3-D stochastic micropolar and magnetomicropolar fluid systems with non-Lipschitz multiplicative noise

Kazuo Yamazaki

Follow this and additional works at: https://digitalcommons.lsu.edu/cosa
Part of the Analysis Commons, and the Other Mathematics Commons

Recommended Citation

Yamazaki, Kazuo (2014) "3-D stochastic micropolar and magneto-micropolar fluid systems with non-Lipschitz multiplicative noise," Communications on Stochastic Analysis: Vol. 8 : No. 3 , Article 8.
DOI: 10.31390/cosa.8.3.08
Available at: https://digitalcommons.lsu.edu/cosa/vol8/iss3/8

3-D STOCHASTIC MICROPOLAR AND MAGNETO-MICROPOLAR FLUID SYSTEMS WITH NON-LIPSCHITZ MULTIPLICATIVE NOISE

KAZUO YAMAZAKI

Abstract

We study the stochastic micropolar and magneto-micropolar fluid systems with multiplicative noise in three-dimensional space. Without Lipschitz continuity condition on the noise, we show the existence of a weak martingale solution by applications of Prokhorov and Skorokhod's theorems, followed by de Rham's theorem generalized to processes.

1. Introduction

We study the following micropolar fluid (MPF) and magneto-micropolar fluid (MMPF) systems in $D \times[0, T]$ where D is a bounded simply-connected, Lipschitz, open domain in \mathbb{R}^{3} respectively:

$$
\begin{align*}
& \partial_{t} u+(u \cdot \nabla) u+\nabla \pi=\chi(\nabla \times w)+(\mu+\chi) \Delta u+f_{1}(y, t)+g_{1}(y, t) \partial_{t} W_{1}, \tag{1.1a}\\
& j \partial_{t} w+j(u \cdot \nabla) w \tag{1.1b}\\
= & -2 \chi w+(\alpha+\beta) \nabla \operatorname{div} w+\chi(\nabla \times u)+\gamma \Delta w+f_{2}(y, t)+g_{2}(y, t) \partial_{t} W_{2}, \\
& \partial_{t} u+(u \cdot \nabla) u-r(b \cdot \nabla) b+\nabla \pi \tag{1.2a}\\
= & \chi(\nabla \times w)+(\mu+\chi) \Delta u+\tilde{f}_{1}(\tilde{y}, t)+\tilde{g}_{1}(\tilde{y}, t) \partial_{t} W_{1}, \\
& j \partial_{t} w+j(u \cdot \nabla) w \tag{1.2b}\\
= & -2 \chi w+(\alpha+\beta) \nabla \operatorname{div} w+\chi(\nabla \times u)+\gamma \Delta w+\tilde{f}_{2}(\tilde{y}, t)+\tilde{g}_{2}(\tilde{y}, t) \partial_{t} W_{2}, \\
& \partial_{t} b+(u \cdot \nabla) b-(b \cdot \nabla) u=-\nu \nabla \times \nabla \times b+\tilde{f}_{3}(\tilde{y}, t)+\tilde{g}_{3}(\tilde{y}, t) \partial_{t} W_{3}, \tag{1.2c}
\end{align*}
$$

where we denoted $y:=(u, w), \tilde{y}:=(u, w, b)$ with u, w, b, π the velocity, microrotational velocity, the magnetic vector fields and the hydrostatic pressure scalar field respectively. Moreover, $W_{i}, i=1,2,3$ represent the Wiener processes in m_{i}-dimension respectively. We also denoted physically meaningful quantities: $r=\frac{M^{2}}{R e R m}$ where $M, R e, R m$ are the Hartmann, the Reynolds and magnetic Reynolds numbers respectively, χ the vortex viscosity, μ the kinematic viscosity, j the microinertia, α, β, γ the spin viscosities, $\nu=\frac{1}{R m}$ all of which we assume to be positive taking into account of conditions such as Calusius-Duhem inequality.

[^0]Finally, $f_{i}, g_{i}, \tilde{f}_{i}, \tilde{g}_{i}$ are random forces. We denoted $\frac{d}{d t}$ by ∂_{t} and hereafter denote $\frac{d}{d x_{i}}$ by ∂_{i} and assume $j=r=1$ as well.

We consider these systems with incompressibility, non-slip boundary and perfectly conducting wall conditions with nonrandom initial data:

$$
\begin{cases}\nabla \cdot u=\nabla \cdot b=0, & \forall t \in[0, T], \tag{1.3}\\ (u, w, b)(x, 0)=\left(u_{0}, w_{0}, b_{0}\right)(x), & x \in D, \\ \left.u\right|_{\partial D}(t)=\left.w\right|_{\partial D}(t)=0, & \forall t \in[0, T], \\ \left.b \cdot n\right|_{\partial D}=0, & \forall t \in[0, T], \\ (\nabla \times b) \times\left. n\right|_{\partial D}=0, & \forall t \in[0, T]\end{cases}
$$

where n is an outward unit normal vector on ∂D.
Let us discuss the rich history of mathematical and physical study concerning the MPF, MMPF and its related systems. Firstly, the system (1.2a)-(1.2c) at $\chi=0, w \equiv b \equiv \tilde{g}_{1} \equiv \tilde{f}_{2} \equiv \tilde{g}_{2} \equiv \tilde{f}_{3} \equiv \tilde{g}_{3} \equiv 0$ reduces to the deterministic Navier-Stokes equations (NSE) which has ample engineering applications in fluid mechanics such as design of aircraft and has been investigated mathematically with much intensity ever since the pioneering work in [21] (cf. [6, 24]). Moreover, the system (1.2a)-(1.2c) at $\chi=0, w \equiv \tilde{g}_{1} \equiv \tilde{f}_{2} \equiv \tilde{g}_{2} \equiv \tilde{g}_{3} \equiv 0$ reduces to the deterministic magnetohydrodynamics (MHD) system which describes the motion of electrically conducting fluids and has broad applications in applied sciences (cf. [31]). The global regularity issue of the MHD system in two-dimensional case has in particular attracted much attention recently ([5] and references found therein).

Finally, the system (1.2a)-(1.2c) at $b \equiv \tilde{g}_{1} \equiv \tilde{g}_{2} \equiv \tilde{f}_{3} \equiv \tilde{g}_{3} \equiv 0$, which is the system (1.1a)-(1.1b) at $g_{1} \equiv g_{2} \equiv 0$, reduces to the deterministic MPF system, of which microfluids and micropolar fluids were introduced in $[12,13]$ respectively. In particular, the micropolar fluids represent the fluids consisting of bar-like elements, e.g. anisotropic fluids, such as liquid crystals made up of dumbbell molecules and animal blood. The study of this system has been conducted by many (e.g. [16, 23, $36,40]$). The deterministic MMPF system, the system (1.2a)-(1.2c) at $\tilde{g}_{1} \equiv \tilde{g}_{2} \equiv 0$, was studied in [1] and has also found much attraction (e.g. [17, 26, 28, 37]).

In this manuscript, we consider the most general case, namely the stochastic MPF and the stochastic MMPF systems. The study of the stochastic PDE in fluid mechanics has been investigated by many ($[9,10,19]$ and references found in [15] for the stochastic NSE related literature and [2, 8, 30, 35] for the stochastic MHD system). To the best of the author's knowledge despite the significance in engineering applications, the study of the stochastic MPF or the stochastic MMPF system is yet to be undertaken. In case g_{i}, \tilde{g}_{i} are only additive noise, the existence of solution may be attained by following the pioneering work of [7, 14]. Rather, we work with multiplicative noise which requires a considerably more delicate probabilistic compactness argument using Galerkin approximation combined with Prokhorov's and Skorokhod's theorems which has been used for the stochastic NSE and MHD systems.

In the next section, we set up notations, state preliminaries and then our main result. Thereafter, we prove the main results on the MMPF system. By the way
set up notations, it will be clear that the proof in the case of the MPF system will be identical to the proof of the case of the MMPF system.

2. Notations, Preliminaries and Statement of Main Result

2.1. Notations. Let us denote a constant that depends on a, b by $c(a, b)$ and when the constant is not of significance, let us write $A \lesssim B, A \approx B$ to imply that there exists some constant c such that $A \leq c B, A=c B$ respectively.
2.2. Preliminaries and Statement of Main Result. We denote the Lebesgue spaces by $L^{p}(D)$, Sobolev spaces by $H^{m}(D), W^{m, p}(D)$, the space of continuous scalar-valued functions with compact support $C_{c}(D)$. We also denote by $H_{0}^{m}=$ $\operatorname{Ker}\left(\gamma_{0}\right)$ where $\gamma_{0}: H^{m}(D) \mapsto L^{2}(\partial D)$ is the trace operator that is bounded and agrees with the restriction operator $\left.v \mapsto v\right|_{\partial D}$ for $v \in C^{1}(\bar{D})$. We denote for the d-dimensional vector-valued functions in $L^{p}(D)$ with $d=3$ in particular, $\mathbb{L}^{p}:=\left(L^{p}(D)\right)^{d}, \mathbb{W}^{m, p}:=\left(W^{m, p}(D)\right)^{d}, \mathbb{H}_{0}^{m}:=\left(H_{0}^{m}(D)\right)^{d}$ and for clarity, for the Lebesgue spaces in time or Ω we shall always write for example $L^{p}([0, T])$, scalar or vector-valued.

Given any separable Banach space E, we denote by $\mathcal{B}(E)$ the Borel σ-algebra on E and $L_{T}^{p}(E), 1 \leq p \leq \infty$ the space of functions endowed with a norm

$$
\|v\|_{L_{T}^{p}(E)}:=\left(\int_{0}^{T}\|v\|_{E}^{p} d \tau\right)^{\frac{1}{p}}
$$

if $1 \leq p<\infty$ with a standard generalization at $p=\infty$. We further denote by

$$
\begin{aligned}
& \mathcal{V}_{1}:=\left\{v \in\left(C_{c}^{\infty}\right)^{3}: \nabla \cdot v=0\right\} \\
& V_{1}:=\left\{v \in \mathbb{H}_{0}^{1}: \nabla \cdot v=0\right\} \\
& \mathcal{V}_{2}:=\left\{v \in\left(C^{\infty}(\bar{D})\right)^{3}: \nabla \cdot v=0,\left.v \cdot n\right|_{\partial D}=0\right\}, \\
& V_{2}:=\left\{v \in \mathbb{H}^{1}: \nabla \cdot v=0,\left.v \cdot n\right|_{\partial D}=0\right\} \\
& H_{1}=H_{2}:=\left\{v \in \mathbb{L}^{2}: \nabla \cdot v=0,\left.v \cdot n\right|_{\partial D}=0\right\}
\end{aligned}
$$

We endow V_{1}, V_{2} with the inner products of

$$
\begin{gathered}
((u, v))_{1}:=\sum_{i=1}^{3}\left(\partial_{i} u, \partial_{i} v\right) \text { where }(u, v):=\sum_{i=1}^{3} \int_{D} u_{i}(x) v_{i}(x) d x \\
((u, v))_{2}:=(\nabla \times u, \nabla \times v)
\end{gathered}
$$

respectively. We let $V:=V_{1} \times \mathbb{H}_{0}^{1} \times V_{2}$ endowed with its norm for $\Phi^{i}:=$ $\left(X^{i}, Y^{i}, Z^{i}\right) \in V, i=1,2$,

$$
\left(\left(\Phi^{1}, \Phi^{2}\right)\right):=\left(\left(X^{1}, X^{2}\right)\right)_{1}+\left(\left(Y^{1}, Y^{2}\right)\right)_{1}+\left(\left(Z^{1}, Z^{2}\right)\right)_{2}, \quad\left(\left(\Phi^{i}, \Phi^{i}\right)\right)=\left\|\Phi^{i}\right\|^{2}
$$

In case $Z^{i} \equiv 0$ as in the solution for the stochastic MPF system (1.1a)-(1.1b), we have $\left(\left(\Phi^{1}, \Phi^{2}\right)\right):=\left(\left(X^{1}, X^{2}\right)\right)_{1}+\left(\left(Y^{1}, Y^{2}\right)\right)_{1}$. We also let $H:=H_{1} \times \mathbb{L}^{2} \times H_{2}$ endowed with its norm

$$
\left(\Phi^{1}, \Phi^{2}\right):=\left(X^{1}, X^{2}\right)+\left(Y^{1}, Y^{2}\right)+\left(Z^{1}, Z^{2}\right), \quad\left(\Phi^{i}, \Phi^{i}\right)=\left|\Phi^{i}\right|^{2}
$$

for which if $Z^{i} \equiv 0$ as for the system (1.1a)-(1.1b), we have $\left(\Phi^{1}, \Phi^{2}\right)=\left(X^{1}, X^{2}\right)+$ $\left(Y^{1}, Y^{2}\right)$. We introduce $L^{p}\left(\Omega, \mathcal{F}, P ; L^{r}\left(0, T ; \mathbb{L}^{s}\right)\right)$ endowed with a norm

$$
\|u\|_{L^{p}\left(\Omega, \mathcal{F}, P ; L^{r}\left(0, T ; \mathbb{L}^{s}\right)\right)}:=\left(E\|u(\omega, \cdot, \cdot)\|_{L^{r}\left(0, T ; \mathbb{L}^{s}\right)}^{p}\right)^{\frac{1}{p}}
$$

