibson and Lanni PSF pattern. Pixel
values denote the number of sampling points that were required
for calculating the PSF value. The minimum value is 8 (dark) and
the maximum value is 65535 (bright). Similar to Figure 2, the PSF
parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ = 500 (nm), xp =
yp = 0, z p = 1000 (nm), zd = z∗

d , xd = 0. The horizontal axis is %ti

and the vertical one is yd . The upper left corner is (%ti , yd ) =
(−12775, −12275) in (nm) and both the pixel size and the z-step value
are 50 (nm). The focal plane corresponds to %ti = −1350 which is
approximately z p ni /ns .

Fig. 5. Main stages of the localization algorithm.

Fig. 6. Simulated z-stack. Ten particles were randomly located
in a 3-D volume and their PSF image were calculated based
on the Gibson and Lanni model for different stage displacement
values. The PSF parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ =
520 (nm). The noise parameters are: mean emission rate of 2 ×
106 (photons per second), optical efficiency of 0.033, acquisition time of
0.1 (s), readout rms noise of 6 (electrons per pixel) and mean scattering
rate of 660 (photons per second). The depth values of the particle are in
the range of [0, 2000] (nm).

Fig. 7. Lateral positions within a pixel. Position A is located at the centre
of the pixel and positions C, E and F are at the boundaries. These subpixel
positions were used for evaluating the performance of the proposed PSF
fitting algorithms.

C© 2012 The Authors
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the size of the fitting window is 2r × 2r × 2d . We set r =
7
k

M
NA

1
pixel size to be the distance to the second minimum of the

Airy pattern. This distance captures 90% of the energy of the
Airy pattern and we use the same criterion for determining the
axial parameter d by numerical means. For the PSF parameters
of Figure 2, the values of r and d are 8 (pixels) and 9 (slices),

Fig. 8. Lateral (left) and axial (right) localization accuracy for various particle depth values and for several lateral positions. Every localization accuracy
value was computed by averaging over 20 realizations. The acquisition parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ = 520 (nm). The pixel size
is 150 (nm) and the z-step size is 100 (nm). The noise parameters are: mean emission rate of 2 × 106 (photons per second), optical efficiency of 0.033,
acquisition time of 0.1 (s), readout rms noise of 6 (electrons per pixel) and mean scattering rate of 660 (photons per second). The subpixel lateral positions
A, B, C, D, E and F are described in Figure 7. The axial localization error (right) is taken in the absolute value sense, as to comply with the positive values
of the lateral localization error (left). The highest standard deviation value for the lateral position was 0.2 (nm), and for the axial position – 1.4 (nm).

Fig. 9. Lateral (left) and axial (right) localization accuracy for various particle depth values and for several lateral positions. Every localization accuracy
value was computed by averaging over 20 realizations. The acquisition parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ = 520 (nm). The pixel size is
150 (nm) and the z-step size is 100 (nm). The noise parameters differ from the parameters of Figure 8: mean emission rate of 2 × 106 (photons per second),
optical efficiency of 0.033, acquisition time of 0.1 (s), readout rms noise of 36 (electrons per pixel) and mean scattering rate of 6600 (photons per second).
The highest standard deviation value for the lateral position was 1.1 (nm), and for the axial position – 8.1 (nm).

respectively. Initial values for (xp , yp ) are the coordinates of
the local maximum and the initial value for z p is given by
(5). The initial value for A0 is the ratio between the pixel
value of the local maximum and the value of the PSF model
for (xd , yd ) = (xp , yp ). Derivative values of the PSF model are
given in Table 2 and (10).

C© 2012 The Authors
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Fig. 10. Lateral (left) and defocus (right) localization accuracy for various defocus values of the detector plane and for several particle lateral positions.
Every localization accuracy value was computed by averaging over 20 realizations. The acquisition parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ =
520 (nm). The pixel size is 150 (nm) and the z-step size is 100 (nm). The nominal value for zd is z∗

d = 0.2 (m). The noise parameters are: mean emission rate
of 2 × 106 (photons per second), optical efficiency of 0.033, acquisition time of 0.1 (s), readout rms noise of 6 (electrons per pixel), and mean scattering
rate of 660 (photons per second). The subpixel lateral positions A, B, C, D, E and F are described in Figure 7. The highest standard deviation value for the
lateral position was 0.28 (nm), and for the axial position – 0.17 × 10−4 (m).

Goodness of fit: We use several criteria for accepting the
fitted parameters: the lateral position should be close to the
local maximum, the axial position should be close to the initial
guess and the signal-to-noise ratio value of the fit should be
above a certain threshold.

