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Abstract

We consider the task of creating a 3-d model of a large

novel environment, given only a small number of images of

the scene. This is a difficult problem, because if the images

are taken from very different viewpoints or if they contain

similar-looking structures, then most geometric reconstruc-

tion methods will have great difficulty finding good corre-

spondences. Further, the reconstructions given by most al-

gorithms include only points in 3-d that were observed in

two or more images; a point observed only in a single im-

age would not be reconstructed. In this paper, we show

how monocular image cues can be combined with triangu-

lation cues to build a photo-realistic model of a scene given

only a few images—even ones taken from very different view-

points or with little overlap. Our approach begins by over-

segmenting each image into small patches (superpixels). It

then simultaneously tries to infer the 3-d position and ori-

entation of every superpixel in every image. This is done

using a Markov Random Field (MRF) which simultaneously

reasons about monocular cues and about the relations be-

tween multiple image patches, both within the same image

and across different images (triangulation cues). MAP infer-

ence in our model is efficiently approximated using a series

of linear programs, and our algorithm scales well to a large

number of images.

1. Introduction

We consider the task of creating 3-d models of large novel

environments, given only a few images of each scene. Most

prior work has focused on using triangulation (geometric)

cues for this task, e.g. [1–3], and monocular (single image)

cues have been exploited poorly. However, [4–7] showed

that even a single image has many cues which can be ex-

ploited to obtain rich 3-d information. Even so, a 3-d model

built from a single image will almost invariably be an in-

complete model of the scene, because many portions of the

scene will be missing or occluded. In this paper, we will use

both the monocular cues and multi-view triangulation cues

to create better and larger 3-d models.

Given a sparse set of images of a scene, it is sometimes

possible to construct a 3-d model, using techniques such

as structure from motion (SFM) [2, 3], which start by tak-

ing two or more photographs, then find correspondences

between the images, and finally uses triangulation to ob-

tain 3-d locations of the points. If the images are taken

from nearby cameras (i.e., if the baseline distance is small),

then these methods often suffer from large triangulation er-

rors for points far-away from the camera.1 If, conversely,

one chooses images taken far apart, then often the change

of viewpoint causes the images to become very different,

so that finding correspondences becomes extremely diffi-

cult, leading either to spurious or missed correspondences.

(Worse, the large baseline also means that there may be lit-

tle overlap between the images, so that few correspondences

may even exist.) These difficulties make purely geomet-

ric 3-d reconstruction algorithms work unreliably in prac-

tice, when given only a small set of images. When tens

of thousands of pictures are available—for example, for

frequently-photographed tourist attractions such as national

monuments—one can discard images that have only few cor-

respondence matches. Doing so, one can use only a small

subset of the images available (∼15%), and still obtain a “3-

d point cloud” for points that were matched using SFM. This

approach has been very successfully applied to a few famous

buildings such as the Notre Dame; the computational cost of

this algorithm was significant, and required about a week on

a cluster of computers [8]. Other 3-d reconstruction meth-

ods include using other types of sensing hardware, such as

lasers [9] or calibrated stereo video streams [10], to create a

dense colored 3-d point cloud. This paper address the much

harder problem of 3-d reconstruction given only a small set

of images.

The reason that many geometric “triangulation-based”

methods fail is that they do not make use of the informa-

tion present in a single image. Saxena et al. [4, 5], Delage et

al. [11] and Hoiem et al. [7] showed that given even a single

image, we can automatically infer a significant portion of the

scene’s 3-d structure. Building on these ideas, we will de-

velop an MRF model that seamlessly combines triangulation

cues and monocular image cues, while also reasoning about

3-d properties of the world such as occlusion, to build a full

photo-realistic 3-d model of a scene. We also describe how

single-image monocular cues can be used to make 3-d fea-

1I.e., the depth estimates will tend to be inaccurate for objects at large

distances, because even small errors in triangulation will result in large er-

rors in depth.
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ture matching (for triangulation) significantly more robust.

To the best of our knowledge, our work represents the

first algorithm capable of automatically creating a full photo-

realistic 3-d model from a sparse set of images. Using our

approach, we were able to create 3-d models of several large

environments.

2. Prior Work

The last few decades have seen a significant amount of

work in stereovision and structure from motion. Space con-

straints prevent us from doing justice to this literature, but

examples include [3, 8], and [1, 2] provide detailed surveys.

