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Abstract

In non-destructive testing, being able to remotely locate and size defects with good

accuracy is an important requirement in many industrial sectors such as petrochemical,

nuclear and aerospace.The potential of ultrasonic guided waves is well known for this type

of problem, but interpreting the measured data and extracting useful information about the

defects remains challenging. This paper introduces a Bayesian approach to measuring the

geometry of a defect while providing at the same time an estimate of the uncertainty in

the solution. To this end, a Markov-Chain Monte Carlo algorithm is used to fit simulated

scattered fields to the measured ones. Simulations are made with efficient models where the

geometry of the defects are provided as input parameters, so that statistical information on

the defect properties such as depth, shape and dimensions can be obtained. The method

is first investigated on simulations to evaluate its sensitivity to noise and to the amount of

measured data, and it is then demonstrated on experimental data. The defect geometries

vary from simple elliptical flat-bottomed holes to complex corrosion profiles.
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BAYESIAN RECONSTRUCTION OF 3D SCATTERERS 2

I. Introduction

U
LTRASONIC guided waves (GW) are well suited for non-destructive inspection due

to their capacity to propagate over many wavelengths while being sensitive to the

geometrical and the elastic properties of the waveguide. Their potential has been used for

many years in non-destructive evaluations (NDE) [1], and also more recently in the field of

biomedical acoustics for the evaluation of bone properties [2]. In NDE, typically inspections

are made by sending a GW onto the region to detect and, if present, characterize defects

based on measurements of the scattered wave. The frequency is generally limited to a

bandwidth were only the fundamental modes propagate so that the relative amplitude of

these modes can be measured. Thanks to the completeness of the GW basis [3], every defect

has a scattered field with unique modal amplitude and directivity. If one is able to measure

the full scattered field of a defect, then in principle all its geometrical characteristics can be

extracted from the data.

In practice, recovering useful information about a defect directly from the scattered field

is very challenging, mainly because (i) accessing the full scattering pattern is generally not

possible, (ii) signal-to-noise may be very poor, (iii) it is not clear how to extract the pertinent

information in a robust way, and (iv) the problem is not guaranteed to be well posed, since

two particular types of defect with very different implications for structural integrity may

have similar scattering patterns. For these reasons, past investigations have focused mainly

on the forward problem where the influence of the defect geometry on the scattered field

is studied. Predoi et al studied the reflection and transmission coefficients from surface

opening defects [4], Carandente et al studied the influence of sharp changes in the geometry

of a scatterer on the reflection of GW [5], Lovstad and Cawley investigated reflections of

GW from pit clusters in pipes [6], Mi et al investigated the initiation and growth of fatigue
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cracks based on dynamic monitoring [7].

Recent attempts to GW imaging allowed successful localization of scatterers in a waveg-

uide. Velichko et al used the full matrix capture of transmit/receive signals to image defects

of variable size in a pipe using the back-propagation method [8]. Bourgeois and Luneville

applied the linear sampling method for the 2D imaging of reflectors [9]. While the detection

and localization of a defect is possible, recovering accurate informations about its geome-

try is still out of reach of conventional GW methods. From an NDE point of view, this is

problematic in many industrial applications. For example, in the oil and gas industry, be-

ing able to remotely locate and size corrosion defects remains an important preoccupation.

Such defects are particularly difficult to characterize due to the complexity of the corrosion

geometry itself, and the fact that the most important characteristic required from a struc-

tural integrity perspective is often the maximum depth of localized pits or cracks within a

corroded region [10].

Identifying a reliable and robust method that is able to characterize defects directly from

their scattered field is desirable. Inverse methods that consist of matching the output data

of a model to experimentally measured data appear like reliable candidates, provided that

computational costs remain reasonable. In these methods, a measure of the error between

the model and the experiments is generally defined and the parameters in the model (e.g.

the geometrical parameters of the defect) are varied in order to minimize this error. Singh

and Castaings used a 2D finite element (FE) model to fit measurements of reflection and

transmission coefficients of strip-like defects defined with 2 geometrical parameters [11]. The

defects were characterized with the least squares method after all possible combinations of

parameters were tested. However, this is not a viable approach for realistic defects with a

complicated geometry because the parameter search space is multidimensional.
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A potentially more tractable solution consists of using a Bayesian approach, for example

via the Markov Chain Monte Carlo (MCMC) computational method. Although MCMC

methods are used in various research fields such as physics [12], biology [13], economics

[14], and even neural sciences [15], so far their application to NDE has remained limited.

Khan used MCMC for inverse problems in electromagnetic NDE [16], and Zhang et al

used the Metropolis-Hastings algorithm to evaluate grain orientation in a weld [17]. Other

investigations concern mostly data fusion and probability of detection [18]-[20].

A model-based data fitting method for Bayesian inference requires a significant number

of simulations to extract reliable statistical information. Without efficient forwards models,

such approaches become computationally prohibitive. This paper introduces an MCMC

method combined with either an analytical [21], [22] or an efficient FE model [23]-[25] to

estimate the full 3D geometry of sub-wavelength defects in plate-like structures with stress-

free boundary conditions and 3D elasticity (section II). To investigate the robustness of the

method, it is tested first on data obtained from simulated experiments where the noise level

and the amount of collected data can be controlled (section IV). The simulation study is

made on flat-bottomed, partly through-thickness holes with an elliptical contour. Then the

accuracy of the method is tested on two simulated defects with complex geometries caused

by actual corrosion. Finally, the approach is applied to experimental data collected in an

aluminium plate with a hand-drilled flat-bottomed hole (section V).

II. Bayesian procedure for the characterization of the scatterer

A. Model-based data fitting

Consider frequency-domain experimental data resulting from the interaction of a guided

mode with a scatterer in an elastic waveguide that supports Lamb wave-like propaga-

tion (plate, pipe...). We assume the frequency to be such that only the 3 fundamental
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modes, S0, SH0 and A0 can propagate, higher order modes being evanescent. The result-

ing scattered field can be written in the form of the scattering matrices of the 3 modes:

Ŝ = {Ŝ0

φ
(θ), ˆSH0

φ
(θ), Â0

φ
(θ)}. The scattering matrix describes the amplitude of the modes

in the far field of a scatterer for any combination of incident (ϕ) and scattering (θ) angles [26].

