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S U M M A R Y  
We discuss 3-D rotations by which one double-couple earthquake source can be 
rotated into another arbitrary double-couple. Due to the symmetry of double- 
couple sources, there are four such rotations. An algorithm is obtained in analytical 
form which is also available as a computer program solving the inverse problem 
of 3-D rotation of double-couple earthquake sources, i.e., for each pair of focal 
mechanisms or seismic moment tensor solutions the program finds all four rotations 
which rotate one mechanism into another. This algorithm may be used in a wide 
variety of studies of stress field causing earthquakes, investigations of the relation- 
ship between the focal mechanisms and the tectonic features of a seismogenic 
region, etc. The same inversion algorithm can be used to study the 3-D rotation of 
any symmetric second-rank tensor, such as the stress or strain tensor. 
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1 INTRODUCTION 

Earthquake focal mechanisms depend both on the ambient stress field, and on local variations in its strength and elastic 
properties of rocks. Earthquakes strongly perturb both the stress and mechanical properties, often causing fault planes to 
deviate or ‘splay’ into branch faults. This branching is essential to the triggering of later earthquakes, and to comprehension of 
the observed distribution of deep and surface faults. In our previous investigations (Kagan & Knopoff 1985; Kagan 1990, and 
references therein) we found that the fracture surface of an earthquake is not completely planar, although it can be 
approximated by a plane, especially in the early stages of rupture. The deviations of rupture surfaces from planes are 
described by a rotational Cauchy distribution (Kagan 1990). However, the two-point statistical moment of a seismic moment 
tensor (Kagan & Knopoff 1985) gives only partial information about the degree of non-planarity and 3-D rotation of focal 
mechanisms. To study branching empirically, we need to derive a statistical distribution for the rotation angles (disorientations) 
between pairs of earthquake focal mechanisms. 

Since a sufficient number of traditional fault-plane and moment tensor solutions is available, we can undertake a study of 
the correlation of focal mechanisms of individual earthquakes to see whether they yield any information regarding spatial 
orientations of earthquakes and microearthquakes that make up a fault system. We assume that the fault-plane solutions for 
individual earthquakes give evidence for the variations in alignment of the respective fracture surfaces and hence in the 
orientation of portions of an extended fault system. In this paper we discuss 3-D rotations by which one double-couple 
earthquake source can be rotated into another arbitrary double-couple. A double-couple source is a standard mathematical 
model for an earthquake focus. Due to the symmetry of double-couple sources there are four such rotations. If one of the 
rotations is small, we can often ignore the other three rotations; however, even cursory inspection of focal mechanism maps 
(Goter 1987) shows that often such disorientations are large and hence all four rotations need to be found and studied. 

Although studies of regional stress patterns from earthquake focal mechanism data (Michael 1987; Jones 1988; 
Oppenheimer, Reasenberg & Simpson 1988; Zoback 1989, and references therein) yield a significant insight into the fracture 
process and its variation in time and space, the standard methods of interpretation depend strongly on some, sometimes 
arbitrary, assumptions. Moreover, in places where focal mechanisms are strongly disoriented, these methods depend on 
preliminary regionalization of mechanisms which also leads to some subjectivity of the results. Inverting double-couple 
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solutions for sources of acoustic emission in rock specimens (House et al. 1989) seems to indicate that the procedure is 
unreliable in evaluation of the state of stress. 

Giardini & Woodhouse (1984), Frohlich & Willemann (1987), and Michael (1989) studied the clustering of aftershock 
hypocentres with respect to focal mechanisms of main shocks, as well as the distribution of angles between the median plane 
of subducting lithosphere and focal planes of earthquakes. These studies may also benefit from ability to determine mutual 
rotations of focal mechanisms of earthquakes. The study of focal mechanism rotations will allow for a better prediction of the 
future development of rupture during earthquake sequences which might contribute to better earthquake forecasting. Thus it is 
important to have an inversion scheme which, if given two earthquake focal mechanisms, yields all of the four rotations of one 
double-couple to be superimposed upon another. The inversion algorithm described below, is also presented as a FORTRAN 

program (see Appendix). 