Simulated z-stack data are shown in Figure 6 and
least-squares localization performance is demonstrated in
Figures 7–9. The fitting window was 6 × 6 × 6 pixels. Our
performance analysis included several particle depth values,
several lateral positions and several noise levels. Each setup

Fig. 11. Lateral (left) and defocus (right) localization accuracy for various defocus values of the detector plane and for several particle lateral positions. Every
localization accuracy value was computed by averaging over 20 realizations. The acquisition parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ =
520 (nm). The pixel size is 150 (nm) and the z-step size is 100 (nm). The nominal value for zd is z∗

d = 0.2 (m). The noise parameters differ from the
parameters of Figure 10: mean emission rate of 2 × 106 (photons per second), optical efficiency of 0.033, acquisition time of 0.1 (s), readout rms noise of
36 (electrons per pixel) and mean scattering rate of 6600 (photons per second). The highest standard deviation value for the lateral position was 2 (nm),
and for the detector plane position – 1.35 × 10−4 (m).
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was repeated 20 times. Following Ober et al. (2004), the noise
sources are Poisson-distributed scatter noise and Gaussian-
distributed readout noise. The emission rate of every point
source is a Poisson random number. Our results suggest that
the lateral localization accuracy is less sensitive to the particle
depth value, compared with the axial localization accuracy.
The relatively low localization accuracy for the depth value of
200 (nm) follows from the smaller number of data points that
can be used in the fitting process. This is due to the fact that
the z-stack consists of positive stage displacement values only,
demonstrating the importance of the fitting window size for
the axial localization. We also observe that the subpixel lateral
positions have minor effect on the lateral and axial localization
accuracies.

Misalignment estimation

Motivated by the calibration stage of multiplane microscopic
design (Prabhat et al., 2004; Juette et al., 2008), we suggest
here a fitting algorithm that allows for the determination of
the axial position, zd , of the defocused detector plane. The
input data is a z-stack of fixed point-sources, all lying on the
cover slip z p = 0. Stage displacement values are both positive
and negative with respect to the working distance. The output
of the algorithm are the estimated values of xp , yp , zd and
A0. The algorithm follows the stages of Figure 5 with the
modification that the initial parameter for zd is determined
by sweeping over several possible values and choosing the
one that maximizes the PSF value at the particular slice of
the z-stack. The threshold value is set to τ = 0.5 accounting
for the Poisson distribution of the emission rate and for the
noise. If all of the particles lie at the same depth position,
then local maxima should appear in the same frame. Due to
noise, the local maxima may appear in neighbouring slices
and this does not require re-calculating τ , as was done in the
previous algorithm. Fitting results are depicted in Figures 10
and 11. They suggest that the least-squares criterion provides
an unbiased estimation with a relatively low-variance value
for the axial position of the detector plane.

Conclusions

In this work, we provided a general approach to 3-D
PSF fitting applications, while introducing an efficient and
accurate evaluation of the PSF function. We focused on
the Gibson and Lani model and showed its usefulness in
particle localization and in defocus estimation. Our fitting
algorithm relies on the least-squares error measure, and
we provided analytical expressions for the required partial
derivative functions. We then introduced an efficient and
accurate way for evaluating the Kirchhoff diffraction integral.
Our fitting algorithm includes local maxima identification
with adaptive threshold values and window size for the least-
squares fit. The algorithm utilizes the Levenberg–Marquardt

minimization method and the initial values we use for it rely on
the PSF model. Simulation results with z-stack data indicate
that the lateral localization accuracy is less sensitive to the
particle depth value, compared with the axial localization
accuracy. It was also shown that axial localization accuracy
can be improved substantially by taking more data points
in the axial direction. We also observed that subpixel lateral
positions have minor effect on the lateral and axial localization
accuracies when using the least-squares criterion. Our results
also suggest that this criterion provides an unbiased estimation
with a relatively low variance value for the axial position of
the detector plane.
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Appendix A: The relation between the Gibson–Lanni and the
Born–Wolf models

The Born and Wolf model is

h (θ ) =
(

ka 2 A0

z2
d

)2
∣∣∣∣∣

∫ 1

0
J 0

(
kar (θ )ρ

zd

)
e

−i ka2ρ2

2z2
d

(z∗
d −zd )

ρ dρ

∣∣∣∣∣

2

.