Given any incident angle ϕ, if the scattered field of the 3 modes can be measured all around

the defect, then a 1:1 relationship exists between sets of the scattering matrices (for all 3

modes at this particular incident angle) and the defect geometry thanks to the completeness

of the GW basis [3]. The minimum number of scattering angles Nθ to obtain independent

information about the scatterer depends on the wavelength of the scattered mode, λin, and

on the maximum dimension of the scatterer, D, such that [27]:

Nθ =
2πD

λin

. (1)

Eq. (1) was derived from Nyquist’s sampling criterion. A consequence is that in theory,

as long as the scattering pattern of the 3 propagating modes can be measured around the

scatterer with an angular sampling that satisfies this formula, only one incident angle is

required in the scattering matrix for the inverse problem to be well-constrained.

Assuming the experiment can be modeled faithfully, the basic idea of our approach is

that if the output data of the model fits the measurements in the above mentioned con-

ditions, then the geometrical parameters in the model describe the defect adequately. In

practice, however, generally only a restricted number of modes and/or scattering angles, θj,

are available experimentally. In that case, the uniqueness of the solution can’t be guarantied

unless additional data can be gathered (more incident angles, a different frequency of inspec-

tion...). A full investigation on that matter is not presented in this paper, but an empirical

study of how well the inversion procedure performs in that case is presented in section IV-A.

Let us introduceX, the variable that contains the geometrical parameters of the scatterer
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in the model:

X = {p1, p2, ..., pM}T , (2)

where pm ∈ Pm, the search space associated with parameter m. M is the number of param-

eters.

Next, the position of the defect is described in the Cartesian coordinates system (O,x,y,z)

with origin O. To express the scattered field around the defect a cylindrical coordinates sys-

tem, (O,r,θ,z), is also introduced. The polar coordinates (r,θ) are related to the Cartesian

coordinates (x,y) such that r2 = x2+y2 and cosθ = x/r. Assume that a guided wave with a

plane wavefront is incident on a cavity, in a direction that makes an angle ϕ with the x axis,

and that measurements are made at a distance R0 from the origin, at J discrete positions θj.

Under this notation, the error between the measured and the modeled data can be expressed

in terms of the root mean square (RMS) such that:

(

χφ
)2

(X) =
1

3

J
∑

j=1

[

(

Ŝ0

φ
(θj)− Sφ

0 (θj)
)2

+
(

ˆSH0

φ
(θj)− SHφ

0 (θj)
)2

+
(

Â0

φ
(θj)− Aφ

0(θj)
)2
]

,

(3)

where S = {Sφ
0 (θj),A

φ
0(θj), SH

φ
0 (θj)} denote the scattering matrices of the 3 fundamental

modes in the model.

Therefore in the examples of sections IV and V the geometry of the defect will be

calculated with only 1 incident angle. However, when data from only a limited range of

scattering angles is accessible, and/or when not all modes are measured, then using more

incident angles can improve the accuracy of the solution. This will be demonstrated next.

Obviously, more complicated defect geometries will necessitate more model parameters

for an adequate representation of the geometry. When the number of parameters becomes

too high, minimizing χφ(X) may require a prohibitive number of calculations. For example,

consider a flat-bottomed defect with an elliptical contour. 4 parameters are required to
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describe its geometry: depth, minor and major axes, and orientation with respect to the

incident wave. In a brute-force exhaustive search of the parameter space meshed with 20

different values for each dimension, the model must be run for a number of times equal to

204 = 160000 combinations. Even with efficient modeling, this inversion method would be

intractable using current computing technology. A more tractable way of minimizing the

error is to proceed with a classical gradient descent. However, unless the first guess of the

solution is sufficiently close to the global minimum, this process is likely to become stuck at

local minima. Next, it will be demonstrated that a Bayesian approach can overcome these

difficulties and provide an estimate of the geometrical features of a defect with very good

accuracy while running a much smaller number of forward model evaluations, by comparison

to an exhaustive search.

Bayesian estimation is based on the principle that the set of parameters in an estimation

problem can be quantified by probability distributions. Bayes’ theorem offers a framework

for evaluating these distributions from direct or indirect and imperfect measurements of

the parameter space. The advantage of the approach is two-fold. Firstly, it is robust to

measurement errors since these can be quantified and accounted for in a statistically optimal

sense. Secondly, not only can estimates of the parameters be obtained via expectations

of the distributions, but the uncertainties of these estimates can be quantified by higher-

order moments, thus revealing potential non-unique solutions. In particular, this second

advantage adds considerable value in NDT applications by providing a quantitative metric

for confidence in the solution.

Using Bayes’ theorem, the posterior distribution of the parameter values is given by

P (X|Ŝ) = P (Ŝ|X)P (X)

P (Ŝ)
, (4)

where P (Ŝ|X) is the likelihood function, P (X) is the prior distribution and P (Ŝ) is the
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marginal likelihood function or the model evidence. The posterior distribution expresses

the conditional probability of the parameter values based on evidence from measurements,

expressed by the likelihood function, and from prior assumptions, expressed by the prior

distribution. A recurrent problem in Bayesian inference is the difficulty to calculate the

marginal likelihood, which is essentially a normalization factor. However, because it is the

same for all probabilities, its determination is not necessary in practice, since it can be

cancelled by comparing ratios of probabilities rather than probabilities themselves. This is

one of the motivations for using methods based on stochastic sampling such as MCMC.

B. The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is one of several algorithms that can be used to

evaluate the Bayesian posterior distribution by realizing a Markov chain in the parameter

search space. This random walk satisfies the ergodic theorem, which allows the algorithm

to converge towards a stationary state that approximates the posterior distribution [28]. In

the present problem, it is assumed that measurement errors are uncorrelated, random and

therefore can be modeled by a normal distribution. Thus, a zero-mean Gaussian likelihood

function with variance σ2 is prescribed:

P (Ŝ|X) = exp

(

−
(

χφ
)2

(X)

2σ2

)

, (5)

This is a typical likelihood function used in many data fitting problems [29]. Furthermore,

it is assumed for the prior distribution that the model parameters pm have equal probability

over a finite range of values [pm,min,pm,max]:

P (pm) =







1
pm,max−pm,min

,∀ pm ∈ [pm,min,pm,max]

0, elsewhere







and P (X) =
∏

m

P (pm). (6)
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The algorithm is initialized with a solution X
0 = {p01,p02, ...,p0M}T , and then iterates via

the following steps:

1) Based on the previously accepted solution, Xn−1, define a candidate solution X
cand

for the defect geometry by randomly altering the parameters of Xn−1 such that

X
cand = X

n−1 +∆X(n), (7)

where ∆X(n) = {∆p1(n), ...,∆pM(n)}T is the step size in the Markov chain. ∆pm(n) is a

fraction of the search space associated with parameter pm. Its size depends on the iteration

(see section II-C).

2) Use the forward model to evaluate the scattered field from this candidate.

3) Estimate the likelihood of the candidate P (Ŝ|Xcand).