2 CALCULATION OF THE ROTATION QUATERNION FOR DOUBLE-COUPLE 

Using the known correspondence between normalized quaternions and 3-D rotations (see, for example, Klein 1932; Le 
Pichon, Francheteau & Bonnin 1973, p. 38 and their appendix; Altmann 1986, chapter 12; Chang, Stock & Molnar 1990; 
Kagan 1990), we have compiled a computer program to calculate the normalized quaternion corresponding to an arbitrary 
double-couple. As Altmann (1986) and Chang et al. (1990) discuss, the quaternion parametrization of the 3-D rotation has 
many advantages. These authors also discuss other methods for parametrization of the 3-D rotation, like the Euler angles, 
Cayley-Klein parameters, etc. The quaternion q is defined as 

The first quaternion’s component (qo) is its scalar part, q l ,  q2,  and q3 are components of a ‘pure’ quaternion; the imaginary 
units i ,  j ,  and k obey the following multiplication rules: 

i 2 = j 2 = k 2 = - 1 ,  i j = - j i = k ,  k i = - i k = j ,  j k = - k j = i .  (2) 

From (2) it is seen that the multiplication of quaternions is not commutative, i.e., depends on the order of multiplicands, the 
non-commutability also a property of finite 3-D rotations. The conjugate q* and inverse 4-l of a quaternion are defined as 

q* = qo - q, i  - q 2 j  - q3k, qqP1= 1. 

We take a normalized quaternion as ( l ) ,  where 

q; + q: + q: + q: = 1. 

(3) 

(4) 

The normalized quaternion defines a 3-D rotation, i.e., the rotation angle is determined as @ = 2 arccos (qo). The vector part 
of a quaternion corresponds to the rotation axis (Altmann 1986). For the normalized quaternion 

Using normalized quaternions we calculate rotated vector R(u) by using rules of quaternion multiplication (2): 

R(u) = quq-’. (6) 

Since a double-couple focal mechanism is characterized by three degrees of freedom, we can obtain an appropriate 
correspondence of the double-couple source with normalized quaternions. In particular, the quaternion 1 = [l, 0, 0, 01 is taken 
to correspond to the double-couple with the T axis (0,O) and the P axis (0,90) which we call the ‘original’ (non-rotated) 
position of a double-couple. The first value in parentheses is the plunge angle in degrees, the second value is the azimuth. The 
original, right-handed system of source coordinates consists of the T axis pointing north, the P axis pointing east, and the B 
axis pointing down. It is easy to see that only four right-handed coordinate systems can be formed from these three axes. 

We consider an earthquake focal mechanism to be represented in two fashions: (a) through plunge (/?) and azimuth (a) of 
the T and P axes; and (b) through fault plane ang1ee-A (slip), 6 (dip), and dip direction @ (azimuth) (Aki & Richards 1980, 
fig. 4.13; Ben-Menahem & Singh 1981, fig. 4.26). In the first case, we calculate components of the T axis as follows: 

t, = cos (a) coS (p ) ,  ty = sin (a) cos (/?I, t ,  = sin (/?I, (7) 

where t is a unit vector in the direction of the T axis. The components of the P axis are calculated in a similar manner. 

4.83; Ben-Menahem & Singh 1981, equation 4.122): 

u, = cos (A) sin (#) - sin (A) cos (6) cos (#), 

and 

In the second case (b), we calculate components of the slip u and fault normal u vectors (Aki & Richards 1980, equation 

uy = -cos (-A) cos (#) -sin (A) cos (6) sin (#), u, = -sin (-A) sin (6), (8) 

v, = sin (6)cos (@), vy = sin (6) sin (#), vz = -cos (6). (9) 
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t and p unit vectors are obtained as t = (v  + u)/fi and p = (v  - u)/*; to ensure orthogonality of all the three axes and proper 
'handedness' of the coordinate system formed by the T, P, and B axes, the null unit vector b is computed as a vector product 
o f t  and p for both cases (a) and (b). 

The T,  P, and B axes specify a rotated system of coordinates for the source, R. We use the known correspondence 
between the orthogonal matrix and the normalized quaternion (Moran 1975, equation 6; Altmann 1986, p. 162) 

R 

to obtain the quaternion's components. The above formula may be obtained by applying (6) to each of original t, p, and b 
vectors. For example, if qo is not close to zero 

Since as many as three of the quaternion components may be close to zero, it is computationally simpler to choose the 
component with a maximum absolute value and use it to calculate the three other components. The formulae which are similar 
to (11) can be easily derived from (10). 

The normalized quaternion found in (11) corresponds to the rotation of a coordinate system connected with a 
double-couple source from initial position into an arbitrary position. Since a clockwise rotation is equivalent to a 
counterclockwise rotation about the same axis viewed from the opposite direction, to make the problem unique, we use only 
counterclockwise rotations corresponding to positive angles of rotation (Altmann 1986, p. 152) with a rotation pole distributed 
over the whole sphere. As a measure of the disorientation, we use the value of the rotation angle @ which is necessary for 
rotating the focal mechanism from one position into another (0<@5180"). This angle depends on the degree of initial 
disorientation and on the symmetry properties of the source. A double-couple source has the symmetry of a rectangular box 
with unequal sides. The symmetries of the double-couple make the rotation of a source non-unique. Therefore rotation (11) is 
not necessarily a minimum rotation, i.e., with a minimum angle Q. 