(A.1)

We set the aperture, a , to be the back focal plane of the
microscope and rely on the sine condition n sin θ = M sin φ

to have the following relation (Fig. 12)

NA = n sin θmax = M sin φmax = Ma
√

a 2 + (zd − f )2
, (A.2)

The parameter zd denotes the distance of the focused image
from the back principle plane, and z∗

d denotes the distance
of the detector from the same plane. In practice, zd ( f and
M ( NA which leads to

a
zd

∼=
NA
M

. (A.3)

We express the defocusing measure %z = z∗
d − zd in the image

domain in terms of defocusing %z′ = zd
′ − z∗

d
′

in the object
domain by relying on the analysis of Gibson (Gibson, 1990,
chapter 3); z∗

d
′

is the distance from the front focal plane for
which a particle would be focused on the detector plane z∗

d ,
that is, just beneath the cover slip; z

′

d is the distance for which
a particle will be focused at zd in the image domain. The two
pairs of similar triangles in Figure 13 yield

zd
′

f ′ = f
zd

∼=
1
M

, (A.4)

where f ′ = n · f . Assuming small defocusing values, %z′ *
z

′

d ,
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(A.5)

Substituting (A.3) and (A.5) in (A.1) results in

h (θ ) =
(

ka 2 A0

z2
d

)2
∣∣∣∣∣

∫ 1

0
J 0

(
kNAr (θ )ρ

M

)
e

−i kNA2ρ2%z′
2n ρ dρ
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2

,

(A.6)

which is the Born and Wolf model for the wide field microscope.
The Gibson and Lanni model generalizes the model of

Born and Wolf in the following manner. We assume that
all layers have the same refractive indices ns = ni = n. It
then follows that OPD(ρ) = n%z′ [1 − (NAρ/n)2] 1

2 where the
defocus measure in the object domain is due to the particle’s
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Fig. 12. Geometric description of the sine law in a microscope n sin θ = M sin φ. f is the focal length of the microscope in the image domain and f ′ is the
focal length in the object domain. a is the radius of the circular aperture of the microscope at the back focal plane. zd is the distance of the detector plane
from the back principle plane and z′

d is the distance of a point-source from the front focal plane for which its focused image will located at the detector
plane. It is assumed here that the immersion layer, the cover slip and the sample layer share the same refractive index value n.

Fig. 13. The Gaussian image of a defocused object in a wide field microscope; z∗
d

′
denotes the nominal location of an object for which its focused image is

located at the detector plane z∗
d . These values are measured relative to the front and back principle planes, respectively. z′

d is the axial position of a particle
for which its focused image is located at zd . f and f ′ are the focal lengths at the image domain and at the object domain , respectively. They are given by
f ′ = n f where n is the refractive index of the object domain. The lateral magnification is M; drawing not shown to scale.

depth and stage displacement %z
′ = z p + %ti . The Taylor

series for the OPD is

OPD(ρ) = n%z
′ − NA2%z

′
ρ2

2n
− NA4%z

′
ρ4

8n3 + O (ρ)6,
(A.7)

and the coefficient of ρ2 which amounts to defocusing
coincides with the phase term of (A.6).

Appendix B: Software description

The Gibson and Lanni PSF model was implemented in Java,
and it can be used with a variety of software packages. As
an example application, we developed the ImageJ plugin
PSFGenerator, which evaluates and visualizes the 3-D pattern
of the Gibson and Lanni model.2 It is fast and easy to use,
2 The software is available at http://bigwww.epfl.ch/algorithms/psfgenerator.
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Fig. 14. Screen shot of our ImageJ plugin that generates PSF models. Shown are the interface (right top), the z-stack and its orthogonal views (left top),
as well as the statistical analysis of the PSF (right bottom). The acquisition parameters are given in the interface itself.

Fig. 15. An example of a simulated photo-activated fluorophores sequence. The 3-D structure (a) is described by a density map (b, shown is a maximum
z-projection). Point sources are then generated based on the density map (c). Every point-source is then excited at a random time frame, giving rise to a
set of frame sequence (d). We use the Gibson and Lanni model to determine the image of each fluorophore and we also account for background scatter
and readout noise sources.

requiring only few input parameters that are readily available
for microscopy practitioners. The output of the plugin is
a z-stack of any chosen size, which can also be visualized
with orthogonal views. The plugin also provides a table
that calculates the maximum value, the proportional energy
and the effective radius of each slice (Fig. 14). The open
architecture of the plugin allows for easy incorporation of
additional PSF models, and the current version includes the
Born & Wolf and the Richards & Wolf models.

We also used our Gibson and Lanni Java implementation
for simulating data sets of photo-activated fluorophores.3 To
this aim, a user-dependent biological structure is described by
a 3-D density map of fluorophores (Fig. 15). Every fluorophore
is assigned a random position (based on the density map), a
random excitation time instant and a random photon emission

3 The software is available at http://bigwww.epfl.ch/palm.
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rate value. We then use the Gibson and Lanni model to
determine the image of each fluorophore and add the image
to the time frame it belongs to. Background scatter noise and
readout noise are added, too. The output of our software is

a sequence of frames, composed of images of photo-activated
fluorophores. We also provide the (xp , yp , z p , frame number)
indices of every fluorophore, which can be used as a validation
tool for other localization algorithms.
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