4) If the candidate is more likely than the previous accepted solution, then it is accepted,

otherwise it is accepted with probability P (Ŝ|Xcand)

P (Ŝ|Xn)
. This is equivalent to accepting the

candidate if

α ≤ min

[

1,
P (Ŝ|Xcand)

P (Ŝ|Xn)

]

, (8)

where α is a random number sampled between 0 and 1 from a uniform distribution.

5) If the candidate is accepted, then the algorithm moves to the new solution, and X
cand

is added to the chain [X0,X1, ...Xn−1], otherwise the algorithm stays at Xn−1.

In the resulting Markov chain, sets of consecutive accepted parameters are correlated.

Assume that the Markov chain has stabilized after nP solutions, and the remainder of the

chain contains NP solutions [Xnp ,XnP+1, ...XnP+NP−1]. To obtain statistically independent

samples with which to estimate the posterior distribution of parameters from the Markov

chain, solutions are sampled every J accepted sets, [XnP ,XnP+J,XnP+2J, ...], where J exceeds

the correlation length of the sequence. Typically, in X
nP...NP the correlation coefficients of

all consecutive sequences of length J are evaluated. This operation is repeated for increasing
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values of J , until the correlation coefficients stabilize under a value low enough to assume

uncorrelated samples, which indicates statistically independent data. For the present prob-

lem, it was observed that independent samples can be assumed around J = 30. In order to

be sure that correlations lengths are exceeded in all examples, J was heuristically set to a

higher value of 50. Finally the expected parameters values are calculated from the mean of

these samples:

X̂ =
J

NP

∑

k

X
nP+kJ. (9)

C. Speeding up convergence by simulated annealing

Generally a number of iterations are necessary for convergence of the MCMC algorithm,

and the efficiency of this method depends on the duration of this burn-in phase. It is however

not possible to know a priori the number of iterations necessary for convergence, because it

is influenced by

i) the sensitivity of the algorithm to parameters changes which strongly depends on the

physics of the problem;

ii) the step size in the Markov chain;

iii) the extent of the likelihood function, σ2 in Eq. (5), which is determined from an

estimate of the measurement error (e.g. due to noise level or any other source of uncertainty).

A narrow extent or large step size reduces the opportunity for randomly selected samples

to yield significant probability values and results in a low chance of acceptance in the MCMC

procedure. This may cause the algorithm to have a long convergence period.

Consequently, for faster convergence it is best to start with a first guess close to the global

minimum. This can be achieved by running a simulated annealing global optimization [30]

before the burn-in stage of the Metropolis-Hastings algorithm. Simulated annealing is also

an MCMC method and follows a similar procedure to the Metropolis-Hastings algorithm.
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However, its aim is to converge on the global optimum rather than generating samples from

the posterior distribution. To this end, both the step size of the Markov chain and the

extent of the acceptance probability function (analogous to the likelihood function in the

Metropolis-Hastings algorithm) are initialized with large values to allow broad sampling of

the parameter space. These values are slowly reduced with each iteration in what is termed

the ”cooling schedule”, and, if a sufficiently gradual schedule is chosen, the algorithm will

converge to the global optimum. In the examples of the sections IV and V, the simulated

annealing is started from a position defined randomly in the search space, generally far from

the global minimum.

In practice, the cooling schedule can be implemented in a number of ways. In this study,

a standard schedule is implemented over a number Na of iterations, where the variance of

the Gaussian acceptance function is reduced from T1 = 10σ2 to TNa
= σ2, and the step size

from a value of T1 =
sup(Pm)−inf(Pm)

2
to TNa

= sup(Pm)−inf(Pm)
50

. Sup(Pm) and inf(Pm) denote

the supremum and infimum of the parameter search space Pm, respectively. The cooling

schedule, T , is an exponential function that varies between these values such that:

T =







T1

(

T1

TNa

)n/Na

, if n≤Na

TNa
, if Na < n≤N.

(10)

For example, if parameter m is the depth of the defect, the associated search space is Pm =

[0;100%] and the step size varies from 50% at the first iteration to 2% at the last one. At

the end of the simulated annealing, the procedure enters the Metropolis-Hastings algorithm

and both the step size and the likelihood function are kept constant.

III. Forward modelling

Full 3D modeling of GW scattering problems has been made possible in recent years

thanks to the constant increase in computational power. However the Bayesian approach
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Fig. 1. Configuration and notations in the analytical model

described in section II.A typically requires between 10000 and 20000 iterations to collect

enough data for statistical moments to be calculated. Without an efficient model, computa-

tions would still require powerful machines and calculation times would remain prohibitive

for an inversion using the Metropolis-Hastings algorithm. Recently, an analytical model was

introduced for the scattering of flat-bottomed cavities with an irregular contour [22]. An

efficient FE model valid for any geometry of scatterer was also developed [8]. These mod-

els are used in this paper for the various simulations and are then briefly described in this

section.

A. Analytical model

Consider a flat-bottomed hole in a plate of thickness h. The thickness of the thinner

plate under the hole is denoted b. Assume that the θ-dependent radius of the hole, r, can be

expressed with a function once differentiable, f (figure 1). When a guided wave is incident

with a planar wavefront on the cavity in the harmonic regime at a given frequency, the

boundary conditions associated with the problem are such that:















S
sc(z,θ)n(θ) =−S

in(z,θ).n(θ), −h/2+ b < z < h/2, r = f(θ)

[Ssc(z,θ)−S
st(z,θ)]n(θ) =−S

in(z,θ).n(θ), −h/2< z <−h/2+ b, r = f(θ),

u
sc(z,θ)−u

st(z,θ) =−u
in(z,θ), −h/2< z <−h/2+ b, r = f(θ).

(11)
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where S and u denote the stress tensor and displacement vector of the acoustic fields, re-

spectively. Superscripts in, sc and st refer to the incident field, the scattered field and the

standing field beneath the cavity, respectively. n is the outward normal to the scatterer. The

stress and displacement fields in this equation depend on the z coordinate due to the differ-

ent mode shapes, and on the θ coordinate due to the non-circular geometry of the cavity.

Therefore direct inversion of this system is not possible. To solve this problem, a projection

method is used according to the following steps.

1) The acoustic fields are expressed in terms of a modal decomposition, where propa-

gating and evanescent modes are included:

S(z, θ) =
∑

j

S
j(z, θ) and u(z, θ) =

∑

j

u
j(z, θ); (12)

2) The θ-dependent functions in Eq. (12) are expanded into Fourier series:

S
j(z) =

∑

k

S̃
j

k(z)e
ikθ and u

j(z) =
∑

k

ũ
j

k(z)e
ikθ, (13)

where i is the complex number such that i2 =−1.