The double-couple focal mechanism can be rotated from one position into another by four different rotations (Kagan 
1990), thus q in (11) corresponds to one of these rotations. To find three other rotations we multiply the normalized 
quaternion (11) by f i  or * j ,  or fk (which are transformations of the quaternion group, see Mermin 1979, pp. 618-619; 
Altmann 1986, p. 150); e.g. 

q' = qi, 

where the quaternion i is i = [0, 1, 0, 01. As a result of these multiplications, the quaternion components are permuted and 
change their sign. Since quaternions of the opposite sign correspond to the same rotation, we change the quaternion's sign so 
that its scalar part is positive, corresponding to the positive value of Q (i.e., the counterclockwise rotation). The end result of 
all of these four rotations is the same focal mechanism. Then we may choose the rotation which has the smallest rotation angle 
among the four rotations obtained. 

Therefore, to find the minimum rotation of a double-couple, we replace the quaternion's scalar component by the largest 
(in absolute value) of all of the components available, qmax, and then calculate the rotation angle amin = 2 arccos (qmax). Since 
the largest of the four components of a normalized quaternion cannot be smaller than 0.5, the minimum rotation angle cannot 
exceed 120" (Kagan 1990). 

3 3 -D ROTATION OF DOUBLE-COUPLES 

In the previous section we considered the rotation of a double-couple source from its original position. The rotation from one 
arbitrary position into another is more complicated. As an example let us consider two solutions for earthquakes in the 
Southern Pacific on 1986 June 5 and June 24 as given by the HARVARD catalogue of the seismic moment tensor inversions 
(Dziewonski et al. 1990, and references therein). The orientation of the Taxis for the first earthquake is (0,226) and the P axis 
is (0,136). The second event has (0,233) and (0,143), respectively. The four available counterclockwise rotations by which the 
first focal'mechanism can be superimposed over the second solution, can be found by inspection. These rotations are: 7" about 
the vertical axis looking from below, 173" about the vertical axis looking from above, and two rotations of 180" each, about the 
bisector of the angles between the corresponding T and P axes for both earthquakes. If one of the rotation angles is small, this 
rotation can be usually found relatively easily by trial and error. Moreover, averaging the positions of the T, P, and B axes of 
several focal mechanisms on a reference sphere, produces reasonably good estimates of an average mechanism and its 
variations for small rotations. 

However, in the case of large rotations, we need to find all of the four rotations to be able to choose a more appropriate 
one. Moreover, straightforward averaging of the axes' positions becomes more questionable when the rotation angles approach 
90", and we need to choose which of the two positions of any axis on the referende sphere is to be used. If we consider as an 
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example two solutions for the earthquakes in New Guinea which occurred on 1977 January 6 and 1980 September 26 
(Dziewonski et al. 1990), the rotations between these solutions are not so obvious. The T axis for the first solution has (24, 
120), the values for the P axis are (41, 232). For the second focal mechanism these values are (55, 295) for the Taxis and (17, 
51) for the P axis. 

Suppose we want to determine all of the possible rotations from one solution f q ,  into another solution fq , ,  

42 = 4'41? (13) 

where q' is a quaternion corresponding to one of the rotations, transforming q1 into 4,. In terms of composition of rotations, 
(13) assumes that the original quaternion [ l ,  0, 0, 01 is firstly rotated by q l ,  then by q' to obtain q2. To determine q' we write 

q' = 424;ly (14) 

see equations (3) and (5). To find three other solutions we multiply q ,  or q2 by i, j ,  k, and repeat the calculations. Out of 16 
possible combinations in (14), only four yield different resulting quaternions. It can be shown that, alternatively, all these 
solutions can be obtained through 

q" = aq', (15) 

a = q,bq;', (16) 

where 

and b is either i ,  or j ,  or k. We obtain a solution corresponding to the minimum rotation angle by choosing a quaternion in (15) 
with a maximum scalar part, qo. If q1 = [l ,  0, 0, 01 in (13), q' = q2, then we obtain 

q" = aq' = q,bq;'q, = q'b, (17) 

as discussed in Section 2 (see equation 12). 

then calculated (Moran 1975; Altmann 1986, p. 223) 
The value of the rotation angle @ and the spherical coordinates, 8 and t), of the rotation axis on a reference sphere are 