In some specific settings, there has been some work on

depth estimation from single images. Criminisi et al. [12]

provided an interactive method for computing 3-d geome-

try, where the user can specify the object segmentation, 3-d

coordinates of some points, and reference height of an ob-

ject. Methods such as shape-from-shading [13] assume uni-

form texture on surfaces to estimate depths. Torralba and

Oliva [14] studied the relationship between the Fourier spec-

trum of an image and its mean depth.

In recent work, Saxena, Chung and Ng (SCN) [4,15] pre-

sented an algorithm for predicting depth from monocular

image features, and applied it to tasks such as robot driv-

ing [16]. Delage, Lee and Ng (DLN) [6, 11] and Hoiem,

Efros and Hebert (HEH) [7, 17] assumed that the environ-

ment is made of a flat ground with vertical walls. DLN

considered indoor images, while HEH considered outdoor

scenes. They classified the image into horizontal/ground and

vertical regions (also sky in the case of HEH) to produce a

simple “pop-up” type fly-through from an image. HEH fo-

cused on creating “visually-pleasing” fly-throughs, but did

not produce quantitatively accurate results.

In [5], Saxena, Sun and Ng presented an algorithm that

uses a Markov Random Field to infer both the 3-d location

and the 3-d orientation of small patches in the image. They

produced models that capture rich and detailed 3-d struc-

ture, and that are both visually-pleasing and quantitatively

correct. In detail, they tested their approach on 588 im-

ages downloaded from the internet, and were able to pro-

duce qualitatively correct models for 64.9% of them. These

methods for producing 3-d models from a single picture give

only incomplete models, because many parts of the scene are

almost invariably missing or occluded.

Several methods have been used to improve the perfor-

mance of purely triangulation based methods; examples in-

clude local smoothing in 2-d, or using image segmentation

information to improve stereo depth maps [1]. Priors on

camera locations were exploited in [18] to obtain more ro-

bust matching and triangulation. Recently, monocular depth

cues were used in [19] to improve performance of stereo-

vision algorithms. However, most multi-view reconstruc-

tion algorithms for producing large scale 3-d models ignore

monocular information.

Figure 1. (a) An image of a scene. (c) Over-segmented image. Each

small segment (superpixel) lies on a plane in the 3d scene.

3. Visual Cues for Scene Understanding

Humans understand the 3-d structure of a scene by “in-

tegrating information” available from different sources [20].

From a single image, they use a variety of monocular cues,

such as texture variations and gradients, color, haze, defocus,

etc. [4,21] From the stereo pair of images from the eyes, they

use stereo (triangulation) cues to estimate depth [19, 22].

They also capture multiple views of the scene by moving

their head to different places to build a consistent 3-d struc-

ture of the world around them.

Humans can infer 3-d structure even when only a single

view is available of parts of a scene, by using their prior

experience. Although an image might represent an infinite

number of possible 3-d structures because of projective am-

biguity, the environment that we live in is reasonably struc-

tured; thus out of all the possible 3-d structures that an image

might represent, only a few are likely. This allows a human

to infer 3-d structure by learning the relations between the

image features and depth, and the relations between differ-

ent parts of the scene. [23, chap. 11]

4. Representation

Our goal is to create a full photo-realistic 3-d model from

an image. Following most work on 3-d models in computer

graphics and other related fields, we will use a polygonal

mesh representation of the 3-d model, in which we assume

the world is made of a set of small planes.2 In detail, given

an image of the scene, we first find small homogeneous re-

gions in the image, called “Superpixels” [24]. Such regions

represent a coherent region in the scene with all the pixels

having similar properties. Our basic unit of representation

will be these small planes in the world, and our goal is to in-

fer the location and orientation of each of these small planes.

More formally, we parametrize both the 3-d location and

orientation of the infinite plane on which a superpixel lies

by using a set of plane parameters α ∈ R
3. (Fig. 2) (Any

point q ∈ R
3 lying on the plane with parameters α satisfies

αT q = 1.) The value 1/|α| is the distance from the camera

center to the closest point on the plane, and the normal vector

2This assumption is reasonably accurate for most artificial structures,

such as buildings. Some natural structures such as trees could perhaps be

better represented by a cylinder. However, since our models are quite de-

tailed, e.g., about 2500 planes for a small scene, the planar assumption

works quite well in practice.