We define three operators A_{1}, A_{2}, A_{3} with their domains respectively by

$$
\begin{aligned}
< & A_{1} X^{1}, X^{2}>:=-(\mu+\chi)\left(\Delta X^{1}, X^{2}\right), D\left(A_{1}\right)=\mathbb{H}^{2} \cap V_{1} \\
< & A_{2} Y^{1}, Y^{2}>:=<-\gamma \Delta Y^{1}-(\alpha+\beta) \nabla \operatorname{div} Y^{1}+2 \chi Y^{1}, Y^{2}>, D\left(A_{2}\right)=\mathbb{H}^{2} \cap \mathbb{H}_{0}^{1} \\
< & A_{3} Z^{1}, Z^{2}>:= \\
& \nu<\nabla \times \nabla \times Z^{1}, Z^{2}> \\
& D\left(A_{3}\right)=H_{1} \cap\left\{b \in \mathbb{H}^{2}:\left.(\nabla \times b) \cdot n\right|_{\partial D}=0\right\}
\end{aligned}
$$

where we recall that $\nabla \times(\nabla \times f)=\nabla(\nabla \cdot f)-\Delta f$. Finally, we let

$$
<A \Phi^{1}, \Phi^{2}>:=<A_{1} X^{1}, X^{2}>+<A_{2} Y^{1}, Y^{2}>+<A_{3} Z^{1}, Z^{2}>
$$

Again, in case $b \equiv 0$ as in the case of the system (1.1a)-(1.1b), we have $<$ $A \Phi^{1}, \Phi^{2}>:=<A_{1} X^{1}, X^{2}>+<A_{2} Y^{1}, Y^{2}>$.

Next, we define $B(\tilde{y}):=\left(B_{1}(\tilde{y}), B_{2}(\tilde{y}), B_{3}(\tilde{y})\right)$ with $\tilde{y}:=(u, w, b)$ where

$$
\begin{aligned}
& B_{1}(\tilde{y}):=(u \cdot \nabla) u-(b \cdot \nabla) b-\chi \nabla \times w, \\
& B_{2}(\tilde{y}):=(u \cdot \nabla) w-\chi \nabla \times u, \quad B_{3}(\tilde{y}):=(u \cdot \nabla) b-(b \cdot \nabla) u,
\end{aligned}
$$

and consequently with $y:=(u, w, 0)$ for the MPF system (1.1a)-(1.1b), $B(y):=$ $\left(B_{1}(y), B_{2}(y), B_{3}(y)\right)$ where

$$
B_{1}(y)=(u \cdot \nabla) u-\chi \nabla \times w, \quad B_{2}(y)=(u \cdot \nabla) w-\chi \nabla \times u, \quad B_{3}(y)=0 .
$$

We note the following property for $\tilde{y}=(u, w, b)$:

$$
<B(\tilde{y}), \tilde{y})>=-2 \chi \int(\nabla \times u) \cdot w \leq 2 \chi\|\nabla u\|_{\mathbb{L}^{2}}\|w\|_{\mathbb{L}^{2}} \leq \chi\|\nabla u\|_{\mathbb{L}^{2}}^{2}+\chi\|w\|_{\mathbb{L}^{2}}^{2}
$$

due to (1.3), Hölder's and Young's inequalities. This implies

$$
\begin{align*}
&<A \tilde{y}, \tilde{y}>+<B(\tilde{y}), \tilde{y}> \tag{2.1}\\
& \geq \mu\|\nabla u\|_{\mathbb{L}^{2}}^{2}+\gamma\|\nabla w\|_{\mathbb{L}^{2}}^{2}+(\alpha+\beta)\|\operatorname{div} w\|_{\mathbb{L}^{2}}^{2}+\chi\|w\|_{\mathbb{L}^{2}}^{2}+\nu\|\nabla b\|_{\mathbb{L}^{2}}^{2} \geq \tilde{c}\|y\|^{2}
\end{align*}
$$

for some constant $\tilde{c}:=c(\mu, \gamma, \alpha, \beta, \chi, \nu)>0$ and hereafter we assume $\tilde{c} \in(0,1)$; if not, we can choose a smaller number and relabel it.

Next, we let

$$
\begin{gathered}
f:=\binom{f_{1}}{f_{2}}, \quad g:=\left(\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right), \quad W:=\binom{W_{1}}{W_{2}}, \\
\tilde{f}:=\left(\begin{array}{l}
\tilde{f}_{1} \\
\tilde{f}_{2} \\
\tilde{f}_{3}
\end{array}\right), \quad \tilde{g}:=\left(\begin{array}{ccc}
\tilde{g}_{1} & 0 & 0 \\
0 & \tilde{g}_{2} & 0 \\
0 & 0 & \tilde{g}_{3}
\end{array}\right), \quad \tilde{W}:=\left(\begin{array}{l}
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right) .
\end{gathered}
$$

We can now state our theorems; below $\times m_{i}$ denotes direct product m_{i} times.
Definition 2.1. A weak martingale solution to (1.1a)-(1.1b) is $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, P, W, y\right)$ where
(1) $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, P\right)$ is a filtered probability space,
(2) $W(t)$ is $\left(m_{1}+m_{2}\right)$-dimensional \mathcal{F}_{t} measurable standard Wiener processes,
(3) $y \in L^{p}\left(\Omega, \mathcal{F}, P ; L^{2}\left(0, T ; V_{1} \times \mathbb{H}_{0}^{1}\right)\right) \cap L^{p}\left(\Omega, \mathcal{F}, P ; L^{\infty}\left(0, T ; H_{1} \times \mathbb{L}^{2}\right)\right) \forall p \in$ $[1, \infty)$,
(4) for a.e. $t, y(t)$ is \mathcal{F}_{t}-measurable,
(5) for any $v \in D(A)$, a.s. $\forall t \in[0, T]$

$$
\begin{align*}
& (y(t), v)+\int_{0}^{t}<A y(\tau)+B(y(\tau)), v>d \tau \tag{2.2}\\
= & \left(y_{0}, v\right)+\int_{0}^{t}<f(y(\tau), \tau), v>d \tau+\int_{0}^{t}(g(y(\tau), \tau) d W(\tau), v) .
\end{align*}
$$

Definition 2.2. A weak martingale solution to (1.2a)-(1.2c) is $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathcal{F}}, \tilde{P}, \tilde{W}, \tilde{y})$ where
(1) $\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathcal{F}}_{t}, \tilde{P}\right)$ is a filtered probability space,
(2) $\tilde{W}(t)$ is $\left(m_{1}+m_{2}+m_{3}\right)$-dimensional $\tilde{\mathcal{F}}_{t}$ measurable standard Wiener processes,
(3) $\tilde{y} \in L^{p}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}(0, T ; V)\right) \cap L^{p}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{\infty}(0, T ; H)\right) \forall p \in[1, \infty)$,
(4) for a.e. $t, \tilde{y}(t)$ is $\tilde{\mathcal{F}}_{t}$-measurable,
(5) for any $v \in D(A)$, a.s. $\forall t \in[0, T]$

$$
\begin{align*}
& (\tilde{y}(t), v)+\int_{0}^{t}<A \tilde{y}(\tau)+B(\tilde{y}(\tau)), v>d \tau \tag{2.3}\\
= & \left(\tilde{y}_{0}, v\right)+\int_{0}^{t}<\tilde{f}(\tilde{y}(\tau), \tau), v>d \tau+\int_{0}^{t}(\tilde{g}(\tilde{y}(\tau), \tau) d \tilde{W}(\tau), v) .
\end{align*}
$$

Theorem 2.3. Suppose $y_{0}:=y(0) \in H_{1} \times \mathbb{L}^{2}$ and $f_{i}, g_{i}, i=1,2$ are nonlinear mappings that are continuous in t, f continuous from $H_{1} \times \mathbb{L}^{2}$ to $\mathbb{H}^{-1} \times \mathbb{H}^{-1}$, g_{1}, g_{2} continuous from H_{1} to $H_{1}^{\times m_{1}}$ and \mathbb{L}^{2} to $\left(\mathbb{L}^{2}\right)^{\times m_{2}}$ respectively and

$$
\begin{align*}
& \left\|f_{1}(y, t)\right\|_{\mathbb{H}^{-1}},\left\|g_{1}(y, t)\right\|_{H_{1}^{\times m_{1}}} \lesssim 1+\|u\|_{H_{1}}, \tag{2.4}\\
& \left\|f_{2}(y, t)\right\|_{\mathbb{H}^{-1}},\left\|g_{2}(y, t)\right\|_{\left(\mathbb{L}^{2}\right)^{\times m_{2}}} \lesssim 1+\|w\|_{\mathbb{L}^{2}} .
\end{align*}
$$

Then there exists a solution to (1.1a)-(1.1b) as in Definition 2.1. Moreover, there exists a unique $\pi \in L^{1}\left(\Omega, \mathcal{F}, P ; W^{-1, \infty}\left(0, T ; L^{2}(D)\right)\right)$ such that $\int_{D} \pi d x=0$ in $\left(C_{c}^{\infty}([0, T])\right)^{\prime}$ and (1.1a)-(1.1b) holds in $\left(\left(C_{c}^{\infty}([0, T] \times D)\right)^{\prime}\right)^{3}$.
Theorem 2.4. Suppose $\tilde{y}_{0}:=\tilde{y}(0) \in H$ and $\tilde{f}_{i}, \tilde{g}_{i}, i=1,2,3$ are nonlinear mappings that are continuous in t, \tilde{f} continuous from H to $\mathbb{H}^{-1} \times \mathbb{H}^{-1} \times \mathbb{H}^{-1}, \tilde{g}_{1}, \tilde{g}_{2}, \tilde{g}_{3}$ continuous from H_{1} to $H_{1}^{\times m_{1}}, \mathbb{L}^{2}$ to $\left(\mathbb{L}^{2}\right)^{\times m_{2}}$ and from H_{2} to $H_{2}^{\times m_{3}}$ respectively and

$$
\begin{align*}
& \left\|\tilde{f}_{1}(\tilde{y}, t)\right\|_{\mathbb{H}-1},\left\|\tilde{g}_{1}(\tilde{y}, t)\right\|_{H_{1}^{\times m_{1}}} \lesssim 1+\|u\|_{H_{1}}, \tag{2.5}\\
& \left\|\tilde{f}_{2}(\tilde{y}, t)\right\|_{\mathbb{H}-1},\left\|\tilde{g}_{2}(\tilde{y}, t)\right\|_{\left(\mathbb{L}^{2}\right)^{\times m_{2}}} \lesssim 1+\|w\|_{\mathbb{L}^{2}}, \\
& \left\|\tilde{f}_{3}(\tilde{y}, t)\right\|_{\mathbb{H}-1},\left\|\tilde{g}_{3}(\tilde{y}, t)\right\|_{H_{2}^{\times m_{3}}} \lesssim 1+\|b\|_{H_{2}} .
\end{align*}
$$

Then there exists a solution to (1.2a)-(1.2c) as in Definition 2.2. Moreover, there exists a unique $\pi \in L^{1}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; W^{-1, \infty}\left(0, T ; L^{2}(D)\right)\right)$ such that $\int_{D} \pi d x=0$ in $\left(C_{c}^{\infty}([0, T])\right)^{\prime}$ and (1.2a)-(1.2c) holds in $\left(\left(C_{c}^{\infty}([0, T] \times D)\right)^{\prime}\right)^{3}$.

Remark 2.5. (1) While we in particular follow the work of [4, 30] closely, the setup differs due to the addition of the micro-rotational velocity w. Moreover, in contrast to the case of the MHD system in [30], we do not have $<B(y), y>=0$ but appropriate modifications can overcome this difficulty. On the other hand, in contrast to the Boussinesq system, $\chi(\nabla \times u)$ and $\chi(\nabla \times w)$ are more singular than θe_{3} of the three-dimensional Boussinesq system which actually raises significant issues in some results on the deterministic side (cf. [11, 38]); indeed, there remain many global regularity results that are known for the latter system but not for the former.
(2) In case dimension is two, MPF and MMPF systems must be set up differently. Indeed, it is clear that a straight-forward generalization of u, w, b to two-dimensional vector fields leads to decoupling of (1.1a) and (1.2a) from w. In two-dimensional case, applying different estimates in Sobolev spaces and using Yamada-Watanabe uniqueness theorem, we have also shown the existence of unique strong solution to both systems under Lipschitz condition on the noise. We chose to present these results in a separate accompanying paper (cf. [39]).