@ = 2 arccos (qo), 8 = arccos [q,/sin (@/2)], t) = arctan (q2/q1) ,  if t) 5 0, then q = 360" + q, (18) 

where I+ is an azimuth (0 5 t) < 360") and 8 is a colatitude (0 5 8 5 180"); 8 = 0 corresponds to the vector pointing down. For 
two focal double-couples in New Guinea discussed above, we obtain the following values of quaternions in (13): for the first 
focal mechanism 

q1 = [0.355, 0.233, 0.820,0.383], (194 

or, using (12) 

q1 = [-0.233, 0.355, -0.383, 0.8201, 

and for the second earthquake 

= [ -0.041, -0.502, -0.356, 0.7871. (20) 

qmin = [0.696,0.322, -0.152,0.624]. (21) 

The quaternion corresponding to the minimum rotation angle is 

The four possible rotation angles are 102.8", 104.3", 124.1", and 165.9"; the spherical coordinates of the rotation poles are 
(24.8, 101.2), (257.5, 79.7), (144.8, 105.2), and (96.8, 16.7), respectively, where the first value in parentheses is an azimuth in 
degrees and the second number is a colatitude angle. The FORTRAN program listed in the Appendix, contains several more 
examples of rotation determination. 

4 DISCUSSION 

How can we use the proposed inversion scheme for a double-couple mechanism rotation? Depending on the problem at hand, 
we can use either the minimum rotation for a study of disorientation of earthquake focal mechanisms, or, for instance, we can 
use the rotation about the axis closest to the normal to the assumed fault plane. Elsewhere, we study distributions of these 
angles as well as distributions of rotation poles on a reference sphere. Previously, we have calculated a distribution of rotation 
angles for a completely random 3-D rotation of a double-couple source (Kagan 1990). This distribution may be compared to a 
distribution of disorientation angles between actual fault planes or between seismic moment tensor solutions. 

The general stress tensor, i.e., a symmetric tensor with unequal principal stresses, has the same symmetry properties as a 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/106/3/709/695870 by guest on 20 August 2022



Rotation of double-couples 713 

double-couple. Therefore, an inversion algorithm for the rotation of a double-couple source can be used for obtaining a 3-D 
rotation of practically any symmetric second-rank tensor. 

In Section 2 we have considered the computation of a normalized quaternion describing the rotation of a double-couple 
from its initial position into an arbitrary position. It is also shown that the quaternions are also a concise alternative 
representation of earthquake double-couple sources. Therefore, this representation may be used to infer average regional focal 
mechanisms for various faults, their variations and uncertainties (Chang et al. 1990), as well as a distribution of rotations of 
focal solutions in branching faults and other properties which do  not depend on pairwise correlation of double-couples. A study 
of focal mechanism rotations before strong earthquakes could be conducted with a hope of finding precursory phenomena. 

We note that the problems discussed above, are similar to those of the maximum likelihood estimate of the parameters of 
3-D rotations that have been considered by Moran (1975), and by Thompson & Prentice (1987). Prentice (1987) discusses more 
complicated problems of fitting a smooth (interpolated) rotation path to a set of rotation data, or finding an average rotation 
for a set of matched pairs of rotation matrices (Prentice 1989). The problem of focal mechanism rotations is more difficult than 
the studies above because of the symmetry properties of a double-couple. However, since the above studies use the quaternion 
representations of the rotations as an input to statistical techniques, their results may be used in analysis of earthquake fault 
branching and its non-planarity. 
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APPENDIX 

C 
C 
C 
C 
C 
C 
C 
C 
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C 
C 

C 
C 
C 

C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

BEGIN OF THE DCROT PROGRAM 

ROTATION ANGLE AND AXIS DIRECTION CALCULATIONS 
FOR ALL FOUR POSSIBLE ROTATIONS OF DOUBLE-COUPLE SOURCE 

DRIVER PRCGRAM -- February 15, 1991 

IMPLICIT REAL.8 (A-H,O-Z) 

1985 2 16 16 2 8  14.90 39.690 142.690 39 66 264 
1987 4 7 0 40 49.50 37.300 141.750 31 61 296 
INTEGER*2 EQA1141 1 6 6 . 2 6 4 ,  22.1091, EQA214l /61,296, 29,1141 

1985 7 2 12 34 56.10 40.630 143.900 24 57 300 
1987 1 9 6 14 50.00 39.800 141.380 60 53 89 
INTEGER*2 EQBl(41 157,300, 33,1131. EQBZI4) f53.89, 35,2891 

1977 1 6 6 11 50.50 -2.990 144.790 11 24 120 
1980 9 26 15 20 42.50 -3.000 142.430 25 55 295 