3) The resulting boundary conditions are projected onto a basis of appropriate projection

functions P (z,θ) to transform the dependency on z and θ into a set of coefficients.

4) The projected boundary conditions are expressed in the form of a system of linear

equations Aa = B where the unknowns a are the modal amplitudes, B is a vector related

to the incident field, and A is a matrix related to the scattered and standing fields. The

resulting system can then be inverted to calculate the elastic field in the plate.

This model allows problems with flat-bottomed holes that have a non-circular contour to

be solved, e.g. an ellipse or even an irregular shape. For a detailed description of this model,

including invertibility of the matrix and stability of the approach, the reader is invited to

refer to refs. [21] and [22].
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B. Efficient finite element model

In this section the main aspects of the efficient FE model [25] are briefly described. The

objective of the modeling process is to deduce the scattered field at any point from a finite-

sized, arbitrary shaped scatterer in any incident wavefield. If the boundary of the scatterer

is stress free then the boundary condition Ssc
iknk =−Sin

iknk on the scatterer’s surface can be

directly implemented into the FE model. Here {Sij} is the tensor notation for the stress

tensor S, subscripts ”in” and ”sc refer to the incident and scattered wavefields, and n= {nk}

is the outward surface normal. Therefore explicit generation of the plane incident wave is

not required.

The procedure is based on a numerical implementation of the integral representation

formula for an elastic solid (the formal statement of Huygens’s principle) along a closed

surface Csc that bounds the scatterer. The scattered wave field recorded from a model can

be propagated to any point r outside Csc using expression

usc
i (r) =

∫

Csc

[

usc
j (rc)S

G
ijk(r, rc)−Gji(r, rc)S

sc
jk(rc)

]

nkdCsc (14)

where n = {nk} is the outward surface normal, G = {Gij} the Green’s function for an

isotropic elastic plate [32], SG = {SG
ijk} is the stress tensor corresponding to the Green’s

function. The physical interpretation is that a scattered wavefield outside Csc can be syn-

thesized by the superposition of the fields from appropriate monopole, G, and dipole, SG,

sources on the surface Csc. In practice the dipole sources are implemented as a finite dif-

ference approximation of derivatives in the expression for the stress field. In the far field

r→ inf the Green”s function can be written as a sum of different modes as

Gji(r, rc) =
1√
r

∑

q

bqu
q
iu

q
jexp(−ikqrc.esc)exp(−ikqr) (15)
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where esc = r/r, uq is mode shape and bq are some coefficients. Substituting this asymptotic

into the integral (14), finally the expression for the far field scattering amplitude (or scat-

tering matrix [23]) can be obtained in the form of superposition of monopoles and dipoles

sources on the surface Csc, with amplitudes determined by the displacement field obtained

from the FE model. For the detailed derivation of the expression for the scattering matrix,

including explicit formulas for the modal coefficients bq, the reader is referred to ref. [23]

In the previous model [23], [24] the scatterer was surrounded by artificial damping layers

in order to absorb the scattered field and prevent it being reflected back onto the scatterer. In

this case any boundary conditions (for example, stress-free) on the boundary of the modeling

domain, Cbnd, can be taken as the scattered field is negligibly small anyway. However,

here the model without absorbing region is considered and then appropriate non-reflecting

boundary conditions have to be imposed on Cbnd. One possible approach is to use the

Huygens’ principle (14) again, but now as a boundary condition [25]. A similar method of

constructing non-reflecting boundary condition for acoustic media was used in Ref. [31].

Such a boundary condition is non-local in space and in the context of FE model, after

discretization, can be written as

usc
i (rbnd) =

∑

Cref

∑

j

gij(rbnd, rref )u
sc
j (rref ), rbnd ∈ Cbnd, rref ∈ Cref (16)

where Cref is some reference surface which encloses the scatterer and coefficients gij(rbnd,rref )

depend on the Green’s function Gij. Therefore, the wave field at the boundary nodes is rep-

resented as a function of the wave field on the reference surface. The detailed description and

rigorous mathematical justification of the FE model, in particular, non-reflecting boundary

conditions, is out of scope of this paper and will be presented in a separate publication.

Note, that validity of FE model in all calculations was verified by analyzing its convergence

and by checking the energy balance.
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The method described above is based on the knowledge of the Green’s function of the

media. For an isotropic plate the Green’s function can be calculated analytically provided

that the dispersion curves and modes shapes are known [32]. Dispersion curves and mode

shapes can be generated by using various techniques, for example, semi-analytical finite-

element, global matrix or transfer matrix methods. The Green’s function is represented as a

superposition of different modes, and theoretically all existing modes (propagating and non-

propagating) at a given frequency have to be taken into account. However, if the reference

surface Cref is located at a distance of several elements from the scatterer, the Green’s

function expansion can be truncated and only the first few non-propagating modes need be

included to provide good accuracy.

IV. Numerical examples

Simulations allow full control over important parameters such as noise, frequency or

geometrical features. Therefore they are particularly well suited to evaluate theoretical

capabilities and limitations of the method described in section II. In the following examples,

the geometry of the scatterer is calculated with 2 or 3 of the fundamental modes, and one

incident angle. Either all or part of the scattering angles are used, which is referred to as

a full or partial scattering pattern, respectively. Additional calculations are also made to

demonstrate that the accuracy of the results can be improved when more incident angles of

the scattering matrix are used.

A. Elliptical flat-bottomed holes

First, flat-bottomed holes are considered and simulations are made with the analytical

model. Contrary to complex defects, their geometry can be described exactly with only a

few parameters and, although they are not representative of real defects, they are often used
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in an industrial context for calibration purposes. They are ideal to study the sensitivity of

the Bayesian approach to parameters such as the amount of collected data (sections A.1-A.4)

and measurement error (section A.5).

The parameters to be estimated, X = {p1, p2, p3, p4}T , are defined such that: p1 is the

major axis of the ellipse, p2 is its aspect ratio, p3 is the depth and p4 is the incident angle

ϕ. The full search space of the candidate parameters is defined such that: P1 = [0,50mm],

P2 = [0.25,1], P3 = [0,h] and P4 = [−90◦,90◦]. The search space for the major axis P1 could

be extended beyond 50 mm, but it was chosen to restrict the search below a value of twice the

incident wavelength. Note that for the aspect ratio, the minimum value in the search space

is 25 %, because the analytical model does not allow accurate solutions to be calculated for

smaller values [21]. Moreover, because of the symmetry of the scatterers, it is not necessary

to extend the search space below -90◦ and beyond +90◦.