Let us state key lemmas needed to prove Theorem 2.4. We refer readers to [18] for definitions of uniform integrability of a family of stochastic processes, tightness and relative compactness for a family of measures.
Lemma 2.6. (cf. [22]) Suppose $\left(g_{k}\right)_{k}, g \in L^{q}\left(0, T ; L^{q}(D)\right), q \in(1, \infty)$ satisfy

$$
\left\|g_{k}\right\|_{L^{q}\left(0, T ; L^{q}(D)\right)} \leq c \quad \forall k
$$

and $g_{k} \rightarrow g(k \rightarrow \infty)$ for almost all $(x, t) \in D \times(0, T)$. Then g_{k} converges weakly to g in $L^{q}\left(0, T ; L^{q}(D)\right)$.
Remark 2.7. (cf. [30] Remark 6) The results of this lemma hold for the space $L^{q}\left(\Omega, \mathcal{F}, P ; L^{q}(D)\right)$ in $\Omega \times D$.
Lemma 2.8. ([27]) A family of probability measures on E is relatively compact if and only if it is tight.
Lemma 2.9. ([33]) For arbitrary sequence of probability measures $\left\{P_{n}\right\}_{n}$ on $(E, \mathcal{B}(E))$ weakly convergent to a probability measure P, there exists a probability space (Ω, \mathcal{F}, P) and random variables $\xi, \xi_{1}, \ldots, \xi_{n}, \ldots$ valued in E such that
(1) $\mathcal{L}\left(\xi_{n}\right)=P_{n}$,
(2) the probability law of ξ is P,
(3) $\lim _{n \rightarrow \infty} \xi_{n}=\xi \quad P$ - almost surely.

Let us also state de la Vallée-Poussin theorem and Vitali's convergence theorem:
Lemma 2.10. (cf. [25]) The family $\left\{X_{\alpha}\right\}_{\alpha \in A} \subset L^{1}(\mu)$ is uniformly integrable if and only if there exists $G(\tau) \geq 0$, increasing and convex such that

$$
\lim _{\tau \rightarrow \infty} \frac{G(\tau)}{\tau}=\infty \text { and } \sup _{\alpha} E\left[G\left(\left|X_{\alpha}\right|\right)\right]<\infty
$$

Lemma 2.11. (cf. [29]) Let (Ω, \mathcal{F}, P) be the probability space. If $\left\{\xi_{n}\right\}$ is uniformly integrable and $\xi_{n}(\omega) \rightarrow \xi(\omega) P$-a.s. $(n \rightarrow \infty)$, then $\xi \in L^{1}(\Omega)$ and $\lim _{n \rightarrow \infty} \int_{\Omega} \mid \xi_{n}-$ $\xi \mid d P=0$.

The following generalization of de Rham's Theorem to processes is due to [20]:
Lemma 2.12. ([20]) Let $D \subset \mathbb{R}^{d}, d=2,3,4$ be bounded, connected, Lipschitz and open and (Ω, \mathcal{F}, P) be a complete probability space. Suppose that for $r_{0}, r_{1} \in$ $[1, \infty], s_{1} \in \mathbb{Z}, h \in L^{r_{0}}\left(\Omega, \mathcal{F}, P ; W^{s_{1}, r_{1}}\left(0, T ;\left(H^{-1}(D)\right)^{d}\right)\right)$ satisfies for any $v \in$ $\left(C_{c}^{\infty}(D)\right)^{d}$ such that $\nabla \cdot v=0, P-$ a.s.

$$
<h, v>_{\left(\left(C_{c}^{\infty}(D)\right)^{\prime}\right)^{d} \times\left(C_{c}^{\infty}(D)\right)^{d}}=0 \quad \text { in }\left(C_{c}^{\infty}\right)^{\prime}(0, T)
$$

Then there exists unique $\pi \in L^{r_{0}}\left(\Omega, \mathcal{F}, P ; W^{s_{1}, r_{1}}\left(0, T ; L^{2}(D)\right)\right)$ such that P-a.s. $\nabla \pi=h$ in $\left(\left(C_{c}^{\infty}([0, T] \times D)\right)^{\prime}\right)^{d}, \int_{D} \pi d x=0$ in $\left(C_{c}^{\infty}([0, T])\right)^{\prime}$.

We will use the following elementary inequality repeatedly:

$$
\begin{equation*}
(a+b)^{p} \leq 2^{p}\left(a^{p}+b^{p}\right) \quad 0 \leq p<\infty, a, b \geq 0 \tag{2.6}
\end{equation*}
$$

3. Proof of Theorem 2.4

3.1. Approximating sequence and a priori estimates. Let $\left\{c_{j}\right\},\left\{d_{j}\right\},\left\{e_{j}\right\}$ be the family of eigenfunctions so that

$$
\begin{array}{ll}
\left(\left(c_{j}, v^{1}\right)\right)_{D\left(A_{1}\right)}=\lambda_{j}^{1}\left(c_{j}, v^{1}\right) & \forall v^{1} \in D\left(A_{1}\right) \tag{3.1}\\
\left(\left(d_{j}, v^{2}\right)\right)_{D\left(A_{2}\right)}=\lambda_{j}^{2}\left(d_{j}, v^{2}\right) & \forall v^{2} \in D\left(A_{2}\right) \\
\left(\left(e_{j}, v^{3}\right)\right)_{D\left(A_{3}\right)}=\lambda_{j}^{3}\left(e_{j}, v^{3}\right) \quad \forall v^{3} \in D\left(A_{3}\right)
\end{array}
$$

We may assume that $\left\{c_{j}\right\},\left\{d_{j}\right\},\left\{e_{j}\right\}$ are orthonormal basis in $D\left(A_{i}\right), i=1,2,3$ respectively and we have

$$
\begin{equation*}
D(A) \subset V \subset H=H^{\prime} \subset V^{\prime} \subset D(A)^{\prime} \tag{3.2}
\end{equation*}
$$

The eigenfunctions of $D(A)$ are $q_{j}=\left(q_{j}^{1}, q_{j}^{2}, q_{j}^{3}\right)$ where

$$
\begin{align*}
& q_{j}^{1}:=\left(c_{j}, 0,0\right), \quad q_{j}^{2}:=\left(0, d_{j}, 0\right), \quad q_{j}^{3}:=\left(0,0, e_{j}\right) \tag{3.3}\\
& \left(\left(v, q_{j}^{k}\right)\right)_{D(A)}=\lambda_{j}^{k}\left(v, q_{j}^{k}\right) \quad \forall v \in D(A), k=1,2,3 \tag{3.4}
\end{align*}
$$

We look for approximation to (2.3) of the form

$$
\left\{\begin{array}{l}
\tilde{y}^{m}(t) \in \operatorname{span}\left\{q_{j}, j=1,2, \ldots, m\right\} \tag{3.5}\\
\tilde{y}_{0}^{m}=\tilde{y}^{m}(0) \in \operatorname{span}\left\{q_{j}, j=1,2, \ldots, m\right\}
\end{array}\right.
$$

and \tilde{y}_{0}^{m} converges strongly to $\tilde{y}_{0},(m \rightarrow \infty)$ in H. We may write by (3.4)

$$
\begin{equation*}
\tilde{y}^{m}(t)=\sum_{k=1}^{3} \sum_{j=1}^{m}\left(\left(\tilde{y}^{m}(t), q_{j}^{k}\right)\right)_{D(A)} q_{j}^{k}=\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{y}^{m}(t), q_{j}^{k}\right) q_{j}^{k} \tag{3.6}
\end{equation*}
$$

We consider $(\bar{\Omega}, \overline{\mathcal{F}}, \bar{P}, \bar{W})$ where \bar{W} is $\left(m_{1}+m_{2}+m_{3}\right)$-dimensional Wiener process and study

$$
\begin{align*}
& d\left(\tilde{y}^{m}(t), q_{j}^{k}\right)+<A \tilde{y}^{m}(t), q_{j}^{k}>d t+<B\left(\tilde{y}^{m}(t)\right), q_{j}^{k}>d t \tag{3.7}\\
= & <\tilde{f}\left(\tilde{y}^{m}(t), t\right), q_{j}^{k}>d t+\left(\tilde{g}\left(\tilde{y}^{m}(t), t\right), q_{j}^{k}\right) d \bar{W}, \quad t \in[0, T],
\end{align*}
$$

for which locally on $\left[0, t_{m}\right]$, possibly $t_{m}<T$, the solution is known to exist (see e.g. [34] pg. 121 Theorem 2). To extend to [0,T], we perform an a priori estimate. We first observe that $\left|\tilde{y}^{m}\right|^{2}=\left(\tilde{y}^{m}, \tilde{y}^{m}\right)=\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{y}^{m}(t), q_{j}^{k}\right)^{2}$ due to (3.6).

Now we use Ito's formula and (3.7), multiply the resulting equation by λ_{j}^{k}, sum over $k=1,2,3$ and $j=1, \ldots, m$ to obtain

$$
\begin{align*}
& d\left|\tilde{y}^{m}(t)\right|^{2}+2<A \tilde{y}^{m}(t), \tilde{y}^{m}(t)>d t+2<B\left(\tilde{y}^{m}(t)\right), \tilde{y}^{m}(t)>d t \tag{3.8}\\
&=2<\tilde{f}\left(\tilde{y}^{m}(t), t\right), \tilde{y}^{m}(t)>d t+\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(t), t\right), q_{j}^{k}\right)^{2} d t \\
&+2\left(\tilde{g}\left(\tilde{y}^{m}(t), t\right), \tilde{y}^{m}(t)\right) d \bar{W}
\end{align*}
$$

due to (3.6). Next, for $p \in[4, \infty)$ by Ito's formula and (3.8) we have

$$
\begin{align*}
& d\left|\tilde{y}^{m}(t)\right|^{p}+p\left|\tilde{y}^{m}(t)\right|^{p-2}\left[<A \tilde{y}^{m}(t), \tilde{y}^{m}(t)>+<B\left(\tilde{y}^{m}(t)\right), \tilde{y}^{m}(t)>\right] d t \tag{3.9}\\
&= \frac{p}{2}\left|\tilde{y}^{m}(t)\right|^{p-2}\left[2<\tilde{f}\left(\tilde{y}^{m}(t), t\right), \tilde{y}^{m}(t)>+\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(t), t\right), q_{j}^{k}\right)^{2}\right. \\
&\left.+(p-2)\left|\tilde{y}^{m}(t)\right|^{-2}\left(\tilde{g}\left(\tilde{y}^{m}(t), t\right), \tilde{y}^{m}(t)\right)^{2}\right] d t \\
&+p\left|\tilde{y}^{m}(t)\right|^{p-2}\left(\tilde{g}\left(\tilde{y}^{m}(t), t\right), \tilde{y}^{m}(t)\right) d \bar{W} .
\end{align*}
$$

We now prove the following proposition:
Proposition 3.1. Let $(\bar{\Omega}, \overline{\mathcal{F}}, \bar{P}, \bar{W})$ be a probabilistic system with \bar{W}, an $\left(m_{1}+\right.$ $\left.m_{2}+m_{3}\right)$-dimensional Wiener process. Then the solution \tilde{y}^{m} to (3.7) satisfies

$$
\bar{E}\left[\sup _{t \in[0, T]}\left|\tilde{y}^{m}(t)\right|^{2}\right]+\bar{E}\left[\int_{0}^{T}\left\|\tilde{y}^{m}(t)\right\|^{2} d t\right] \lesssim 1
$$

Proof. On (3.8), we use (2.1) to obtain

$$
\begin{align*}
& d\left|\tilde{y}^{m}(t)\right|^{2}+2 \tilde{c}\left\|\tilde{y}^{m}(t)\right\|^{2} d t \leq 2<\tilde{f}\left(\tilde{y}^{m}(t), t\right), \tilde{y}^{m}(t)>d t \tag{3.10}\\
&+\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(t), t\right), q_{j}^{k}\right)^{2} d t+2\left(\tilde{g}\left(\tilde{y}^{m}(t), t\right), \tilde{y}^{m}(t)\right) d \bar{W} .
\end{align*}
$$