1986 6 5 9 1 20.30 - 3 6  ?9n -97 i m  1 5  n W L  
INTEGER*2 EQCl(41 124,120, 41,2321, EQCZ(4l 155,295, 17,511 

. . . . . . . . . . - - . _ _  - - - " --" 
1986 6 24 23 53 32.30 -36.550 -100.450 15 0 233 
INTEGER*2 EQDl(4l f0.226, 0,1361,  EQDZ(4) 10,233, 0,1431 

INTEGER*2 EQEl(41 f O . 0 ,  0.901, EQEZ(41 190.0, 0 , O l  

C W N  /MOM/ PAD, PERP 

HPI - DACOS(O.OD0) 
PAD - 90.0DOfHPI 
WRITE (6, 151 
CALL FPS4R (EQA1, EQAZ) 
WRITE (6, 15) 
CALL FPS4R (EQBl, EQBZ) 
WRITE (6, 15) 
CALL FPS4R IEQC1, EQC2) 
WRITE ( 6 ,  15) 
CALL FPS4R (EQD1, EQD2) 
WRITE ( 6 ,  15) 
CALL FPSIR (EQE1, EQE2) 
WRITE (6, 1 5 )  

15 FORMAT ('1') 

STOP 
END 

SUBROUTINE FPS4R (EQHl, EQHZ) 

IMPLICIT REAL*8 (A-H.0-21 
REAL.8 QUAT(4), QUATl(4). QUATZ(41, QUATR(41, QUATRl(41, 

REAL*8 QlA(41, QZA(41, Q3A(4), QlB(41, Q2E(4Ir Q3E(41, Q4(4l 
INTEGER'I EQHl(41, EQHZ (4) 
COtMON /MCU/ RAD, PERP 

1 QUATRZ(41, QUATT1(4), QUATTZ(41, QUATCl(41 

WRITE (6, 20) EQH1, EQH2 
WRITE (6, 101 

CALL QUATFPS (QUAT1, EQH1, 0) 
CALL SPHCOOR (QUAT1, ANGL, THETA, PHI) 
WRITE ( 6 ,  301 ANGL, THETA, PHI, PERP 
irnnv - n ----- - 
CALL BOXTEST (QUAT1, QUATR1, OM, ICODE) 
WRITE 16, 401 QUAT1, QUATRl 
WRITE (6, 5 0 )  ICODE, 
CALL SPHCWR (QUATR1, ANGL, THETA, PHI) 
WRITE 16, 301 ANGL, THETA, PHI 
WRITE (6, 10) 

CALL QUATFPS (QUAT2, EQHZ, 0) 
CALL SPHCWR (QUATZ, ANGL, THETA, PHI) 
WRITE (6, 301 ANGL, THETA, PHI, PERP 

WRITE ( 6 ,  10) 
CALL F4Rl (QUAT1, QUAT2, QlA, 1) 
CALL F4R2 IQUAT1, QUAT2, 010, 1) 
WRITE ( 6 ,  10) 
WRITE (6, 40) QlA, 018 

WRITE ( 6 ,  10) 
CALL F4Rl (QUAT1, QUAT2, QZA, 2) 
CALL F4R2 (QUATI, QUATZ, Q28, 2) 
WRITE ( 6 ,  101 
WRITE ( 6 ,  401 Q2A. Q2B 

WRITE (6, 10) 
CALL F4Rr (QUAT1, QUAT2, Q3A. 3 )  
CALL F4R2 IQUAT1, QUAT2, Q38. 3 )  
WRITE 16, 10) 
WRITE (6, 401 Q3A, Q3B 

WRITE ( 6 ,  10) 
CALL F4R1 (QUATI, QUAT2, Q4, 4) 
CALL F4R2 (QUATI, QUATZ, Q4, 4 )  

WRITE (6, 10) 
WRITE (6, 401 Q4 
WRITE (6, 101 

10 FORMAT ( '  ' )  
20 FORMAT (:O EQH1, EQHZ - ', 415, Px, 4151 
30 FORMAT ( ANGL, THETA, PHI - ', 7114.7) 
4 0  FORMAT (' ', 9614.61 
50 F O W T  ( '  ICODE, OM - ', 15, 3F14.7) 

RETURN 
END 

22 109 
29 114 

33 113 
35 289 

41 232 
17 51 

0 136 
0 143 

C 

C 
C 
C 
C 
C 
C 

C 

C 
C 

SUBROUTINE F4R1 (Ql, Q2, Q, ICODEI 

Q - Q2*(Ql*lI. J.K,lI l * * i - l l  

Since F4Rl and F4R2 y i e l d  the  same resul ts .  only one subroutine 
is needed: both programs are kept here fo r  t e s t i n g  purposes. 