Figure 2. A 2-d illustration to explain the plane parameter α and

rays R from the camera.

α̂ = α
|α| gives the orientation of the plane. If Ri is the unit

vector from the camera center to a point i lying on a plane

with parameters α, then di = 1/RT
i α is the distance of point

i from the camera center. (See [5] for more details.)

Given two small plane (superpixel) segmentations of two

images, there is no guarantee that the two segmentations are

“consistent,” in the sense of the small planes (on a specific

object) in one image having a one-to-one correspondence to

the planes in the second image of the same object. Thus,

at first blush it appears non-trivial to build a 3-d model us-

ing these segmentations, since it is impossible to associate

the planes in one image to those in another. We address

this problem by using our MRF to reason simultaneously

about the position and orientation of every plane in every

image. If two planes lie on the same object, then the MRF

will (hopefully) infer that they have exactly the same 3-d

position. More formally, in our model, the plane parame-

ters αn
i of each small ith plane in the nth image are rep-

resented by a node in our Markov Random Field (MRF).

Because our model uses L1 penalty terms (see Section 5 for

details), our algorithm will be able to infer models for which

αn
i = αm

j , which results in the two planes exactly overlap-

ping each other.

5. Probabilistic Model

In our MRF model, we try to capture the following prop-

erties of the scenes:

• Image Features and depth: The image features bear

some relation to the depth/orientation of the superpixel.

• Co-linearity: Long straight lines in the image represent

straight lines in the 3-d model. For example, edges of

buildings, sidewalk, windows.

• Connected structure and Co-planarity: Neighboring

superpixels are more likely to be connected and copla-

nar if they look similar.

• Correspondences across images: Two points in two

images are more likely to occupy the same physical lo-

cation in the 3-d scene if they look very similar.

• Depths from Triangulation: If an estimate of the

depth at a point is available from triangulation (SFM),

then the depth of the point is more likely to be close to

the estimated depth.

The first three of these properties were used in [5] for

single image 3-d reconstruction. Note that no single one of

these properties is enough, by itself, to predict the 3-d struc-

ture. For example, in some cases, local image features are

not strong indicators of the depth (and orientation). Thus,

our approach will combine these properties in an MRF, in a

way that depends on our “confidence” in each of these prop-

erties. Here, the “confidence” is itself estimated from local

image cues, and will vary from region to region in the image.

Fractional depth error: For 3-d reconstruction, the frac-

tional (or relative) error in depths is perhaps the most mean-

ingful performance metric, because the 3-d structure of an

object is better predicted by an image taken closer to the ob-

ject than one taken far-away. Fractional error is a popular

metric used in structure for motion, stereo reconstruction,

etc. [1, 25] For ground-truth depth d and estimated depth

d̂, fractional error is defined as (d̂ − d)/d = d̂/d − 1. In

our model, we will be penalizing fractional errors in the dis-

tances.

Figure 3. An illustration of the Markov Random Field (MRF) for

inferring 3-d structure. (Only a subset of edges shown.)

5.1. Plane Parameter MRF

In our MRF, each node represents a superpixel in the im-

age. We assume that the superpixel lies on a plane, and we

will infer the location and orientation of that plane.

Let Ψ be the set of pairs of images which

have correspondence matches available, let Qn =
[Rotation, Translation] ∈ R

3×4 (technically SE(3)) be

the camera pose when image n was taken (w.r.t. a fixed

reference, such as the camera pose of the first image),

and let dT be the depths obtained by triangulation (see

Section 5.2). We formulate our MRF as

P (α|X,Y, dT ; θ) ∝
∏

n

P1(α
n|Xn, Y n, Qn; θn)

∏

n

P2(α
n|Xn, Y n, Qn)

∏

n,m∈Ψ

P3(α
n, αm|Qn, Qm, Y mn)

∏

n

P4(α
n|Qn, dn

T , Y n
T )

where, the superscript n is an index over the images, For an

image n, αn
i is the plane parameter of superpixel i in image

n. Sometimes, we will drop the superscript for brevity, and

write α in place of αn when it is clear that we are referring

to a particular image.



Figure 4. Illustration explaining the choice of sj and s′j for enforc-

ing colinearity. A long straight line in the image is more likely to

be a straight line in 3-d; therefore we penalize distance between sj

and s′j .