Six different flat-bottomed holes were considered. They are referenced in table 1. The

model is used to calculate the scattered field of each cavity, and white noise is added to the

scattered modes amplitude in order to simulate experimental data. To be consistent with

Eq. (5), Gaussian noise with mean 0 and standard deviation σ, N(0, σ) is simulated. For

example, in the scattering matrix of mode S0 the noise is normally-distributed with θ such

that:

Ŝ0(θ) = S0(θ)
[

N(0, σ2/2) + iN(0, σ2/2)
]

. (17)

The acquisition of the scattering matrices for modes A0 and SH0 is modeled in the same way.

The frequency of investigation is 200 kHz, and the simulations are made in a steel plate of

thickness h= 5 mm. The material properties are: longitudinal velocity cL = 5900 m/s, shear

velocity cT = 3230 m/s, and density ρ= 7800 kg/m3. The incident mode is S0, which has a

wavelength of 26 mm at this frequency. The wavelength of the other 2 modes, SH0 and A0, is
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16 mm and 12 mm, respectively. In order to satisfy Eq. (1), the maximum dimension in the

search space being 100 mm, the scattered field was measured with an angular sampling of 5o.

An example of scattering pattern is shown in figure 2 for cavity # 3. The figure also shows

the restricted measuring angles used in sections A.2 and A.4 as red arrows. To calculate

an accurate first guess for the MCMC algorithm, the simulated annealing is performed over

Na = 2500 iterations. This is followed by the MCMC algorithm over an additional N = 7500

iterations, thus making the total number of iterations equal to 10000. Computations were

made on a laptop with 16 Gb memory and a clock frequency of 2.6 GHz, using MATLAB.

With this configuration, the computational time was 2.5 hours for each inversion.

TABLE I

Parameters of the cavities and their corresponding symbol in figure 2

Diameter (mm) Aspect ratio Depth (% of h) ϕ(o) symbol
Cavity# 1 4 0.60 35 60 □
Cavity# 2 18 0.65 40 0 ♢
Cavity# 3 22 0.75 25 -60 o
Cavity# 4 9 0.40 60 33 △
Cavity# 5 6 0.34 50 30 ▽
Cavity# 6 10 0.50 75 45 ⋆

A.1 Estimation from the full scattering pattern

In order to study the accuracy of the method in ideal conditions, the parameters are first

estimated with the assumption that the full scattering pattern is available, with a realistic

noise level set equal to σ = 0.01. Results are shown in figure 3-a. Errors between the

estimated and true parameters are less than 2%, apart for cavity # 1 where it is slightly

larger on the aspect ratio (6%). The 90th percentile of the solutions (i.e. 90 % of the

statistically independent solutions) is within 5% of the estimated parameters, apart for the

aspect ratio of cavity # 1 where it is within 10%. The slightly inferior accuracy of the aspect

ratio for this cavity is due to its very small diameter (4 mm) compared to the wavelength.
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Fig. 2. Far field amplitude of the 3 fundamental modes when the S0 mode is incident on cavity # 3 in a
5mm steel plate at 200 kHz. Amplitudes are calculated from parameters in table 1 with added white noise
as defined in Eq. (17) (solid line) and from the estimated parameters from the posterior distribution of the
MCMC (dashed line). The red arrows and straight lines indicate the limits of the measuring angles (i.e.
-60◦ and +60◦) in the restricted scattering pattern used in sections A.2 and A.4, and the black thick arrows
indicate the direction of the incident S0 mode.

For scatterers with very small dimensions compared to the wavelength, the shape has less

influence on the scattered field, because such scatterers start to behave like point sources.

Then, small cavities tend to result in similar directivity patterns even if they have different

shapes. Overall an excellent agreement can be observed between the true and estimated

parameters, and the 90th percentile of the solutions indicates the very good reliability of the

results. However, if one is interested in better characterization of the smallest cavities, the

difficulty could be overcome by using several incident angles in the scattering matrix, instead

of just one. This is demonstrated in the following sections.

A.2 Estimation from partial scattering pattern and 3 modes

Contrary to the previous section, parameters are estimated from part of the scattering

pattern of the 3 modes. In order to simulate realistic, on site measuring conditions, it was

chosen to limit the amount of data to positions ranging from θ =−60◦ to θ =+60◦. Results

are shown in figure 3-b, and it can be seen that estimation of the parameters remains accurate,
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Fig. 3. (color online) Estimated geometrical parameters in the studies of sections A.1-A.4 for the 6 flat-
bottomed holes described in table 1: estimations from a) full scattering pattern and 3 modes (section A.1),
b) partial scattering pattern and 3 modes (section A.2), c) full scattering pattern and 2 modes (section
A.3) and d) partial scattering pattern and 2 modes (section A.4). The red symbols indicate an estimation
procedure made with 3 incident angles instead of only one. Error bars represent the 90th percentile (i.e. 90%
of the statistically independent solutions).

errors with the true parameters being less than 4%, and the 90th percentile being within 8%

of the estimated parameters. Accuracy and confidence is however inferior on the depth and

aspect ratio of cavity # 1, the error being of 28% and 20%, respectively. This is also due

to the small size of this scatterer compared to the incident wavelength, as explained in the

previous section.
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Note that the lack of data in the partial scattering pattern may be compensated by

changing the direction of the incident mode and by measuring a second partial scattering

pattern. From an experimental point of view this requires only to change the position of

the emitter, and is therefore straightforward to realize. This can be repeated with as many

incident angles as desired, thus increasing the amount of data available for the estimation

of the defect. If changing the incident angle is not possible, alternative solutions consist of

changing another parameter that has influence on the scattering pattern, such as the incident

mode or the frequency of inspection. However this is at the cost of increased computational

time, because at each iteration of the MCMC algorithm, the number of simulations is equal

to the number of incident angles, or to the number of any other parameter that is being

changed to collect more data.

For the sake of illustration, compensation using a second incident angle was tested on

cavity # 1, which exhibits the most sensitivity to the limitation of measuring positions.

Then, instead of calculating the RMS as defined in Eq. (3), in this particular case χ is

calculated such that:

χ(X) =

√

(χφ(X))2 + (χφ+∆φ(X))2

2
, (18)

where ∆ϕ is the difference between the two incident angles.

Estimation of the parameters of cavity #1 with two incident angles instead of just 1

allowed a reduction of the errors on the aspect ratio, depth and incident angle to 15 %, 6%

and 4%, (down from 20%, 28% and 8%, respectively). The error on the diameter remained

unchanged at 0.5%. Moreover, the 90th percentile on the maximum depth and incident

angle was also reduced sightly to 13% and 7% (down from 15% and 11%, respectively). The

changes on the 90th percentile of the other 2 parameters were negligible. This proves that if

computational time is not an issue, accuracy of the estimated defects can be kept to a very
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good level despite the generally restricted range of angles available to measure the scattering

patterns in a realistic situation.