IMPLICIT REAL% (A-H,O-2) 
REAL'S 4141, Qli4it Q2(41, QRI141, 

1 QTl(41, QT2(4l, QCl(4I 

CALL BOXTEST (01, QR1, QM, ICODE) 
WRITE (6, 20) QR1 

CALL QUATD (QR1, QZ, QI 
C WRITE (6, 20) Q1, Q2 
C CALL QUATP (Q1, Q, QTZ) 
C WRITE (6, 201 QT2, Q 
C 

C 

C WRITE (6, 20) Q, QR, QM 

CALL SPHCWR (Q, ANGL, THETA, PHI) 

WRITE (6, 10) ANGL, THETA, PHI 

10 FORMAT ( '  ANGL, THETA, PHI - ', 3F14.7) 
20 FORMAT ( '  ', 9614.6) 

RETURN 
END 

C 

C 
SUBROUTINE F4R2 (Q1, Q2, Q, ICODEJ 

c Q = ~Q2'~I,J,K,1Il*Q1**~-11 
c 

IMPLICIT REAL'8 (A-H,O-Zl 
REAL*8 Q141, Q1(41r Q2(41, QR2141, 
1 QTl(41, QTZ(41, QC114l 

r 
CALL BOXTEST (Q2, QR2, QM, ICODEI 

C WRITE ( 6 ,  20) QR2 
r 

CALL QUATD IQ1, QR2, Ql 
C WRITE (6, 20) 01, Q2 
C CALL QUATP (Q1, Q, QT2) 
C WRITE (6, 20) QT2, Q 
c 

CALL SPHCOOR (Q, ANGL, THETA, PHI) 

WRITE (6, 10) WGL, THETA, PHI 
C 

C WRITE (p, 201 Q, QR, MI 
10 FORMAT ( ANGL, THETA, PHI - ', 3F14.71 
20 FORMAT ( '  ', 9G14.6) 

RETURN 
END 

C 
SUBROUTINE BOXTEST (Q1, Q2, QM, ICODE) 

for ICODE-0 finds minimal rotation quaternion 
for  ICODE-N finds rotation quaternion QZ - Q1* ( i ,  j, k, 11, 

C 
c 
c 
c for N-1.2.3.4 

IMPLICIT REAL*8 (A-H, 0-2) 
REAL*8 Ql(4I. Q2(4I, QUATT(4) 
REAL*8 QUAT(4, 31 /l.ODO, O.ODO, O.OD0, O.OD0, 

O.OD0, O.OD0, 1.OD0, O.ODO/ 
2 O.OD0, 1.ODO. O.OD0, O.ODO, 
3 

C 
IF (ICODE.NE.0) GO TO 15 
ICODE - 1 
QM = DRBS (Ql(11 I 
DO 10 IXC = 2, 4 
IF (QM.GE.DAES(Ql(IXCIII GO TO 10 
QM - DABS (Ql (IXC) 1 
ICODE - IXC 

10 CONTINUE 
15 CONTINUE 

C 
DO 20 IXC - 1, 4 
QZ (IXCI - Q1 (IXC) 

20 CONTINUE 
C 

IF (ICODE.EQ.4) GO TO 4 0  
DO 30 IXC - 1, 4 
QUATT(IXC1 - QUATIIXC, ICODE) 
CALL QUATP (QUATT, Q1, Q2) 

30 CONTINUE 

40 CONTINUE 
r 

IF IQZ(4I.GT.O.ODO) GO TO 60 
DO 50 IXC = 1, 4 
QZ(IXC1 - - Q2(IXC) 

50 CONTINUE 
60 CONTINUE 

QM - Q2I4I r 
RETURN 
END 

C 

C 
c for the  rotation quaternion QUAT the  subroutine f inds  the  
c rotation angle (ANGL) of a counterclockwise rotation and 
c spherical coordinates (colatitude THETA, and azimuth PHI) of the 
c rotation pole ( intersect ion of the a x i s  with reference sphere): 
c 

SUBROUTINE SPHCWR (QUAT, ANGL, THETA, PHI) 

THETA-0 corresponds t o  the vector pointing down. 