The first term P1(·) models the plane parameters αn as

a function of the monocular image features Xn, and penal-

izes the fractional errors in depths. It is parametrized by the

parameters θr ∈ R
524, r = 1, ..., 11, and are learned from

ground-truth laser data. Y n denotes our confidence in the

estimate of plane parameters from the monocular features.

(See [5] for more details.)

The second term P2(·) models the co-linearity, the con-

nected structure, and the coplanarity properties by capturing

the relation between the plane parameters of two superpixels

i and j. It uses pairs of points si and sj to do so:

P2(·) =
∏

{si,sj}∈N

hsi,sj
(.) (1)

We will capture co-planarity, connectedness and co-

linearity, by different choices of h(.) and {si, sj}.

Co-linearity: We enforce the co-linearity constraint using

this term, by choosing points along the sides of long straight

lines. This also helps to capture relations between regions

of the image that are not immediate neighbors. In detail, we

choose two superpixels αi and αj that lie on different por-

tions of the straight line; we then choose a point p in the

image lying on the long straight line, and let sj be the 3-d

position of p if it were to lie on the (infinite) plane parame-

terized by αi, and let s′j be the 3-d position of p if it were to

lie the plane parameterized by αj . Our model then penalizes

the (fractional) distance between sj and s′j . (See Fig. 4.)

hsj
(αi, αj , yij , Rj,sj

) = exp
(

−yij |(R
T
j,sj

αi − RT
j,sj

αj)d̂|
)

(2)

with hsi,sj
(.) = hsi

(.)hsj
(.).

In detail, RT
j,sj

αj = 1/dj,sj
and RT

j,sj
αi = 1/d′j,sj

;

therefore, the term (RT
j,sj

αi−RT
j,sj

αj)d̂ gives the fractional

distance

∣

∣

∣
(dj,sj

− d′j,sj
)/

√

dj,sj
d′j,sj

∣

∣

∣
for d̂ =

√

d̂j,sj
d̂′j,sj

.

The “confidence” yij depends on the length of the line and

Figure 5. Illustration explaining effect of the choice of si and sj on

enforcing (a) Connected structure and (b) Co-planarity.

its curvature—a long straight line in 2-d is more likely to be

a straight line in 3-d.

Connected structure and Co-planarity: We enforce this

constraint by choosing si and sj to be on the boundary of

the superpixels i and j. As shown in Fig. 5a, penalizing the

(fractional) distance between two such points ensures that

they remain fully connected.

We enforce the co-planar structure by choosing a third

pair of points s′′i and s′′j in the center of each superpixel

along with ones on the boundary. (Fig. 5b) To enforce co-

planarity, we penalize the relative (fractional) distance of

point s′′j from the plane in which superpixel i lies, along the

ray Rj,s′′

j
. (Please see [5] for more details.)

Correspondences: A point in the 3-d scene could appear in

multiple images taken from different viewpoints. Therefore,

if two points in two images match (see Section 5.2), then

they are more likely to occupy the same 3-d location in the

scene. More formally, if two points pn = (xn, yn, zn) and

p′n = (x′
n, y′

n, z′n) from two images refer to the same 3-d lo-

cation (in same coordinate frame) from two different views,

then we want to minimize the (fractional) distance between

them. The distance between the two points is given as

p′n − pn = Qmn[pm; 1] − pn

= Qmn[Rm/(RmT αm); 1]) − Rn/(RnT αn)

Thus, to penalize the (fractional) distance, we have

P3(α
n, αm|Qn, Qm, Y mn)

∝
Jmn

∏

k=1

exp

(

− ymn
k

∣

∣

∣

(

Qmn[(Rn
i(k)

T αn
i(k))R

m
j(k);

(Rn
i(k)

T αn
i(k))(R

m
j(k)

T αm
j(k))] − (Rm

j(k)
T
αm

j(k))R
n
i(k)

)

d̂
∣

∣

∣

)

where there are Jmn correspondences between images

m and n. Here, d̂ =
√

d̂n
i(k)d̂

m
j(k), and d̂n

i(k) =

1/(Rn
i(k)

T αn
i(k)).