We integrate in time $[0, t]$, use the following standard stopping time

$$
\lambda_{N}:= \begin{cases}\inf \left\{\tau>0:\left|\tilde{y}^{m}(\tau)\right| \geq N\right\} & \text { if }\left\{\bar{\omega} \in \bar{\Omega}:\left|\tilde{y}^{m}(\tau)\right| \geq N\right\} \neq \emptyset \\ \infty & \text { if }\left\{\bar{\omega} \in \bar{\Omega}:\left|\tilde{y}^{m}(\tau)\right| \geq N\right\}=\emptyset\end{cases}
$$

take supremum over $\tau \in\left[0, t \wedge \lambda_{N}\right], t \in\left[0, t_{m}\right]$ and \bar{E}, the expected value with respect to \bar{P}, to obtain

$$
\begin{align*}
& \bar{E}\left[\sup _{\tau \in\left[0, t \wedge \lambda_{N}\right]}\left|\tilde{y}^{m}(\tau)\right|^{2}\right]+2 \tilde{c} \bar{E}\left[\int_{0}^{t \wedge \lambda_{N}}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right] \tag{3.11}\\
& \leq\left|\tilde{y}_{0}^{m}\right|^{2}+2 \bar{E}\left[\int_{0}^{t \wedge \lambda_{N}}\left|<\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right), \tilde{y}^{m}(\tau)>\right|+\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right), q_{j}^{k}\right)^{2} d \tau\right] \\
& \quad+2 \bar{E}\left[\sup _{\tau \in\left[0, t \wedge \lambda_{N}\right]}\left|\int_{0}^{\tau}\left(\tilde{g}\left(\tilde{y}^{m}(\eta), \eta\right), \tilde{y}^{m}(\eta)\right) d \bar{W}(\eta)\right|\right] .
\end{align*}
$$

By (2.5) and Young's inequality we obtain

$$
\begin{aligned}
& \int_{0}^{t \wedge \lambda_{N}}\left|<\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right), \tilde{y}^{m}(\tau)>\right| d \tau \lesssim \int_{0}^{t \wedge \lambda_{N}}\left(1+\left|\tilde{y}^{m}(\tau)\right|\right)\left\|\tilde{y}^{m}(\tau)\right\| d \tau \\
\leq & \frac{\tilde{c}}{2} \int_{0}^{t \wedge \lambda_{N}}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau+c \int_{0}^{t \wedge \lambda_{N}}\left(1+\left|\tilde{y}^{m}(\tau)\right|^{2}\right) d \tau
\end{aligned}
$$

Thus,

$$
\begin{align*}
& 2 \bar{E}\left[\int_{0}^{t \wedge \lambda_{N}}\left|<\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right), \tilde{y}^{m}(\tau)>\right| d \tau\right] \tag{3.12}\\
\leq & \tilde{c} \bar{E}\left[\int_{0}^{t \wedge \lambda_{N}}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right]+c \bar{E}\left[\int_{0}^{t \wedge \lambda_{N}}\left(1+\left|\tilde{y}^{m}(\tau)\right|^{2}\right) d \tau\right] .
\end{align*}
$$

Next, using $\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left|q_{j}^{k}\right|^{2} \lesssim 1$, we estimate by (2.5),

$$
\begin{aligned}
\int_{0}^{t \wedge \lambda_{N}} \sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right), q_{j}^{k}\right)^{2} d \tau & \leq \int_{0}^{t \wedge \lambda_{N}}\left|\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right)\right|^{2} \sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left|q_{j}^{k}\right|^{2} d \tau \\
& \lesssim \int_{0}^{t \wedge \lambda_{N}}\left(1+\left|\tilde{y}^{m}(\tau)\right|^{2}\right) d \tau
\end{aligned}
$$

Hence,

$$
\begin{equation*}
2 \bar{E}\left[\int_{0}^{t \wedge \lambda_{N}} \sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right), q_{j}^{k}\right)^{2} d \tau\right] \lesssim \bar{E}\left[\int_{0}^{t \wedge \lambda_{N}} 1+\left|\tilde{y}^{m}(\tau)\right|^{2} d \tau\right] \tag{3.13}
\end{equation*}
$$

Finally,

$$
\begin{align*}
& 2 \bar{E}\left[\sup _{\tau \in\left[0, t \wedge \lambda_{N}\right]}\left|\int_{0}^{\tau}\left(\tilde{g}\left(\tilde{y}^{m}(\eta), \eta\right), \tilde{y}^{m}(\eta)\right) d \bar{W}(\eta)\right|\right] \tag{3.14}\\
\lesssim & \bar{E}\left[\left(\int_{0}^{t \wedge \lambda_{N}}\left|\left(\tilde{g}\left(\tilde{y}^{m}(\eta), \eta\right), \tilde{y}^{m}(\eta)\right)\right|^{2} d \eta\right)^{\frac{1}{2}}\right] \\
\leq & (1-\tilde{c}) \bar{E}\left[\sup _{\tau \in\left[0, t \wedge \lambda_{N}\right]}\left|\tilde{y}^{m}(\tau)\right|^{2}\right]+c \bar{E}\left[\int_{0}^{t \wedge \lambda_{N}}\left(1+\left|\tilde{y}^{m}(\eta)\right|^{2}\right) d \eta\right]
\end{align*}
$$

by Burkholder-Davis-Gundy and Hölder's
inequalities, (2.5) and Young's inequality. We consider (3.12)-(3.14) into (3.11) and obtain after absorbing

$$
\begin{equation*}
\bar{E}\left[\sup _{\tau \in\left[0, t \wedge \lambda_{N}\right]}\left|\tilde{y}^{m}(\tau)\right|^{2}\right]+\bar{E}\left[\int_{0}^{t \wedge \lambda_{N}}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right] \leq 1+\bar{E}\left[\int_{0}^{t \wedge \lambda_{N}} 1+\left|\tilde{y}^{m}(\tau)\right|^{2} d \tau\right. \tag{3.15}
\end{equation*}
$$

as $\tilde{y}_{0} \in H$. Gronwall's inequality type argument along with the independence of the bound with respect to m and N which allows us to take the limit $N \rightarrow \infty$ completes the proof of Proposition 3.1.

Proposition 3.2. Let $(\bar{\Omega}, \overline{\mathcal{F}}, \bar{P}, \bar{W})$ be a probabilistic system with \bar{W}, an ($m_{1}+$ $\left.m_{2}+m_{3}\right)$-dimensional Wiener process. Then the solution \tilde{y}^{m} to (3.7) satisfies

$$
\begin{aligned}
& \bar{E}\left[\sup _{t \in[0, T]}\left|\tilde{y}^{m}(t)\right|^{p}+\left(\int_{0}^{T}\left\|\tilde{y}^{m}(t)\right\|^{2} d t\right)^{p}\right] \lesssim 1 \quad \forall p \geq 1, \\
& \bar{E}\left[\left(\int_{0}^{T}\left|\tilde{y}^{m}(t)\right|^{p-2}\left\|\tilde{y}^{m}(t)\right\|^{2} d t\right)^{2}\right] \lesssim 1 \quad \forall p \geq 4 .
\end{aligned}
$$

Proof. We integrate (3.9) which holds $\forall p \geq 4$ over [0, τ], apply (2.1), take supremum over $\tau \in[0, t]$, square both sides and use (2.6) to obtain

$$
\begin{align*}
& \sup _{\tau \in[0, t]}\left|\tilde{y}^{m}(\tau)\right|^{2 p}+(p \tilde{c})^{2}\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-2}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right)^{2} \tag{3.16}\\
\lesssim & \left|\tilde{y}_{0}^{m}\right|^{2 p}+\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-2}<\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right), \tilde{y}^{m}(\tau)>d \tau\right)^{2} \\
& +\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-2} \sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right), q_{j}^{k}\right)^{2} d \tau\right)^{2} \\
& +\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-4}\left(\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right), \tilde{y}^{m}(\tau)\right)^{2} d \tau\right)^{2} \\
& +\left(\left.\sup _{\tau \in[0, t]}\left|\int_{0}^{\tau}\right| \tilde{y}^{m}(\eta)\right|^{p-2}\left(\tilde{g}\left(\tilde{y}^{m}(\eta), \eta\right), \tilde{y}^{m}(\eta)\right) d \bar{W}(\eta) \mid\right)^{2} .
\end{align*}
$$

We take \bar{E} on both sides and first estimate

$$
\begin{align*}
& c \bar{E}\left[\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-2}<\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right), \tilde{y}^{m}(\tau)>d \tau\right)^{2}\right] \tag{3.17}\\
\leq & c \bar{E}\left[\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-2}\left|\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right)\right|_{V^{\prime}}^{2} d \tau\right)^{2}\right] \\
& +\frac{(p \tilde{c})^{2}}{2} \bar{E}\left[\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-2}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right)^{2}\right]
\end{align*}
$$

by Young's inequality and (2.6) where the first term is bounded by

$$
\begin{equation*}
c \bar{E}\left[\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-2}\left|\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right)\right|_{\mathbb{H}-1}^{2} d \tau\right)^{2}\right] \lesssim \bar{E}\left[1+\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{2 p} d \tau\right] \tag{3.18}
\end{equation*}
$$

due to (2.5)-(2.6) and Hölder's inequality. Next, similarly to (3.13),

$$
\begin{equation*}
\bar{E}\left[\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-2} \sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right), q_{j}^{k}\right)^{2} d \tau\right)^{2}\right] \lesssim \bar{E}\left[1+\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{2 p} d \tau\right] \tag{3.19}
\end{equation*}
$$

by (2.5), Young's and Hölder's inequalities. Similarly,

$$
\begin{equation*}
c \bar{E}\left[\left(\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{p-4}\left(\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right), \tilde{y}^{m}(\tau)\right)^{2} d \tau\right)^{2}\right] \lesssim \bar{E}\left[1+\int_{0}^{t}\left|\tilde{y}^{m}(\tau)\right|^{2 p} d \tau\right] \tag{3.20}
\end{equation*}
$$

by (2.5), Young's and Hölder's inequalities. Finally,

$$
\begin{align*}
& c \bar{E}\left[\left(\left.\sup _{\tau \in[0, t]}\left|\int_{0}^{\tau}\right| \tilde{y}^{m}(\eta)\right|^{p-2}\left(\tilde{g}\left(\tilde{y}^{m}(\eta), \eta\right), \tilde{y}^{m}(\eta)\right) d \bar{W}(\eta) \mid\right)^{2}\right] \tag{3.21}\\
\lesssim & \bar{E}\left[\int_{0}^{t}\left|\tilde{y}^{m}(\eta)\right|^{2 p-4}\left|\left(\tilde{g}\left(\tilde{y}^{m}(\eta), \eta\right), \tilde{y}^{m}(\eta)\right)\right|^{2} d \eta\right] \lesssim \bar{E}\left[1+\int_{0}^{t}\left|\tilde{y}^{m}(\eta)\right|^{2 p} d \eta\right]
\end{align*}
$$

by Burkholder-Davis-Gundy inequality, (2.5)-(2.6) and Young's inequality. Considering (3.17)-(3.21) in (3.16), Gronwall's inequality type argument implies

$$
\begin{equation*}
\bar{E}\left[\sup _{\tau \in[0, T]}\left|\tilde{y}^{m}(\tau)\right|^{2 p}\right] \lesssim 1 \tag{3.22}
\end{equation*}
$$

$\forall p \geq 4$ and hence $\forall p \geq \frac{1}{2}$. Moreover, it follows that

$$
\begin{equation*}
\bar{E}\left[\left(\int_{0}^{T}\left|\tilde{y}^{m}(\tau)\right|^{p-2}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right)^{2}\right] \lesssim 1 \tag{3.23}
\end{equation*}
$$

Similarly, we integrate (3.10) over $[0, t]$, take supremum over $\tau \in[0, t]$, raise to the power $p \in[1, \infty)$ and use (2.6) to obtain

$$
\begin{aligned}
(2 \tilde{c})^{p}\left(\int_{0}^{t}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right)^{p} \lesssim & \left|\tilde{y}_{0}^{m}\right|^{2 p}+\left(\int_{0}^{t}\left|<\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right), \tilde{y}^{m}(\tau)>\right| d \tau\right)^{p} \\
& +\left(\int_{0}^{t} \sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right), q_{j}^{k}\right)^{2} d \tau\right)^{p} \\
& +\left(\sup _{\tau \in[0, t]}\left|\int_{0}^{\tau}\left(\tilde{g}\left(\tilde{y}^{m}(\eta), \eta\right), \tilde{y}^{m}(\eta)\right) d \bar{W}(\eta)\right|\right)^{p}
\end{aligned}
$$