IMPLICIT REAL*8 (A-H,O-2) 
REAL"8 QUAT(4) 

r 
IF (QUAT(4) .LT.O.ODO) THEN 
DO 10 ISM - 1, 4 
QUAT(ISM1 - - QUAT(ISM1 

10 CONTINUE 
END If 

D
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C 

C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

Q4N - DSQRT(1.ODO - QUAT(4)**2) 
COSTH - 1.0 
IF (DABS(Q4N) .GT.l.OD-10) COSTH - QUAT(3)/Q4N 
IF (DABS(C0STH) .GT.l.O) COSTH = JIDINT(C0STH) 
THETA - DACOSD (COSTH) 
ANGL - 2.ODO*DACOSD(QUAT(4)) 
PHI - O.OD0 
IF (DABS IQUATI1) .GT.l.OD-1O.OR.DABS (QUAT (2) .GT. 1,OD-10) 

IF (PHI.LT.O.OD0) PHI = PHI t 360.000 

RETURN 
END 

1 PHI = DATAN2DlQUAT(2),QUAT(l)) 

SUBROUTINE QUATFPS (QUAT, EQH, ICODE) 
IMPLICIT REAL*8 (A-H, 0-2) 
REAL*8 QUAT(4) 
INTEGER*2 EQH(4) 
CWMON /W/ RRD, PERP 

THIS ROUTINE CALCULATES ROTATION QUATERNION CORRESPONDING TO 
EARTHQUAKE FOCAL MECHANISM 

icode-0 -- four input data: 
Since plunge and azimuth of 2 axes are redundant for  calculation, 
(four degrees of freedom vs three degrees that are necessary) 
and have low accuracy (integer angular degrees), we calculate 
plane normal (V) and slip vector (S)  axes, in order that all axes 
be orthogonal. 

icode-1 -- three input data: slip angle (SA), dip angle (DAI, 
PERP variable checks orthogonality 
of T- and P-axes, it should be small ((0.01 or  so) 

ERR - 1.00-15 

plunge and azimuth of T-axis 
plunge and azimuth of P-axis 

dip direction (DD) 

IC - 1 
IF (ICODE.EQ.1) W TO 200 
PLG T AX - EQH(1) 
AZM T AX - EQH(2) 
PLG P AX - EQH(3) 
AZM P AX - EQH(4) 

END IF 
r 

V1 - T1 + P1 
V2 = T2 t P2 
V3 - T3 + P3 
S1 - T1 - PI 
S2 - TZ - P2 
S3 - T3 - P3 
A N O W  - DSQRT(Vl'V1 t V2*V2 + V3*V3) 
v1 - VI/ANORMv 
v2 - V?/ANORMV 

V3 - V3/ANOWJ 
ANORMS - DSQRT(Sl'S1 + S2'S2 t S3*S3) 
s1 - Sl/ANORMS 
s2 - SZIANORMS 
53 - s3/ANoRMs 

C 
GO TO 250 

200 CONTINUE 
C 

OD - EQH(1) 
DA - EQH(2) 
SA - EQHI3) 
DO - DD/RAD 
DA - DAIRAU 
SA - SA/RAD 
CDD = DCOS(DD) 
SDD - DSIN(0D) 
CDA - DCOSIDA) 
SDA - DSIN(DA) 
CSA - DCOS(SA) 
SSA - DSIN(SA) 
S1 - CSA*SDD - SSA*CDA*CDD 
52 - CSA'CDD - SSA*CDA*SDD 
53 - - SSA'SDA 
V1 - SDA'CDD 
V2 - SDA'SDD 
V3 - - CDA 

C 
250 

C 
C 

100 

CONTINUE 
AN1 - s2*v3 - ~2.~3 
AN2 - vl*s3 - sl*v3 

9G13.4) 

CONTINUE 
ICOD - 1'IC 
UO - DSQRT(U0) 
u3 - (T2 - P1)/(4.ODO'UOl 
U2 = (AN1 - T3)/(4.ODo*UO) 
u1 = ( P 3  - AN2)/(4.0DObUO) 
GO TO 50 
CONTINUE 
ICOD - 2*IC 
U1 = DSQRT(U1) 
U2 = (TZ + P1)/(4.ODO'U1l 
u3 - (T3 + AN1)/14.0DO*Ul) 

W TO 50 
CONTINUE 
ICOD - 3*IC 
U2 - DSQRT(U2) 
U1 - (T2 t P1)/(4.ODO*U2) 
UO = (AN1 - T3)/(4.ODO*U2) 
~3 = (P3 t AN21/(4.ODO'U2) 
W TO 5 0  
CONTINUE 
ICOD - 4*IC 
U3 - DSQRTIU3) 
UO - (T2 - P1)/(4.ODO'U3l 
U1 - (T3 t AN1)/(4.0DO'u31 
u2 - I P ~  t AN~)/I~.ODO'U~) 

uo - (P3 - AN2l/(4.ODO*U11 

50 CONTINUE 
TEMP I UO'UO + Ul'U1 t U2*U2 t u3*u3 

IF (DABSlTEMP - l.ODO).GT.ERR) THEN 
WRITE (6; 150) 