A.3 Estimation from full scattering pattern and 2 modes

Because not all modes can be measured on-site, this section shows the performance of

the method when the scattering pattern of modes S0 and A0 alone can be measured. Results

are shown in figure 3-c. Performances are similar to those in the previous case (section A.2),

in terms of error and confidence interval. Overall very good agreement between the true and

estimated parameters can be observed, except again for cavity #1 for which the orientation

angle is mis-calculated and the confidence interval on the aspect ratio and depth is not as

good.

A.4 Estimation from partial scattering pattern and 2 modes

This configuration corresponds to the worst case. The inversion procedure is performed

with modes S0 and A0 only, and with a scattering pattern identical to that in section A.2,

i.e. for measuring positions ranging from θ = −60◦ to θ = +60◦. The corresponding esti-

mations are shown in blue in figure 3-d. One can see that several parameters are not well

estimated, the error with their true value being up to 100% for cavity #4. In that case the

problem becomes under-constrained because too much information about the scattered field

is missing, which means that some prior knowledge about the scatterer becomes necessary

for a good estimation.

It is possible to overcome this difficulty by increasing the number of incident angles, in

the way described in section A.2. This solution was then tested with incident angles taking

the following 3 values: −60o, 0o and 60o. The corresponding results are shown in red in figure

3-d), and one can see that both accuracy and confidence then become as good as when the
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full scattering pattern and 3 modes are used in the inversion process (figure 3-a).

A.5 Sensitivity to noise level

In this section, the robustness of the approach is investigated relative to the noise level.

A parametric study is made by varying σ from 0.001 to 0.06. Depending on the size of the

geometry, a given noise level may affect differently the solution of the Bayesian procedure.

For example a cavity with a small dimension compared to the incident wavelength will not

scatter much energy, resulting in signals with a small amplitude and then more likely to

a have a poor signal to noise ratio (SNR). Hence for this study to be meaningful, rather

than considering noise levels (i.e. given values of σ), the SNR will be considered instead.

The signal to noise ratio is defined here as a function of the ratio between the power of the

scattered modes and that of the noise such that:

SNR = 10log10

∣

∣

∣

∣

1/3(ES0
+ ESH0

+ EA0
)

Enoise

∣

∣

∣

∣

(19)

where Enoise = 2πσ2, ES0
, ESH0

, and EA0
are the power of the noise and that of the 3

fundamental guided modes, respectively. The power of the modes is calculated as the integral

over θ of the square of their amplitude. The SNR associated with the different combinations

of cavities and noise levels are referenced in table 2, and one can see that the sensitivity of

the method is investigated for values ranging from 0 to 43 dB.

TABLE II

Noise level and the corresponding signal to noise ratio (in dB) for the different cavities

σ = 0.001 σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05 σ = 0.06
Cavity# 1 25.7 7.3 2.9 1.7 1.1 0.6 0.4
Cavity# 2 37.0 18.1 11.7 9.5 6.6 5.6 4.7
Cavity# 3 33.8 14.2 9.0 6.0 4.7 3.4 3
Cavity# 4 41.8 21.8 16.6 12.7 9.9 8.9 7.3
Cavity# 5 34.6 14.5 9.1 6.1 4.7 3.6 2.8
Cavity# 6 42.9 22.7 16.8 13.1 11.3 9.4 7.7
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Results are presented in figure 4, which shows 2 quantities: the error of the results

relative to the true values (figure 4-a) and the 95 % confidence interval around the estimated

solutions (figure 4-b). For clarity, rather than plotting the error and confidence interval of

the 4 parameters individually, instead the mean error and the mean confidence interval are

plotted. In both figures the data seem to follow an exponentially decreasing trend, and then

a least squares exponential fit of these quantities is plotted (correlation coefficients of 0.78

and 0.89, respectively).

For the interpretation of these results, 3 intervals of SNR are considered:

- zone 1, 0≤ SNR≤ 5 dB, representative of very poor measurements quality

- zone 2, 5< SNR≤ 25 dB, representative of realistic measurements quality

- zone 3, SNR > 25 dB, representative of ideal measurements conditions

Zones 1 and 3 are unrealistic situations because the former represents measurement condi-

tions where the scattering pattern is lost in the noise while the latter represents measurements

with negligible noise where the scattering pattern is very clear. See for example the modal

directivity for cavity #1 when the SNR is 0.4 dB (figure 4-b) and 26 dB (figure 4-a).

In zone 1, the method allows an estimation of the parameters with an average error

less than 45% relative to their true values. However, the confidence interval is not as good,

since it spreads within a 80% interval around the estimated solutions. This means that

the solution can be approximated with limited accuracy in this regime. This is still a

reasonable performance given the very poor SNR in this zone. In zone 2, the method is

much more accurate and parameters are estimated with errors comprised between 1% and

10% of their true value, while the 95% confidence interval remains between 4% and 40%

of the estimations. As expected, in zone 3 the method performs best, the error of the

parameters being less than 1% and the 95% confidence interval being within less than 4% of
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Fig. 4. (Color online) a) Mean relative error and b) 95% mean confidence interval around the solution as
a function of SNR. Each symbol represents one of the different defect geometries (table 1) at a given noise
level (table 2). The black curve represents an exponential fit of these data. To illustrate the effect of SNR
on modal amplitude measurements, the directivity of the scattered modes and their best fit are plotted for
cavity #1 when σ = 1e−3 (left) and σ = 6e−2 (right)

the estimations. We would like to emphasize that the dimensions of the cavities are all sub-

wavelength defects, the smallest having a size of 15% the incident wavelength. Overall the

accuracy of the method in the three zones is therefore very encouraging. Given comparable

conditions of data acquisition (i.e. SNR, quantity of data...), this characterization method

seems to outperform current imaging algorithms, such as the linear sampling method, GW

tomography and algorithms based on time-of-flight estimation, which are so far unable to

provide neither a detailed full 3D description of the scatterers nor a mean of quantifying the

uncertainty in the solution.

B. Corrosion defects

In this section, 2 corrosion defects are characterized. Their profile were obtained from

laser scans on a steel pipe with a wall thickness of 5mm and outside diameter of 300 mm

(courtesy of the Department of Mechanical Engineering at Imperial College London, London,

UK). The map of these defects is shown in figures 5-a and 6-a in the form of isolines, the
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intensity of which represents the depth of the defect as a percentage of the pipe wall-thickness.

Note the presence of a typical, sharp corrosion pit on top of a more extended corroded area.