Taking \bar{E}, we estimate first

$$
\begin{aligned}
& c \bar{E}\left[\left(\int_{0}^{t}\left|<\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right), \tilde{y}^{m}(\tau)>\right| d \tau\right)^{p}\right] \lesssim \bar{E}\left[\left(\int_{0}^{t}\left|\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right)\right|_{V^{\prime}}\left|\tilde{y}^{m}(\tau)\right|_{V} d \tau\right)^{p}\right] \\
\leq & c \bar{E}\left[\left(\int_{0}^{t}\left(1+\left|\tilde{y}^{m}(\tau)\right|\right)^{2} d \tau\right)^{p}\right]+\frac{(2 \tilde{c})^{p}}{2} \bar{E}\left[\left(\int_{0}^{t}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right)^{p}\right]
\end{aligned}
$$

by (2.5), Young's inequality and (2.6) where

$$
c \bar{E}\left[\left(\int_{0}^{t}\left(1+\left|\tilde{y}^{m}(\tau)\right|\right)^{2} d \tau\right)^{p}\right] \lesssim 1+E\left[\sup _{\tau \in[0, t]}\left|\tilde{y}^{m}(\tau)\right|^{2 p}\right] \lesssim 1
$$

due to (2.6), Hölder's inequality and (3.22). Next,

$$
c \bar{E}\left[\left(\int_{0}^{t} \sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}\left(\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right), q_{j}^{k}\right)^{2} d \tau\right)^{p}\right] \lesssim \bar{E}\left[\left(\int_{0}^{t} 1+\left|\tilde{y}^{m}(\tau)\right|^{2} d \tau\right)^{p}\right] \lesssim 1
$$

by Hölder's inequality, the previous estimates in (3.13), (2.5) and (3.22). Finally,

$$
\begin{aligned}
& c \bar{E}\left[\left(\sup _{\tau \in[0, t]}\left|\int_{0}^{\tau}\left(\tilde{g}\left(\tilde{y}^{m}(\eta), \eta\right), \tilde{y}^{m}(\eta)\right) d \bar{W}(\eta)\right|\right)^{p}\right] \\
\lesssim & \bar{E}\left[\left(\int_{0}^{t}\left|\left(\tilde{g}\left(\tilde{y}^{m}(\eta)\right), \tilde{y}^{m}(\eta), \eta\right)\right|^{2} d \eta\right)^{\frac{p}{2}}\right] \lesssim \bar{E}\left[\left(\int_{0}^{t} 1+\left|\tilde{y}^{m}(\eta)\right|^{4} d \eta\right)^{\frac{p}{2}}\right] \lesssim 1
\end{aligned}
$$

by Burkholder-Davis-Gundy inequality, (2.5), Hölder's inequality and (3.22). In sum after absorbing, for any $p \geq 1$,

$$
\begin{equation*}
\bar{E}\left[\left(\int_{0}^{T}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right)^{p}\right] \lesssim 1 \tag{3.24}
\end{equation*}
$$

This completes the proof of Proposition 3.2.

Proposition 3.3. Let $\delta \in(0,1)$ and $(\bar{\Omega}, \overline{\mathcal{F}}, \bar{P}, \bar{W})$ be a probabilistic system with \bar{W}, an $\left(m_{1}+m_{2}+m_{3}\right)$-dimensional Wiener process. Then the solution \tilde{y}^{m} to (3.7) satisfies

$$
\bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\tilde{y}^{m}(t+\theta)-\tilde{y}^{m}(t)\right\|_{D(A)^{\prime}}^{2} d t\right] \lesssim \delta^{\frac{1}{3}}
$$

Proof. We estimate the difference of $\tilde{y}^{m}(t+\theta)-\tilde{y}^{m}(t)$. Firstly, we notice that

$$
\left\{\lambda_{j}^{k} q_{j}^{k}, k=1,2,3, j=1, \ldots, m\right\}
$$

forms an orthonormal basis in $D(A)^{\prime}$ and introduce a projection P^{m} in $D(A)^{\prime}$ onto the span of

$$
\left\{\lambda_{j} q_{j}^{k}, k=1,2,3, j=1, \ldots m\right\}
$$

defined by

$$
P^{m} \xi:=\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_{j}^{k}<\xi, q_{j}^{k}>q_{j}^{k}
$$

We integrate (3.7) from $[0, t]$, multiply by $\lambda_{j}^{k} q_{j}^{k}$, sum over $k=1,2,3, j=1, \ldots, m$, use (3.6) to obtain

$$
\begin{align*}
& \tilde{y}^{m}(t)+\int_{0}^{t} P^{m} A \tilde{y}^{m}(\tau) d \tau+\int_{0}^{t} P^{m} B\left(\tilde{y}^{m}(\tau)\right) d \tau \tag{3.25}\\
& =\tilde{y}_{0}^{m}+\int_{0}^{t} P^{m} \tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right) d \tau+\int_{0}^{t} P^{m} \tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right) d \bar{W}(\tau)
\end{align*}
$$

We subtract the difference between $\tilde{y}^{m}(t+\theta)$ and $\tilde{y}^{m}(t)$, take $\|\cdot\|_{D(A)^{\prime}}$, square both sides, take sup over $\theta \in[0, \delta], \delta \in(0,1)$, integrate over $[0, T]$ to obtain

$$
\begin{align*}
& \sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\tilde{y}^{m}(t+\theta)-\tilde{y}^{m}(t)\right\|_{D(A)^{\prime}}^{2} d t \tag{3.26}\\
\lesssim & \sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} P^{m} A \tilde{y}^{m}(\tau) d \tau\right\|_{D(A)^{\prime}}^{2} d t \\
& +\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} P^{m} B\left(\tilde{y}^{m}(\tau)\right) d \tau\right\|_{D(A)^{\prime}}^{2} d t \\
& +\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} P^{m} \tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right) d \tau\right\|_{D(A)^{\prime}}^{2} d t \\
& +\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} P^{m} \tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right) d \bar{W}(\tau)\right\|_{D(A)^{\prime}}^{2} d t
\end{align*}
$$

We take \bar{E} on (3.26) and estimate

$$
\begin{align*}
& c \bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} P^{m} A \tilde{y}^{m}(\tau) d \tau\right\|_{D(A)^{\prime}}^{2} d t\right] \tag{3.27}\\
\lesssim & \bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T} \theta \int_{t}^{t+\theta}\left\|A \tilde{y}^{m}(\tau)\right\|_{D(A)^{\prime}}^{2} d \tau d t\right] \lesssim T \delta^{2} \bar{E}\left[\sup _{t \in[0, T]}\left|\tilde{y}^{m}(t)\right|^{2}\right] \lesssim \delta
\end{align*}
$$

by Hölder's inequality, the fact that $P^{m} \in \mathcal{L}\left(D(A)^{\prime}, D(A)^{\prime}\right)$, where $\mathcal{L}(X, Y)$ is the space of bounded linear maps from X to Y, and Proposition 3.1. We also used

$$
\int_{0}^{T} \int_{t}^{t+\theta}|f(s)| d s d t=\int_{0}^{\theta}\left[\int_{0}^{T}|f(t+s)| d t\right] d s \leq \theta\|f\|_{L^{1}([0, T])}
$$

which hereafter we shall continue to use without further mentioning. Next,

$$
\begin{align*}
& \bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} P^{m} B\left(\tilde{y}^{m}(\tau)\right) d \tau\right\|_{D(A)^{\prime}}^{2} d t\right] \tag{3.28}\\
\lesssim & \bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left|\int_{t}^{t+\theta}\left\|P^{m} B\left(\tilde{y}^{m}(\tau)\right)\right\|_{D(A)^{\prime}} d \tau\right|^{2} d t\right] \\
\lesssim & \bar{E}\left[\int_{0}^{T}\left|\int_{t}^{t+\delta}\left\|B\left(\tilde{y}^{m}(\tau)\right)\right\|_{V^{\prime}} d \tau\right|^{2} d t\right]
\end{align*}
$$

because $P^{m} \in \mathcal{L}\left(D(A)^{\prime}, D(A)^{\prime}\right)$. Now we estimate for $\tilde{y}^{m}=\left(u^{m}, w^{m}, b^{m}\right)$,

$$
\begin{aligned}
& \left\|B\left(\tilde{y}^{m}\right)\right\|_{V^{\prime}} \\
& \leq\left\|\operatorname{div}\left(u^{m} \otimes u^{m}\right)\right\|_{V^{\prime}}+\left\|\operatorname{div}\left(b^{m} \otimes b^{m}\right)\right\|_{V^{\prime}}+\chi\left\|\nabla \times w^{m}\right\|_{V^{\prime}} \\
& \quad+\left\|\operatorname{div}\left(u^{m} \otimes w^{m}\right)\right\|_{V^{\prime}}+\chi\left\|\nabla \times u^{m}\right\|_{V^{\prime}}+\left\|\operatorname{div}\left(u^{m} \otimes b^{m}\right)\right\|_{V^{\prime}}+\left\|\operatorname{div}\left(b^{m} \otimes u^{m}\right)\right\|_{V^{\prime}} \\
& \lesssim\left\|\tilde{y}^{m}\right\|_{\mathbb{L}^{4}}^{2}+\left\|\tilde{y}^{m}\right\|_{\mathbb{L}^{2}} \lesssim 1+\left\|\tilde{y}^{m}\right\|_{\mathbb{L}^{4}}^{2} \lesssim 1+\left\|\tilde{y}^{m}\right\|_{\mathbb{L}^{2}}^{\frac{1}{2}}\left\|\tilde{y}^{m}\right\|_{\mathbb{L}^{6}}^{\frac{3}{2}} \lesssim 1+\left|\tilde{y}^{m}\right|^{\frac{1}{2}}\left\|\tilde{y}^{m}\right\|^{\frac{3}{2}}
\end{aligned}
$$

where we used Hölder's and interpolation inequalities and a Sobolev embedding. Thus, using this in (3.28), we obtain

$$
\begin{align*}
& \bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} P^{m} B\left(\tilde{y}^{m}(\tau)\right) d \tau\right\|_{D(A)^{\prime}}^{2} d t\right] \tag{3.29}\\
& \lesssim \bar{E}\left[\int_{0}^{T}\left|\int_{t}^{t+\delta} 1+\left|\tilde{y}^{m}(\tau)\right|^{\frac{1}{2}}\left\|\tilde{y}^{m}(\tau)\right\|^{\frac{3}{2}} d \tau\right|^{2} d t\right] \\
& \lesssim \bar{E}\left[\left.\left.\int_{0}^{T}\left|\delta+\sup _{\tau \in[t, t+\delta]}\right| \tilde{y}^{m}(\tau)\right|^{\frac{1}{2}} \delta^{\frac{1}{4}}\left(\int_{t}^{t+\delta}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right)^{\frac{3}{4}}\right|^{2} d t\right] \\
& \lesssim \bar{E}\left[\int_{0}^{T} \delta^{2}+\sup _{\tau \in[t, t+\delta]}\left|\tilde{y}^{m}(\tau)\right|^{4} \delta+\delta^{\frac{1}{3}}\left(\int_{t}^{t+\delta}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right)^{2} d t\right] \\
& \lesssim T\left(\delta^{2}+E\left[\sup _{t \in[0, T]}\left|\tilde{y}^{m}(\tau)\right|^{4}\right] \delta+\delta^{\frac{1}{3}} \bar{E}\left[\left(\int_{0}^{T}\left\|\tilde{y}^{m}(\tau)\right\|^{2} d \tau\right)^{2}\right]\right) \lesssim \delta^{\frac{1}{3}}
\end{align*}
$$

by Hölder's and Young's inequalities and Proposition 3.2. Next,

$$
\begin{align*}
& \bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} P^{m} \tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right) d \tau\right\|_{D(A)^{\prime}}^{2} d t\right] \tag{3.30}\\
\lesssim & \bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left|\sqrt{\theta}\left(\int_{t}^{t+\theta}\left\|\tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right)\right\|_{D(A)^{\prime}}^{2} d \tau\right)^{\frac{1}{2}}\right|^{2} d t\right] \\
\lesssim & \delta \bar{E}\left[\int_{0}^{T} \int_{t}^{t+\delta}\left(1+\left|\tilde{y}^{m}(\tau)\right|\right)^{2} d \tau d t\right] \lesssim \delta^{2}
\end{align*}
$$

by Hölder's inequality, $P^{m} \in \mathcal{L}\left(D(A)^{\prime}, D(A)^{\prime}\right)$, (2.5)-(2.6) and Proposition 3.1. Finally,

$$
\begin{align*}
& \bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} P^{m} \tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right) d \bar{W}(\tau)\right\|_{D(A)^{\prime}}^{2} d t\right] \tag{3.31}\\
\lesssim & \bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\int_{t}^{t+\theta} \tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right) d \bar{W}(\tau)\right\|_{D(A)^{\prime}}^{2} d t\right] \\
\lesssim & \int_{0}^{T} \int_{D} \bar{E}\left[\left|\sup _{\theta \in[0, \delta]}\right| \int_{t}^{t+\theta} \tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right) d \bar{W}(\tau)| |^{2}\right] d x d t \\
\lesssim & \int_{0}^{T} \int_{D} \bar{E}\left[\int_{t}^{t+\delta}\left|\tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right)\right|^{2} d \tau\right] d x d t \lesssim \bar{E}\left[\int_{0}^{T} \int_{t}^{t+\delta}\left(1+\left|\tilde{y}^{m}(\tau)\right|\right)^{2} d \tau d t\right] \lesssim \delta
\end{align*}
$$

due to $P^{m} \in \mathcal{L}\left(D(A)^{\prime}, D(A)^{\prime}\right)$, Burkholder-Davis-Gundy inequality, (2.5)-(2.6) and Proposition 3.1. Using (3.27), (3.29)-(3.31) in (3.26), we obtain

$$
\begin{equation*}
\bar{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\tilde{y}^{m}(t+\theta)-\tilde{y}^{m}(t)\right\|_{D(A)^{\prime}}^{2} d \tau\right] \lesssim \delta^{\frac{1}{3}} \tag{3.32}
\end{equation*}
$$