Note that this term penalizes distance between two corre-

sponding points in 3-d in the same coordinate frame; there-

fore it will tend to bring the points closer even if the camera

poses Q are slightly inaccurate, and can be used even if we

have only rough camera poses. Specifically, it does not re-

quire the 3-d locations of the points (which would be avail-

able only if we run bundle adjustment in the triangulation



Figure 6. An image showing a few matches, and the resulting 3-d

model without estimating the variables y for confidence in the 3-d

matching. The noisy 3-d matches reduce the quality of the model.

(Note the cones erroneously projecting out from the wall.)

step). Later, we further describe how enforcing a phantom

planes constraint (Section 5.3) yields additional correspon-

dences.

Depths from Triangulation: In an image n, there could be

some points for which approximate depths dT are obtained

from triangulation (see Section 5.2). Since there could be

errors in the triangulated depths, we penalize the (fractional)

error in the triangulated depths dTi and 1/(RT
i αi). For Kn

points for which the triangulated depths are available, we

have

P4(α|Q, dT , YT ) ∝

Kn

∏

i=1

exp
(

−yTi

∣

∣dTiRi
T αi − 1

∣

∣

)

.

This term places a “soft” constraint on a point in the plane

to have its depth equal to its triangulated depth.

MAP Inference: For MAP inference of the plane param-

eters, we need to maximize the conditional log-likelihood

log P (α|X,Y, dT ; θ). All the terms in P1(·), P2(·) and P4(·)
corresponds to L1 norm terms; thus MAP inference in an

MRF that uses only these terms can be efficiently solved us-

ing a Linear Program (LP) [5].3 To solve the LP, we im-

plemented an efficient method that takes advantage of the

sparsity in our problem.

5.2. Triangulation Matches

In this section, we will describe how we obtained the cor-

respondences across images, the “confidences” ymn
k in these

correspondences, and the triangulated depths dT , used in the

P3(·) and P4(·) terms in Section 5.1.

Two points that appear to match in two images are some-

what likely to be at the same 3-d location. However, many

of these 3-d correspondences are noisy; for example, local

3Actually, the correspondence term in P3(·) is not convex. These terms

occur for correspondences that do not have associated triangulated depths.

To address this, one can envisage a variety of algorithms, but we found

that a simple approximation method that solves a series of LPs works very

well in practice. In detail, we take the estimate of d̂ni(k)
from the last LP,

and use it to replace the term (Rn
i(k)

T αn
i(k)

)(Rm
j(k)

T αm
j(k)

) in P3(·) with

1/d̂ni(k)
d̂mj(k)

, solve the new LP, and iterate a few times. This entire

process typically takes about 30 seconds.

structures are often repeated across an image (e.g., Fig. 8a

and 6). Therefore, we also model the “confidence” ymn
k in

the kth match between images m and n, by estimating the

probability P (ymn
k = 1) of the match being correct. To esti-

mate how likely a match is correct, we use neighboring 3-d

matches as a cue. For example, a group of spatially consis-

tent 3-d matches is more likely to be correct than a single

isolated 3-d match. We capture this by using a feature vec-

tor that counts the number of matches found in the present

superpixel and in larger surrounding regions (i.e., at mul-

tiple spatial scales), as well as measures the relative quality

between the best and second best match. We use these corre-

spondences directly in our probabilistic model in term P3(·)
without requiring to explicitly estimate the 3-d locations of

the points (Section 5.1).

We can also compute depths from triangulation by first

using the monocular approximate depths to remove the scale

ambiguity, and then using bundle adjustment [26] to refine

our matches. In detail, we start by computing 128 SURF

features [27], and then calculate matches based on the Eu-

clidean distances between the features found. Then to com-

pute the camera poses Q = [Rotation, Translation] ∈
R

3×4 and the depths dT of the points matched, we use bun-

dle adjustment [26]. These triangulated depths are used in

the term P4(·) in Section 5.1.

Improving matching performance using monocular

cues: Increasingly many cameras and camera-phones come

equipped with GPS, and sometimes also accelerometers

(which measure gravity/orientation). Many photo-sharing

sites also offer geo-tagging (where a user can specify the

longitude and latitude at which an image was taken). In this

section, we will describe how such geo-tags (together with a

rough user-specified estimate of camera orientation) can be

used, together with monocular cues, to improve the perfor-

mance of correspondence algorithms.

We compute the approximate depths of the points using

monocular image features as d̂ = xT θ; this requires only

computing a dot product and hence is fast (see Section 5.1).