The pit is only initiated in the first defect (at position X = Y = −5 mm in figure 5-a, but

it can be seen clearly in the second one (at position X = −10 mm and Y = −5 mm in

figure 6-a. This makes the defect very difficult to characterize remotely with guided wave

inspection. The maximum depth of the defect, which is the most critical parameter, can

generally not be determined and on-site interventions for an eventual repair or replacement

of the corroded pipe are decided with empirical criteria. It is therefore essential to be able

to provide an accurate estimate of the maximum depth of the defect.

Similarly to the previous section, measurements are simulated by calculating the far field

amplitude of the 3 fundamental scattered modes when the S0 mode is incident, and by adding

white noise using Eq. (17). The signal-to-noise ratio is set to 15 dB in both cases. Estimation

of the defect profile is made with the full scattering pattern at a frequency of 150 kHz. Then

the largest dimension of both defects is less than 75% of the incident wavelength (i.e. 35.4

mm at this frequency). Note that for this pipe the wall thickness is small compared to the

outside diameter. Moreover, at this frequency its curvature is negligible at the wavelength

scale. In these conditions the scattering problem in the pipe is equivalent to that in a steel

plate of thickness 5 mm [33]. Therefore simulations are made in a plate rather than in a

pipe.

Because a model of flat-bottomed hole cannot fit accurately the geometry of the defects,

the FE model is used in this study. Moreover, there is no regular geometry that can describe

exactly the complex defects. Therefore, to estimate adequately their geometry with the

model, a set of control points is defined. In the plate, the X, Y and Z coordinates of

these points define the test parameters in variable X
test. A profile of the candidate defect
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is then generated with a 2D spline interpolation of the control points over a 54 x 54 pixels

map. The pixel size of the map is 1x1 mm2 so that it matches that in the laser-scans of

the defects. Note that corrosion (i.e. the actual defect plus the surface roughness in its

immediate vicinity) is modeled only inside this map with the control points that modify

the wall-thickness. Outside the map, the Green’s function in the FE model is that of a

regular stress-free plate, and surface roughness that might be caused by corrosion along the

propagation is not taken into account. The simulated annealing is performed over 5000

iterations followed by N = 15000 iterations in the MCMC algorithm.

In the model, the mesh is made of tetrahedral elements with a maximum size of 1.5 mm.

This size is approximately equal to 1/10 the smallest wavelength in the scattered field (i.e

that of mode A0) and 1/25 the largest one (i.e that of mode S0). This choice was made to

allow a good compromise between computational costs and accuracy. Computations were

made with the same laptop as the one described in the previous section, and each iteration

took about 15 seconds, thus making the total calculation time of 80 hours for the 20000

iterations.

For the first defect profile, the number of control points was progressively increased from

1 to 10 by adding 1 control point every 500 iterations in the simulated annealing. For the

second defect profile, which has a more complex geometry, the number of control points was

increased from 2 to 20 by adding 2 control points every 500 iterations. It is however possible

that a more optimal number could be defined. Further investigation is necessary to evaluate

the best compromise between accuracy and convergence. The simulated annealing is started

at control points with random coordinates X,Y and Z. The next control points are added at

random positions X and Y , with their Z coordinate equal to the depth of the last accepted

defect profile at these positions. The full search space for the X and Y coordinates of the
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control points is P1,2 = [−30mm,30mm] in order to cover dimensions up to twice the incident

wavelength, and that of the Z coordinate was P3 = [0,5mm]. Progressively, all control points

converge to the position that best interpolates the true defect.

In the posterior distribution, statistically independent defect profiles are produced by

sampling every 50 iterations, as explained in section II-B. The final estimated defect profile

is then the average of these profiles at each pixel of the map, so that statistics about the

defect can be calculated at critical positions such as that of the maximum depth.
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Fig. 5. (Color online) a) and b): map of the true and estimated defect #1, the red dots indicate the
mean of the control points in the posterior distribution; c) difference between the 2 profiles. The gray-scale
represents the wall-thickness loss in terms of percentage of the total thickness; d) and e) 3D view of the true
and estimated defect #1; f) comparison between the true (thick solid line) and estimated (thick dashed line)
profiles in the pixels along the diagonal of the map with the standard deviation (thin dashed lines).

Results for the first defect profile are presented in figure 5. Figure 5-a and 5-b show the

true and estimated profiles, respectively. The contour of the isolines at the different depths

indicate a very good agreement between the 2 profiles, both in terms of dimensions and

depth. In particular, the estimated maximum depth is 59% while that of the true defect is
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55 %. The error between the 2 profiles is plotted in figure 5-c. It is almost null in the major

part of the defect, including at the location of the maximum depth. However it rises up to

20 % of the plate thickness in some pixels located at the edges of the defect. A quantitative

comparison between the estimated and true profiles is plotted in figure 5-d, which shows the

depth of the defects in the pixels along the diagonal of the map, and the standard deviation.

Note the narrow confidence interval, which indicates that the estimated solution is reliable.
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Fig. 6. (Color online) a) and b): map of the true and estimated defect #2, the red dots indicate the
mean of the control points in the posterior distribution; c) difference between the 2 profiles. The gray-scale
represents the wall-thickness loss in terms of percentage of the total thickness; d) and e) 3D view of the true
and estimated defect #2; f) comparison between the true (thick solid line) and estimated (thick dashed line)
profiles in the pixels along the diagonal of the map with the standard deviation (thin dashed lines).

Results for the second defect profile are presented in figure 6. The performance of the

MCMC algorithm in that case is similar to that in the previous one. Overall the estimated

profile (figure 6-b) is in good agreement with the true profile (figure 6-a). The maximum

depth is 79% in the estimated profile and 85% in the real one, so it is slightly underestimated.

The error between the estimated and true profiles is negligible in the major part of the map
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(figure 6-c), except in some pixels at the edges of the defect, where it rises up to 22 %. At

the location of the maximum depth, the confidence interval (figure 6-d) is not as good as in

the previous case. This could be improved at the cost of increased computational time, by

refining the mesh in the FE model so that the sharp pit can be discretized more accurately.

The element size of 1.5 mm used in this simulation is indeed not fine enough to accurately

account for the sharp geometrical variations in this profile.

The higher error levels at the edges of the profiles is due to the fact that the maps of the

real defects have low resolution (i.e. 1x1 mm2). This results in sharp variations of depth from

one pixel to the next, which probably do not describe the genuine defects properly. A scan

with a finer resolution (e.g. 0.25x0.25 mm2) would provide a smoother and more accurate

profile of the actual defects, which would allow a better interpolation of the real geometry.