This completes the proof of Proposition 3.3.
3.2. Application of Prokhorov and Skorokhod theorems. Having completed our a priori estimates, for the rest of the proof where there is much similarity to the cases of the NSE or MHD system, we only sketch it for completeness. We first recall the following useful fact due to [32] (see also [3, 4]):

Lemma 3.4. For any $\left\{\mu_{n}\right\},\left\{\nu_{n}\right\}, \mu_{n}, \nu_{n} \geq 0$ such that $\mu_{n}, \nu_{n} \rightarrow 0(n \rightarrow \infty)$, the space

$$
\left\{z \in L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H), \sup _{n,|\theta| \leq \mu_{n}} \frac{\left(\int_{0}^{T}\|z(t+\theta)-z(t)\|_{D(A)^{\prime}}^{2} d t\right)^{\frac{1}{2}}}{\nu_{n}}<\infty\right\}
$$

which we denote by $Y_{\mu_{n}, \nu_{n}}$, is a compact subset of $L^{2}(0, T ; H)$. Moreover, it is a Banach space if endowed with the norm

$$
\begin{aligned}
\|z\|_{Y_{\mu_{n}, \nu_{n}}}:= & \sup _{t \in[0, T]}|z(t)|+\left(\int_{0}^{T}\|z(t)\|^{2} d t\right)^{\frac{1}{2}} \\
& +\sup _{n} \frac{1}{\nu_{n}} \sup _{|\theta| \leq \mu_{n}}\left(\int_{0}^{T}\|z(t+\theta)-z(t)\|_{D(A)^{\prime}}^{2} d t\right)^{\frac{1}{2}}
\end{aligned}
$$

For any $\left\{\mu_{n}\right\},\left\{\nu_{n}\right\}$ such that $\mu_{n}, \nu_{n} \rightarrow 0(n \rightarrow \infty)$, we denote another Banach space $B_{\bar{P}, p, \mu_{n}, \nu_{n}}:=\left\{z:\|z\|_{B_{\bar{P}, p, \mu_{n}, \nu_{n}}}<\infty\right\}$ where

$$
\begin{aligned}
\|z\|_{B_{\bar{P}, p, \mu_{n}, \nu_{n}}}:= & \left(\bar{E}\left[\sup _{t \in[0, T]}|z(t)|^{p}\right]\right)^{\frac{1}{p}}+\left(\bar{E}\left[\left(\int_{0}^{T}\|z(t)\|^{2} d t\right)^{\frac{p}{2}}\right]\right)^{\frac{2}{p}} \\
& +\bar{E}\left[\sup _{n} \frac{1}{\nu_{n}} \sup _{|\theta| \leq \mu_{n}}\left(\int_{0}^{T}\|z(t+\theta)-z(t)\|_{D(A)^{\prime}}^{2} d t\right)^{\frac{1}{2}}\right] .
\end{aligned}
$$

Due to Propositions 3.1, 3.2 and $3.3, \forall p \in[1, \infty),\left\{\mu_{n}\right\},\left\{\nu_{n}\right\}$ such that

$$
\sum_{n=1}^{\infty} \frac{\mu_{n}^{\frac{1}{6}}}{\nu_{n}} \lesssim 1
$$

$\left\{\tilde{y}^{m}: m \in \mathbb{N}\right\}$ is bounded in $B_{\bar{P}, p ; \mu_{n}, \nu_{n}}$. Moreover, we denote by

$$
S:=C\left(0, T ; \mathbb{R}^{m_{1}+m_{2}+m_{3}}\right) \times L^{2}(0, T ; H)
$$

and $\mathcal{B}(S)$ the σ-algebra generated by Borel sets of S. For $m=1,2, \ldots$, we define $\Phi: \bar{\Omega} \mapsto S$ and a probability measure Π_{m} by

$$
\Phi(\bar{\omega})=\left(\bar{W}(\bar{\omega}, \cdot), \tilde{y}^{m}(\bar{\omega}, \cdot)\right), \quad \Pi_{m}(A):=\bar{P}\left(\Phi^{-1}(A)\right) \quad \forall A \in \mathcal{B}(S)
$$

Proposition 3.5. The family of probability measures $\left\{\Pi_{m}, m \in \mathbb{N}\right\}$ is tight.
Proof. We fix $\epsilon>0$ and recall that for any $n=1,2, \ldots$,

$$
\begin{equation*}
\bar{E}\left[\left|\bar{W}\left(t_{2}\right)-\bar{W}\left(t_{1}\right)\right|^{2 n}\right] \leq c(n)\left|t_{2}-t_{1}\right|^{n}, \quad n=1,2, \ldots . \tag{3.33}
\end{equation*}
$$

We also fix

$$
\begin{equation*}
M_{\epsilon}:=\left(\frac{2 c_{0} T^{2}}{\epsilon}\left(\sum_{j=1}^{\infty} \frac{1}{j^{2}}\right)\right)^{\frac{1}{4}} \tag{3.34}
\end{equation*}
$$

for a constant c_{0} to be determined below, and set

$$
K_{\epsilon}^{1}:=\left\{v \in C\left(0, T ; \mathbb{R}^{m_{1}+m_{2}+m_{3}}\right): n_{t_{1}, t_{2} \in[0, T],\left|t_{2}-t_{1}\right|<n^{-6}}\left|v\left(t_{2}\right)-v\left(t_{1}\right)\right| \leq M_{\epsilon}\right\}
$$

for $n \in \mathbb{N}$ which is a compact subset of $C\left([0, T] ; \mathbb{R}^{m_{1}+m_{2}+m_{3}}\right)$. We compute

$$
\begin{aligned}
& \bar{P}\left(\left\{\bar{\omega}: \bar{W}(\bar{\omega}, \cdot) \notin K_{\epsilon}^{1}\right\}\right) \\
\leq & \sum_{n=1}^{\infty} \bar{P}\left(\left\{\bar{\omega}: \sup _{t_{1}, t_{2} \in[0, T],\left|t_{2}-t_{1}\right|<n^{-6}}\left|\bar{W}\left(\bar{\omega}, t_{2}\right)-\bar{W}\left(\bar{\omega}, t_{1}\right)\right|>\frac{M_{\epsilon}}{n}\right\}\right) \\
\leq & \sum_{n=1}^{\infty} \sum_{i=0}^{n^{6}-1} \bar{P}\left(\left\{\bar{\omega}: \sup _{i T n^{-6} \leq t \leq(i+1) T n^{-6}}\left|\bar{W}(\bar{\omega}, t)-\bar{W}\left(\bar{\omega}, i T n^{-6}\right)\right|>\frac{M_{\epsilon}}{n}\right\}\right) \\
\leq & \sum_{n=1}^{\infty} \sum_{i=0}^{n^{6}-1}\left(\frac{n}{M_{\epsilon}}\right)^{4} \bar{E}\left[\sup _{i T n^{-6} \leq t \leq(i+1) T n^{-6}}\left|\bar{W}(\bar{\omega}, t)-\bar{W}\left(\bar{\omega}, i T n^{-6}\right)\right|^{4}\right] \\
\lesssim & \sum_{n=1}^{\infty} \sum_{i=0}^{n^{6}-1}\left(\frac{n}{M_{\epsilon}}\right)^{4} \bar{E}\left[\left|\bar{W}\left(\bar{\omega},(i+1) T n^{-6}\right)-\bar{W}\left(\bar{\omega}, i T n^{-6}\right)\right|^{4}\right] \leq c_{0} \frac{T^{2}}{M_{\epsilon}^{4}} \sum_{n=1}^{\infty} n^{-2}
\end{aligned}
$$

by Markov's and Doob's maximal inequalities and (3.33). Choosing this c_{0} in (3.34) gives

$$
\begin{equation*}
\bar{P}\left(\left\{\bar{\omega}: \bar{W}(\bar{\omega}, \cdot) \notin K_{\epsilon}^{1}\right\}\right) \leq c_{0} \frac{\left(T^{2} \sum_{n=1}^{\infty} n^{-2}\right)}{\left(\frac{2 c_{0} T^{2}}{\epsilon}\right)\left(\sum_{n=1}^{\infty} n^{-2}\right)}=\frac{\epsilon}{2} . \tag{3.35}
\end{equation*}
$$

Next, we choose

$$
\begin{equation*}
K_{\epsilon}^{2}:=\left\{z \in Y_{\mu_{n}, \nu_{n}}:\|z\|_{Y_{\mu_{n}, \nu_{n}}} \leq M_{\epsilon}, \sum_{n} \frac{\mu_{n}^{\frac{1}{6}}}{\nu_{n}}<\infty\right\}, \quad M_{\epsilon}=2 c_{1} \epsilon^{-1} \tag{3.36}
\end{equation*}
$$

where c_{1} is to be determined below. By Lemma 3.4, K_{ϵ}^{2} is compact. Using our previous observation that $\forall p \in[1, \infty),\left\{\mu_{n}\right\},\left\{\nu_{n}\right\}$ such that $\sum_{n=1}^{\infty} \frac{\mu_{n}^{\frac{1}{6}}}{\nu_{n}} \lesssim 1$, $\left\{\tilde{y}^{m}: m \in \mathbb{N}\right\}$ is bounded in $B_{\bar{P}, p ; \mu_{n}, \nu_{n}}$, it is immediate that

$$
\bar{P}\left(\left\{\bar{\omega}: \tilde{y}^{m}(\bar{\omega}, \cdot) \notin K_{\epsilon}^{2}\right\}\right) \lesssim \frac{1}{M_{\epsilon}}\left\|\tilde{y}^{m}(t)\right\|_{B_{\bar{P}, p ; \mu_{n}, \nu_{n}}} \leq \frac{c_{1}}{M_{\epsilon}}
$$

by Chebyshev's and Hölder's inequalities, for some $c_{1} \geq 0$. Choosing this c_{1} in (3.36) gives

$$
\begin{equation*}
\bar{P}\left(\left\{\bar{\omega}: \tilde{y}^{m}(\bar{\omega}, \cdot) \notin K_{\epsilon}^{2}\right\}\right) \leq \frac{c_{1}}{M_{\epsilon}}=\frac{\epsilon}{2} . \tag{3.37}
\end{equation*}
$$

In sum of (3.35) and (3.37), the proof of Proposition 3.5 is complete.
By the tightness of $\left\{\Pi_{m}\right\}$ according to Proposition 3.5, due to Prokhorov's theorem we obtain its subsequence $\left\{\Pi_{m_{j}}\right\}_{j}$ such that $\lim _{\tilde{\sim}} \rightarrow \infty$ Hence, by Skorokhod's theorem, there exists $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P}),\left(\tilde{W}_{m_{j}}, \tilde{y}^{m_{j}}\right),(\tilde{W}, \tilde{y})$ valued
in S such that the probability law of $\left(\tilde{W}_{m_{j}}, \tilde{y}^{m_{j}}\right)$ is $\Pi_{m_{j}}$; therefore, $\left\{\tilde{W}_{m_{j}}\right\}_{j}$ is a family of $m_{1}+m_{2}+m_{3}$ dimensional Wiener processes, the probability law of (\tilde{W}, \tilde{y}) is Π and

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left(\tilde{W}_{m_{j}}, \tilde{y}^{m_{j}}\right)=(\tilde{W}, \tilde{y}) \text { in } S=C\left(0, T ; \mathbb{R}^{m_{1}+m_{2}+m_{3}}\right) \times L^{2}(0, T, H) \tilde{P}-\text { a.s. } \tag{3.38}
\end{equation*}
$$

We set $\tilde{\mathcal{F}}_{t}=\sigma\{\tilde{W}(\tau), \tilde{y}(\tau)\}_{\tau \in[0, t]}$. Then it can be checked that $\tilde{W}(t)$ is a $\tilde{\mathcal{F}}_{t^{-}}$ standard Wiener process; we refer readers to [30] for details.