WRITE ( 6 ,  90) TI, T2, T3, PI, P2, p; 
90 FORMAT (' TI, T2, T3, P1, P2, P 3  - 

WRITE 16, 80) AN1, AN2r AN! 
80 FORMAT I' AN1, AN2, AN3 - , 3G18.91 

WRITE (6, 120) TEMP, U1, U2, U3, y o  
END IF 
QUAT(1) - U1 
QUAT(2l - U2 
OURTI31 = U3 

C 

150 F O N T  ( ****  ERROR *'***'I 
, /, 6G18.91 

120 FORMAT (' TEMP, U1, U2, U3, UO - , 5618.9) 

RETURN 
END 

C 

C 
C 
C see F. Klein v.1 p.61, or Altmann, 1986, p.156, 
c or Biedenharn and Louck, 1981, p. 185. 
C 
c Quaternion is taken here -- ql*i t 92*j t q3*k + q4 
C 

C 

SUBROUTINE QUATP (Q1, Q2, Q3) 

Calculates product of two quaternions Q3 - Q2*Q1, 

IMPLICIT REAL'8 (A-H, 0-2) 

RETURN 
END 

C 
C 
C 
C 

SUBROUTINE QUATD lQ1, Q2, Q3) 
IMPLICIT REAL*8 (A-H, 0-2) 

C 
c Quaternion division Q3 - Q2*(Q1)**(-1), or Q2 - Q3*Q1 
C 

REAL'8 Ql(41, QCl(41, Q2(4II Q3(4) 
P 

DO 10 I - 1, 3 
QCl(1) = - QllI) 

10 CONTINUE 
~ ~ 1 ( 4 )  - ~i(4) 
CALL QUATP (QCI, Q2, Q31 

P 

RETURN 
END 

C 
C END OF THE DCROT PROGRAM 
C 

D
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EpH1, Exgg - 66 264 22 109 61 296 29 114 

T1, T2, T3, P1, P2, P3, €Nl, AEn, AN3 - 
WAT - -0.245035828 0.720864950 0.39733821oE-01 -0.647095349 I 0  - 3 
-0.12453-01 -0.4047 0.9135 -0.3019 0.8768 0.3744 -0.9524 -0.2598 -0.1594 

ANGL, Z4!3l!& PHI - 99.3540801 92.9873884 288.7738827 O.CQ04337 
0.245036 -0.720865 -0.3973583-01 0.647095 0.397338E-01 0.647095 0.245036 0.720865 

I-, Cn - 2 0.7208649 
BNZ, Z4!3l!& PHI - 87.748l230 69.2954880 86.4862589 

Tl, Tz, T3, P1, P2, P3, M, AEn, - 
WAT - 0.315718670 -0.626835392 -0.2812725323-01 0.711763985 I 0  - 1 
0.2126 -0.4358 0.8746 -0.3558 0.7991 0.4847 -0.9101 -0.4142 O.148OE-01 

m, TlEZA, PHI - 89.2427603 92.2949331 296.7330601 0.0002583 
0.315719 -0.626835 -0.28127%-03 0.711764 0.315719 -0.626835 -0.2812733-01 0.711764 

I-, (13 - 4 0.7117640 
ANcz, m PHI - 89.2427603 92.2949331 296.7330601 

m, THEZA, PHI - 176.0431671 154.1327695 101.2360137 
BNZ, Z4!3l!& PHI - 176.0431671 154.1327695 101.2360137 

-0.84960315-01 0.427670 -0.899271 0.34523OE-01 -0.84960%-01 0.427670 -0.899271 0.3452303-03 

AN&, Z4!3l!& PHI - 167.0100624 115.2537837 291.8677364 
ANGL, lli?ZA, PHI - 167.0100624 115.2537837 291.8677364 

0.334706 -0.833963 -0.423890 0.113116 0.334706 -0.833963 -0.423890 0.113116 

BNZ,  merp4 PHI - 172.6710792 93.8800345 199.5710993 
BNZ, m PHI - 172.6710792 93.8800345 199.5710993 

-0.938115 -0.333525 -0.67529%-01 0.6391333-01-0.938145 -0.333525 -0.67529-01 0.6391333-01 

Iwa, PHI - 15.4515568 51.2886179 76.0649341 
ANGL, 7XEl!A, PHI - 15.4515568 51.2886179 76.0649341 

0.252618E-01 0.101811 0.8407353-01 0.990923 

D
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