Now, for each point in an image B for which we are try-

ing to find a correspondence in image A, typically we would

search in a band around the corresponding epipolar line in

image A. However, given an approximate depth estimated

from from monocular cues, we can limit the search to a rect-

angular window that comprises only a subset of this band

(Fig. 7). This reduces the time required for matching, and

also improves the accuracy significantly when there are re-

peated structures in the scene.

To illustrate the applicability of our algorithm even to

settings where geo-tags are not available, our experiments

(Section 5.4) will report results on models built without us-

ing geo-tags (i.e., the camera position/orientation was not

known in advance). We also performed additional experi-

ments in which an approximate camera pose was entered by



Figure 7. (a) Corresponding region to search for in image A, for a point in image B, (b) Correspondences found using our monocular depth

estimates.

Figure 8. (a) Bad correspondences, caused by repeated structures in the world. (b) Use of monocular depth estimates results in better

correspondences. Note the these corresponses are still fairly sparse and slightly noisy, and are therefore insufficient for creating a good 3-d

model if we do not additionally use monocular cues.

a user on a 2-d map; this resulted in fairly similar models

to the version that did not use geo-tags, but ran about three

times faster.

5.3. Phantom Planes

This cue enforces occlusion constraints across multiple

cameras. Concretely, each small plane (superpixel) comes

from an image taken by a specific camera. Therefore, there

must be an unoccluded view between the camera and the

3-d position of that small plane—i.e., the small plane must

be visible from the camera location where its picture was

taken, and it is not plausible for any other small plane (one

from a different image) to have a 3-d position that occludes

this view. This cue is important because often the connected

structure terms, which informally try to “tie” points in two

small planes together, will result in models that are inconsis-

tent with this occlusion constraint, and result in what we call

“phantom planes”—i.e., planes that are not visible from the

camera that photographed it. We will use a Laplacian model

(L1 penalty) to penalize the distance between the offending

phantom plane and the plane that occludes its view from the

camera. This tends to make the two planes lie in exactly the

same location (i.e., have the same plane parameter), which

eliminates the phantom/occlusion problem.

5.4. Experiments

In [5], we described an earlier version of this algorithm

that used monocular cues to produce 3-d models from single

still images. That algorithm was shown to produce quali-

tatively correct 3-d models for 64.9% of 588 images down-

loaded from the internet. Some depthmaps produced by it

are shown in Fig. 9. Other than assuming that the environ-

ment is made of a number of small planes, the algorithm did

not make any explicit assumptions about the structure of the

scene, such as the “ground-vertical” assumption by Delage

et al. [11] and Hoiem et al. [7]; thus it was able to generalize

well, even to scenes with significant non-vertical structure.

In this experiment, we create a photo-realistic 3-d model

of a scene given only a few images (with unknown loca-

tion/pose), even ones taken from very different viewpoints

or with little overlap. Fig. 10, 11, 12 and 13 show snap-

shots of some 3d models output by our algorithm. Using

monocular cues, our algorithm is able to create full 3-d mod-

els even when large portions of the images have no overlap

(Fig. 10, 11 and 12). In Fig. 10, monocular predictions (not

shown) from a single image gave approximate 3-d models

that failed to capture the arch structure in the images. How-

ever, using both monocular and triangulation cues, we were

able to capture this 3-d arch structure.

More models are available at:

http://ai.stanford.edu/∼asaxena/reconstruction3d

6. Conclusions

We have presented an algorithm that builds large 3-d re-

constructions of outdoor environments, given only a small

number of images. Our algorithm segments each of the

images into a number of small planes, and simultaneously

infers the 3-d position and orientation of each plane in ev-

ery image. Using an MRF, it reasons about both monocular

depth cues and triangulation cues, while further taking into

account various properties of the real world, such as occlu-

sion, co-planarity, and others.
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Figure 9. Typical results from our algorithm. (Top row) Original images, (Bottom row) depthmaps (shown in log scale, yellow is closest,

followed by blue) generated from the images. Colors indicate depth, see color-scale bottom row.

(a) (b) (c) (d)

(e) (f)

Figure 10. (a,b,c) Three original images from different viewpoints; (d,e,f) Snapshots of the 3-d model predicted by our algorithm. (f) shows

a top-down view; the top part of the figure shows portions of the ground correctly modeled as lying either within or beyond the arch.
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