Next, we show that $\tilde{y}^{m_{j}}$ satisfies

$$
\begin{align*}
& \tilde{y}^{m_{j}}(t)+\int_{0}^{t} P^{m_{j}} A \tilde{y}^{m_{j}}(\tau) d \tau+\int_{0}^{t} P^{m_{j}} B\left(\tilde{y}^{m_{j}}(\tau)\right) d \tau \tag{3.39}\\
= & \tilde{y}_{0}^{m_{j}}+\int_{0}^{t} P^{m_{j}} \tilde{f}\left(\tilde{y}^{m_{j}}(\tau), \tau\right) d \tau+\int_{0}^{t} P^{m_{j}} \tilde{g}\left(\tilde{y}^{m_{j}}(\tau), \tau\right) d \tilde{W}_{m_{j}}(\tau)
\end{align*}
$$

in $D(A)^{\prime}$. We set

$$
\begin{aligned}
\xi_{m}(t)= & \tilde{y}^{m}(t)+\int_{0}^{t} P^{m}\left[A \tilde{y}^{m}(\tau)+B\left(\tilde{y}^{m}(\tau)\right)\right] d \tau \\
& -\tilde{y}_{0}-P^{m}\left[\int_{0}^{t} \tilde{f}\left(\tilde{y}^{m}(\tau), \tau\right) d \tau+\int_{0}^{t} \tilde{g}\left(\tilde{y}^{m}(\tau), \tau\right) d \bar{W}(\tau)\right]
\end{aligned}
$$

and $X_{m}=\int_{0}^{T}\left\|\xi_{m}(\tau)\right\|_{D(A)^{\prime}}^{2} d \tau$ and note that $X_{m}=0$ by (3.7). Thus,

$$
\bar{E}\left[\frac{X_{m}}{1+X_{m}}\right]=0 \text { while } \bar{E}\left[\frac{X_{m}}{1+X_{m}}\right] \leq \bar{E}\left[X_{m}\right]
$$

Now we let

$$
\begin{aligned}
\xi_{m_{j}}(t)= & \tilde{y}^{m_{j}}(t)+\int_{0}^{t} P^{m_{j}}\left[A \tilde{y}^{m_{j}}(\tau)+B\left(\tilde{y}^{m_{j}}(\tau)\right)\right] d \tau \\
& -\tilde{y}_{0}-P^{m_{j}}\left[\int_{0}^{t} \tilde{f}\left(\tilde{y}^{m_{j}}(\tau), \tau\right) d \tau+\int_{0}^{t} \tilde{g}\left(\tilde{y}^{m_{j}}(\tau), \tau\right) d \tilde{W}_{m_{j}}(\tau)\right]
\end{aligned}
$$

and $Y_{m_{j}}:=\int_{0}^{T}\left\|\xi_{m_{j}}(\tau)\right\|_{D(A)^{\prime}}^{2} d \tau$. We claim that

$$
\tilde{E}\left[\frac{Y_{m_{j}}}{1+Y_{m_{j}}}\right]=0
$$

which will imply (3.39) as desired. We introduce the regularization

$$
\begin{equation*}
\tilde{g}^{\epsilon}(\tilde{y})(t):=\left(\rho_{\epsilon}(\cdot) * \tilde{g}(\tilde{y}(\cdot), \cdot)\right)(t)=\frac{1}{\epsilon} \int_{0}^{t} \rho\left(\frac{\tau-t}{\epsilon}\right) \tilde{g}(\tilde{y}(\tau), \tau) d \tau \tag{3.40}
\end{equation*}
$$

with the mollifier

$$
\begin{equation*}
\rho_{\epsilon}(t)=\frac{1}{\epsilon} \rho\left(\frac{t}{\epsilon}\right) \tag{3.41}
\end{equation*}
$$

(cf. [24] for its properties). We compute

$$
\begin{align*}
& \int_{0}^{T}\left\|\tilde{g}^{\epsilon}(\tilde{y}(t))-\tilde{g}(\tilde{y}(t), t)\right\|_{H_{1}^{\times m_{1}} \times\left(\mathbb{L}^{2}\right) \times m_{2} \times H_{2}^{\times m_{3}}}^{2} d t \tag{3.42}\\
\leq & \int_{0}^{T}\|\tilde{g}(\tilde{y}(t), t)\|_{H_{1}^{\times m_{1}} \times\left(\mathbb{L}^{2}\right) \times m_{2} \times H_{2}^{\times m_{3}}}^{2} d t \lesssim \int_{0}^{T} 1+|\tilde{y}(t)|^{2} d t \lesssim 1
\end{align*}
$$

\tilde{P}-a.s. by (2.6), Young's inequality for convolution, (2.5) and (3.38). Thus,

$$
\begin{equation*}
\tilde{g}^{\epsilon}(\tilde{y})(\cdot) \rightarrow \tilde{g}(\tilde{y})(\cdot) \quad \text { in } L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; H_{1}^{\times m_{1}} \times\left(\mathbb{L}^{2}\right)^{\times m_{2}} \times H_{2}^{\times m_{3}}\right)\right) \tag{3.43}
\end{equation*}
$$

We let $X_{m, \epsilon}, Y_{m_{j}, \epsilon}$ be the analogues of X_{m} and $Y_{m_{j}}$ respectively with \tilde{g} replaced by \tilde{g}^{ϵ}. We introduce the mapping $\phi_{m, \epsilon}$ defined by

$$
\phi_{m, \epsilon}\left(\bar{W}, \tilde{y}^{m}\right)=\frac{X_{m, \epsilon}}{1+X_{m, \epsilon}} \text { and similarly } \phi_{m_{j}, \epsilon}\left(\tilde{W}_{m_{j}}, \tilde{y}^{m_{j}}\right)=\frac{Y_{m_{j}, \epsilon}}{1+Y_{m_{j}, \epsilon}}
$$

Both mappings are clearly bounded and continuous. Thus,

$$
\tilde{E}\left[\frac{Y_{m_{j}, \epsilon}}{1+Y_{m_{j, \epsilon}}}\right]=\int_{S} \phi_{m_{j}, \epsilon}(\omega, x) d \Pi_{m_{j}}=\bar{E}\left[\phi_{m_{j}, \epsilon}\left(\bar{W}, \tilde{y}^{m_{j}}\right)\right]=\bar{E}\left[\frac{X_{m_{j}, \epsilon}}{1+X_{m_{j}, \epsilon}}\right] .
$$

This implies
$\tilde{E}\left[\frac{Y_{m_{j}}}{1+Y_{m_{j}}}\right]-\bar{E}\left[\frac{X_{m_{j}}}{1+X_{m_{j}}}\right]=\tilde{E}\left[\frac{Y_{m_{j}}}{1+Y_{m_{j}}}-\frac{Y_{m_{j}, \epsilon}}{1+Y_{m_{j}, \epsilon}}\right]+\bar{E}\left[\frac{X_{m_{j}, \epsilon}}{1+X_{m_{j}, \epsilon}}-\frac{X_{m_{j}}}{1+X_{m_{j}}}\right]$
where it can be shown via Hölder's and Burkholder-Davis-Gundy inequalities that both terms on the right hand side converge to $0(\epsilon \rightarrow 0)$. Thus, (3.39) is valid.
3.3. Passing to the limit. Due to (3.39), it is clear that our previous estimates for Propositions 3.1, 3.2 and 3.3 now go through for $\tilde{y}^{m_{j}}$ so that

$$
\begin{align*}
& \tilde{E}\left[\sup _{t \in[0, T]}\left|\tilde{y}^{m_{j}}(t)\right|^{p}\right] \lesssim 1 \quad \forall p \in[1, \infty) \tag{3.44}\\
& \tilde{E}\left[\left(\int_{0}^{T}\left\|\tilde{y}^{m_{j}}(t)\right\|^{2} d t\right)^{p}\right] \lesssim 1 \quad \forall p \in[1, \infty) \tag{3.45}\\
& \tilde{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\left\|\tilde{y}^{m_{j}}(t+\theta)-\tilde{y}^{m_{j}}(t)\right\|_{D(A)^{\prime}}^{2} d t\right] \lesssim \delta^{\frac{1}{3}} \tag{3.46}
\end{align*}
$$

which imply by relabeling subsequence

$$
\begin{align*}
& \tilde{y}^{m_{j}} \rightarrow \tilde{y} \text { weak in } L^{p}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{\infty}(0, T ; H)\right) \quad \forall p \in[1, \infty), \tag{3.47}\\
& \tilde{y}^{m_{j}} \rightarrow \tilde{y} \text { weak in } L^{p}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}(0, T ; V)\right) \quad \forall p \in[1, \infty) \tag{3.48}
\end{align*}
$$

Consequently, using (3.47)-(3.48) we can obtain

$$
\begin{align*}
& \tilde{E}\left[\sup _{t \in[0, T]}|\tilde{y}(t)|^{p}\right] \lesssim 1, \quad \forall p \in[1, \infty) \tag{3.49}\\
& \tilde{E}\left[\left(\int_{0}^{T}\|\tilde{y}(t)\|^{2} d t\right)^{p}\right] \lesssim 1, \quad \forall p \in[1, \infty) \tag{3.50}\\
& \tilde{E}\left[\sup _{\theta \in[0, \delta]} \int_{0}^{T}\|\tilde{y}(t+\theta)-\tilde{y}(t)\|_{D(A)^{\prime}}^{2} d t\right] \lesssim \delta^{\frac{1}{3}} . \tag{3.51}
\end{align*}
$$

Now consider a function $G(\tau)=\tau^{4}, \tau \in \mathbb{R}^{+}$. Clearly $G \geq 0, G$ is increasing and convex satisfying

$$
\lim _{\tau \rightarrow+\infty} \frac{G(\tau)}{\tau}=\infty
$$

By (3.38), $\tilde{y}^{m_{j}} \rightarrow \tilde{y}$ in $L^{2}(0, T ; H) \tilde{P}$-a.s. and

$$
\tilde{E}\left[G\left(\left\|\tilde{y}^{m_{j}}-\tilde{y}\right\|_{L^{2}(0, T ; H)}^{2}\right)\right] \lesssim \tilde{E}\left[\sup _{t \in[0, T]}\left|\tilde{y}^{m_{j}}(t)\right|^{8} T^{4}\right]+\tilde{E}\left[\sup _{t \in[0, T]}|\tilde{y}(t)|^{8} T^{4}\right] \lesssim 1
$$

by (2.6), (3.44) and (3.49). Therefore, by de la Vallée-Poussin theorem, $\left\{\| \tilde{y}^{m_{j}}-\right.$ $\left.\tilde{y} \|_{L^{2}(0, T ; H)}^{2}\right\}_{j=1}$ is uniformly integrable. Now Vitali's Convergence theorem gives

$$
\begin{equation*}
\tilde{y}^{m_{j}} \rightarrow \tilde{y} \quad \text { strongly in } L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}(0, T ; H)\right) \tag{3.52}
\end{equation*}
$$

Hence $\left|\tilde{y}^{m_{j}}-y\right|_{H}^{2}$ converges in L^{1} with respect to $d \tilde{P} \times d t$. Denoting subsequence by $\tilde{y}^{m_{j}}$ again, we have

$$
\begin{equation*}
\tilde{y}^{m_{j}} \rightarrow \tilde{y} \quad \text { in } H \tag{3.53}
\end{equation*}
$$

for a.e. $(\tilde{\omega}, t)$ with respect to the measure $d \tilde{P} \times d t$.
Similarly, with same $G(\tau)=\tau^{4}, \tau \in \mathbb{R}^{+}$, using (2.5) and (3.44) we can show that $\left\{\left\|\tilde{f}\left(\tilde{y}^{m_{j}}(t), t\right)\right\|_{\mathbb{H}^{-1}}^{2}\right\}_{j=1}$ is uniformly integrable by de la Vallée-Poussin theorem. Moreover, by continuity of \tilde{f} from H to $\mathbb{H}^{-1} \times \mathbb{H}^{-1} \times \mathbb{H}^{-1}$, two facts that $\tilde{y}^{m_{j}} \rightarrow \tilde{y}$ in H a.e. (ω, t) according to (3.53) and that $P_{m_{j}} \rightarrow I d$ in the limit, Vitali's Convergence theorem implies

$$
\begin{equation*}
P^{m_{j}} \tilde{f}\left(\tilde{y}^{m_{j}}(\cdot), \cdot\right) \rightarrow \tilde{f}(\tilde{y}(\cdot), \cdot) \tag{3.54}
\end{equation*}
$$

in $L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; \mathbb{H}^{-1}\right)\right)$.
Similarly, with same $G(\tau)=\tau^{4}$, using (2.5), (3.44), de la Vallée-Poussin Theorem, continuity of $g_{i}, i=1,2,3$, the fact that $\tilde{y}^{m_{j}} \rightarrow \tilde{y}$ in H a.e. $(\tilde{\omega}, t)$ according to (3.53) and Vitali's convergence theorem, we get

$$
\begin{equation*}
P^{m_{j}} \tilde{g}\left(\tilde{y}^{m_{j}}(\cdot), \cdot\right) \rightarrow \tilde{g}(\tilde{y}(\cdot), \cdot) \tag{3.55}
\end{equation*}
$$

in $L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; H_{1}^{\times m_{1}} \times\left(\mathbb{L}^{2}\right)^{\times m_{2}} \times H_{2}^{\times m_{3}}\right)\right)$.
Next, we verify

$$
\begin{equation*}
P^{m_{j}}\left[A \tilde{y}^{m_{j}}(\cdot)+B\left(\tilde{y}^{m_{j}}(\cdot)\right)\right] \rightarrow A \tilde{y}(\cdot)+B(\tilde{y}(\cdot)) \tag{3.56}
\end{equation*}
$$

weakly in $L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; D(A)^{\prime}\right)\right)$. As we remarked, it suffices to check

$$
A \tilde{y}^{m_{j}}(\cdot) \rightarrow A \tilde{y}(\cdot) \quad \text { and } \quad B\left(\tilde{y}^{m_{j}}(\cdot)\right) \rightarrow B(\tilde{y}(\cdot))
$$

weakly in $L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; D(A)^{\prime}\right)\right)$. We fix

$$
\phi \in L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}(0, T ; D(A))\right)
$$

and observe that

$$
\tilde{E}\left[\int_{0}^{T}\left(\phi, A \tilde{y}^{m_{j}}-A \tilde{y}\right) d \tau\right]=\tilde{E}\left[\int_{0}^{T}\left(A \phi, \tilde{y}^{m_{j}}-\tilde{y}\right) d \tau\right]
$$

and

$$
A \phi \in L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; \mathbb{L}^{2}\right) \subset L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; V^{\prime}\right)\right.\right.
$$