Errors of this type are believed to be of minor importance, because overall the agreement is

very good in the major part of the maps, but if one is interested in having a reduced error in

all pixels, then the spline-based interpolation may not be the most appropriate method. A

radical solution to this problem would consist of running the inversion process by considering

each pixel of the map as a parameter, in which case corrosion could be accounted for more

finely in the map of the defect. However, with a map of 54x54=2916 pixels, the number of

parameters would be too large for a convergence within the 20000 iterations. Moreover, a

finer mesh would be required in the model to account for such fine variations in the geometry

of the candidate defects, and this is out of the scope of this paper.

V. Experimental Examples

In this section the imaging method is tested on experimental data obtained from an

approximately circular flat-bottomed cavity manually machined into a 3 mm thick aluminium

plate. In order to avoid unwanted reflections from the edges to interact with the scattered
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wave, the dimensions of the plate are 2mx2m (figure 7-a). The depth of the cavity was

measured to range from 0.5 to 1 mm and the diameter was 13 ± 1mm (see photo in figure

7-a).

For the acquisition of the data, Electromagnetic Acoustic Transducers (EMAT) con-

nected to a dedicated amplifier were used and controlled with a Matlab interface. The

EMATs are specifically designed for the generation and detection of the S0 Lamb mode and

exhibit around 30 dB greater sensitivity to this mode than to A0 and SH0 modes. It was

not possible to measure the amplitude of the other two modes, because appropriate sensors

were not available. The transmitted wave is a 3 cycle Gaussian-windowed sinusoidal wave

of central frequency 200 kHz. The transmitting EMAT was located 55 cm away from the

centre of the defect so that the wavefront of the incident mode can be considered plane.

The receiving EMAT was located in the far field of the defect, 45 cm away from its centre,

and moved by hand at positions ranging from -110o to +110o of the incident direction axis,

with an increment of 5o. The measured signals were then band-passed filtered and Fourier

transformed so that the amplitude of the scattered wave could be evaluated at the central

frequency. The resulting θ-dependent amplitude of the scattered S0 Lamb mode has a SNR

of 7 dB, and is plotted in figure 7-b.

In the previous section, no prior knowledge was assumed about the defects, because the

scattered fields of at least 2 modes were used to produce an image of the defect. However,

only part of the scattered S0 mode amplitude can be measured in the present case. To

compensate for this lack of data, here prior knowledge is assumed about the depth of the

hole to perform the inversion. The assumption is that it is less than 2 mm (i.e. less than

2/3 of the plate thickness).

First, the analytical model was used, with a cooling schedule and a search space identical
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to those in section IV-A. The estimated parameters are: diameter = 14.8 mm ± 2mm;

depth = 0.3± 0.1mm; aspect ratio = 0.92 ± 0.07; orientation = −7.7o ± 6.4o. The radius,

aspect ratio and orientation are within the measurement errors, but the depth is slightly

underestimated. The main reason is the geometry of the machined hole, which is not perfectly

flat-bottomed. This results in a lower back-scattered amplitude, which can be identified

clearly in figure 7-b in the direction of the incident wave (i.e. at 0o) where the amplitude

drops. If the geometry of the hole was perfectly flat-bottomed, then the amplitude of the S0

mode would be maximum in that direction. Consequently the analytical model is not ideal

for this somewhat irregular defect.

A second defect reconstruction was then made from the FE model with the same prior

knowledge about the depth. Because the geometry of the defect is a flat-bottomed hole,

contrary to the previous section where the distribution of control points was random, here

20 equally spaced control points are defined on a circle, the radius of which is a parameter of

the inversion process. The Z coordinate of each control point are parameters as well, so that

the model may account for depth variations at the contour of the hole. Moreover, to account

for the non-perfectly flat bottom, additional control points are added randomly inside the

circle, in a similar way as that of section IV-B. The number of these points is increased

progressively from 1 to 10 every 500 iterations over the simulated annealing optimization.

The estimated profile is shown in figure 7-c. Its diameter is 12.5 mm and its depth varies

between 0.2 mm and 1.2 mm. This is consistent with observations made on the true defect.

The best fit of the experimental data is shown in figure 7-b for both the analytical (red

dotted line) and FE model (solid blue line). The latter is slightly better, which is confirmed

by the value of the RMS between the experimental and modeled scattered field: that of the

analytical model is 4.2x10−3 V while that of the FE model is 3.6x10−3 V. The authors are
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confident that the accuracy of the estimated profile could be improved if more data about

the scattered field could be collected, for example if the amplitude of the A0 mode was also

measured.
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Fig. 7. (Color online) a) Schematic of the experimental setup b) θ− dependent amplitude obtained from
measurements (thick black line) and the best fit from the analytical (red dashed line) and FE (solid blue line)
models, c) photography of the drilled hole, d) estimated defect profile from the FE model and e) estimated
profile along the pixels of the (O-Y) axis (solid line) with the standard deviation (dotted line).

VI. Conclusions

This paper introduced a Bayesian evaluation method to characterize defects from their

scattered fields. The principle of the method is to fit simulated scattered fields to exper-

imental data, which was achieved thanks to a Markov Chain Monte Carlo algorithm used

in combination with efficient models. Various sub-wavelength defects such as elliptical flat-

bottomed holes or complex corrosion defects were accurately estimated, and for the estima-
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tions a good confidence interval was obtained, i.e. within about 5% of the solution. The

method showed very good robustness to noise, the accuracy and confidence interval both

following an exponential decay as a function of SNR. At noise levels typically encountered

in NDT (i.e. for SNR ≥10dB), the error on the geometrical parameters is less than 5%.

In addition, a study of the robustness of the method with respect to the amount of data

showed that accurate characterization could still be achieved when only partial data about

the scattered field is available. In particular, it was shown that when only 1 or 2 of the

guided modes can be measured on a restricted range of scattering angles, accuracy and con-

fidence interval can be made as good as when the full scattered field is measured by using

just one or two more incident angles in the scattering matrix. However, this paper is an

initial demonstration of the approach and the empirical observations about the uniqueness

of the reconstructed scatterer based on partial data require further study. For best perfor-

mance, developing a data acquisition system with the capability to perform measurements

of the amplitudes of the 3 modes with good SNR would be an important improvement. The

method showed promising results and with optimized coding and computational power, for

example using a GPU, it could become a powerful tool to characterize any kind of scatterer.

Additional efficiency improvements could be achieved by combining the MCMC algorithm

with differential evolution algorithms to optimize the search in the Markov chain for faster

convergence. Although the investigations in this paper concerned GW only, this approach

can be extended to any scattering problem, including the imaging of multiple scatterers or

inspections using bulk waves in medical imaging problems for early characterization of small

tumors.
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