By (3.48) this implies

$$
\tilde{E}\left[\int_{0}^{T}\left(\phi, A \tilde{y}^{m_{j}}-A \tilde{y}\right) d \tau\right] \rightarrow 0 \quad(j \rightarrow \infty)
$$

Similarly, denoting $\tilde{y}=(u, w, b)$ and $\tilde{y}^{m_{j}}$ analogously, and $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$, we have

$$
\begin{aligned}
& \tilde{E}\left[\int_{0}^{T}\left(\phi, B\left(\tilde{y}^{m_{j}}\right)-B(\tilde{y})\right) d \tau\right] \\
= & -\tilde{E}\left[\int_{0}^{T}\left(\left(u^{m_{j}}-u\right) \cdot \nabla \phi_{1}, u^{m_{j}}\right)+\left((u \cdot \nabla) \phi_{1}, u^{m_{j}}-u\right)-\left(\left(b^{m_{j}}-b\right) \cdot \nabla \phi_{1}, b^{m_{j}}\right.\right. \\
& -\left((b \cdot \nabla) \phi_{1}, b^{m_{j}}-b\right)+\left(\chi\left(\nabla \times \phi_{1}\right), w^{m_{j}}-w\right)+\left(\left(u^{m_{j}}-u\right) \cdot \nabla \phi_{2}, w^{m_{j}}\right) \\
& +\left((u \cdot \nabla) \phi_{2}, w^{m_{j}}-w\right)+\left(\chi\left(\nabla \times \phi_{2}\right), u^{m_{j}}-u\right)+\left(\left(u^{m_{j}}-u\right) \cdot \nabla \phi_{3}, b^{m_{j}}\right) \\
& \left.+\left((u \cdot \nabla) \phi_{3}, b^{m_{j}}-b\right)-\left(\left(b^{m_{j}}-b\right) \cdot \nabla \phi_{3}, u^{m_{j}}\right)-\left((b \cdot \nabla) \phi_{3}, u^{m_{j}}-u\right) d \tau\right]
\end{aligned}
$$

For brevity, we continue our estimates on the following:

$$
\tilde{E}\left[\int_{0}^{T}\left(\left(\tilde{y}^{m_{j}}-\tilde{y}\right),(\nabla \phi)\left(\tilde{y}^{m_{j}}+\tilde{y}\right)\right)+\left(\left(\tilde{y}^{m_{j}}-\tilde{y}\right), \nabla \phi\right) d \tau\right]
$$

it is clear that the identical estimates go through for each term. By (3.48), we know that

$$
\tilde{y}^{m_{j}} \rightarrow \tilde{y}
$$

weakly in $L^{p}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}(0, T ; V)\right), p \geq 1$. Thus, if picking $p=4$ so that its dual is $p^{\prime}=\frac{4}{3}$, it suffices to show that

$$
(\nabla \phi)\left(\tilde{y}^{m_{j}}+\tilde{y}\right), \nabla \phi \in L^{\frac{4}{3}}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; V^{\prime}\right)\right)
$$

We now compute

$$
\begin{aligned}
& \tilde{E}\left[\left(\int_{0}^{T}\left\|(\nabla \phi)\left(\tilde{y}^{m_{j}}+\tilde{y}\right)\right\|_{V^{\prime}}^{2} d \tau\right)^{\frac{2}{3}}\right] \\
& \leq \tilde{E}\left[\left(\int_{0}^{T} \sup _{\psi \in V,\|\psi\|_{V} \leq 1}\left\|(\nabla \phi)\left(\tilde{y}^{m_{j}}+\tilde{y}\right)\right\|_{\mathbb{L}^{\frac{6}{5}}}^{2}\|\psi\|_{\mathbb{L}^{6}}^{2} d \tau\right)^{\frac{2}{3}}\right] \\
& \lesssim \tilde{E}\left[\left(\int_{0}^{T}\|\nabla \phi\|_{\mathbb{L}^{3}}^{2}\left(\left\|\tilde{y}^{m_{j}}\right\|_{\mathbb{L}^{2}}^{2}+\|\tilde{y}\|_{\mathbb{L}^{2}}^{2}\right) d \tau\right)^{\frac{2}{3}}\right] \\
& \lesssim \tilde{E}\left[\sup _{\tau \in[0, T]}\left(\left\|\tilde{y}^{m_{j}}\right\|_{\mathbb{L}^{2}}^{\frac{4}{3}}+\|\tilde{y}\|_{\mathbb{L}^{2}}^{\frac{4}{3}}\right)\left(\int_{0}^{T}\|\nabla \phi\|_{\mathbb{L}^{2}}\|\nabla \phi\|_{\mathbb{L}^{6}} d \tau\right)^{\frac{2}{3}}\right] \\
& \lesssim \tilde{E}\left[\sup _{\tau \in[0, T]}\left(\left\|\tilde{y}^{m_{j}}\right\|_{\mathbb{L}^{2}}^{\frac{4}{3}}+\|\tilde{y}\|_{\mathbb{L}^{2}}^{\frac{4}{3}}\right)\left(\int_{0}^{T}\|\phi\|_{D(A)}^{2} d \tau\right)^{\frac{2}{3}}\right] \\
& \lesssim\left(\tilde{E}\left[\sup _{\tau \in[0, T]}\left(\left|\tilde{y}^{m_{j}}\right|^{4}+|\tilde{y}|^{4}\right)\right]\right)^{\frac{1}{3}}\left(\tilde{E}\left[\left(\int_{0}^{T}\|\phi\|_{D(A)}^{2} d \tau\right)\right]\right)^{\frac{2}{3}} \lesssim 1
\end{aligned}
$$

by Hölder's and interpolation inequalities and Sobolev embedding. On the other hand, it is immediate that

$$
\nabla \phi \in L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}(0, T ; V)\right) \subset L^{\frac{4}{3}}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; V^{\prime}\right)\right)
$$

Finally, we show that $\forall t$,

$$
\begin{equation*}
\int_{0}^{t} P^{m_{j}} \tilde{g}\left(\tilde{y}^{m_{j}}(\tau), \tau\right) d \tilde{W}_{m_{j}}(\tau) \rightarrow \int_{0}^{t} \tilde{g}(\tilde{y}(\tau), \tau) d \tilde{W}(\tau) \tag{3.57}
\end{equation*}
$$

weakly in $L^{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; H)$. As remarked already it suffices to show

$$
\int_{0}^{t} \tilde{g}\left(\tilde{y}^{m_{j}}(\tau), \tau\right) d \tilde{W}_{m_{j}}(\tau) \rightarrow \int_{0}^{t} \tilde{g}(\tilde{y}(\tau), \tau) d \tilde{W}(\tau) \text { weakly in } L^{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; H)
$$

We consider the mollifier from (3.40)-(3.41), recall (3.43) and compute

$$
\begin{align*}
& \int_{0}^{t}\left\|\tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(\tau)-\tilde{g}^{\epsilon}(\tilde{y})(\tau)\right\|_{H_{1}^{\times m_{1}} \times\left(\mathbb{L}^{2}\right)^{\times m_{2}} \times H_{2}^{\times m_{3}}}^{2} d \tau \tag{3.58}\\
\leq & \int_{0}^{t}\left\|\tilde{g}\left(\tilde{y}^{m_{j}}(\tau), \tau\right)-\tilde{g}(\tilde{y}(\tau), \tau)\right\|_{H_{1}^{\times m_{1}} \times\left(\mathbb{L}^{2}\right)^{\times m_{2}} \times H_{2}^{\times m_{3}}}^{2} d \tau
\end{align*}
$$

by Young's inequality for convolution. Now we integrate by parts

$$
\int_{0}^{t} \tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(\tau) d \tilde{W}_{m_{j}}(\tau)=\tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(t) \tilde{W}_{m_{j}}(t)-\int_{0}^{t} \partial_{\tau} \tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(\tau) \tilde{W}_{m_{j}}(\tau) d \tau
$$

We know $\left(\tilde{W}_{m_{j}}, \tilde{y}_{m_{j}}\right) \rightarrow(\tilde{W}, \tilde{y})$ in $S \tilde{P}$-a.s. from (3.38) and we already saw that $P^{m_{j}} \tilde{g}\left(\tilde{y}^{m_{j}}(\cdot), \cdot\right) \rightarrow \tilde{g}(\tilde{y}(\cdot), \cdot)$ in $L^{2}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; L^{2}\left(0, T ; H_{1}^{\times m_{1}} \times\left(\mathbb{L}^{2}\right)^{\times m_{2}} \times H_{2}^{\times m_{3}}\right)\right)$
from (3.55). Thus, relabeling subsequence by $P^{m_{j}} \tilde{g}\left(\tilde{y}^{m_{j}}(\cdot), \cdot\right)$,

$$
\begin{equation*}
\int_{0}^{t} \tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(\tau) d \tilde{W}_{m_{j}}(\tau) \rightarrow \tilde{g}^{\epsilon}(\tilde{y})(t) \tilde{W}(t)-\int_{0}^{t} \partial_{\tau} \tilde{g}^{\epsilon}(\tilde{y})(\tau) \tilde{W}(\tau) d \tau \tag{3.59}
\end{equation*}
$$

point-wise almost all $\tilde{\omega}, x$. We again observe that

$$
\begin{equation*}
\tilde{g}^{\epsilon}(\tilde{y})(t) \tilde{W}(t)-\int_{0}^{t} \partial_{\tau} \tilde{g}^{\epsilon}(\tilde{y})(\tau) \tilde{W}(\tau) d \tau=\int_{0}^{t} \tilde{g}^{\epsilon}(\tilde{y})(\tau) d \tilde{W}(\tau) \tag{3.60}
\end{equation*}
$$

so that (3.59)-(3.60) imply

$$
\int_{0}^{t} \tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(\tau) d \tilde{W}_{m_{j}}(\tau) \rightarrow \int_{0}^{t} \tilde{g}^{\epsilon}(\tilde{y})(\tau) d \tilde{W}(\tau)
$$

point-wise almost all $\tilde{\omega}, x$. On the other hand, $\forall j$, it can be shown that

$$
\tilde{E}\left[\left\|\int_{0}^{t} \tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(\tau) d \tilde{W}_{m_{j}}(\tau)\right\|_{\mathbb{L}^{2}}^{2}\right] \lesssim \tilde{E}\left[\int_{0}^{t} 1+\left|\tilde{y}^{m_{j}}(\tau)\right|^{2} d \tau\right] \lesssim 1
$$

by Young's inequality for convolution, (2.5) and (3.44). Thus, by Lemma 2.6 and Remark 2.7, $\forall h \in L^{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; H)$,

$$
\begin{equation*}
\tilde{E}\left[\left(h, \int_{0}^{t} \tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(\tau) d \tilde{W}_{m_{j}}(\tau)\right)\right] \rightarrow \tilde{E}\left[\left(h, \int_{0}^{t} \tilde{g}^{\epsilon}(\tilde{y})(\tau) d \tilde{W}(\tau)\right)\right] \tag{3.61}
\end{equation*}
$$

Similarly, $\forall j$

$$
\tilde{E}\left[\left\|\int_{0}^{t} \tilde{g}\left(\tilde{y}^{m_{j}}(\tau), \tau\right) d \tilde{W}_{m_{j}}(\tau)\right\|_{\mathbb{L}^{2}}^{2}\right] \lesssim \tilde{E}\left[\int_{0}^{t} 1+\left|\tilde{y}^{m_{j}}(\tau)\right|^{2} d \tau\right] \lesssim 1
$$

by (2.5) and (3.44). Thus, by Lemma 2.6 and Remark 2.7, $\exists \eta \in L^{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; H)$ such that $\forall h \in L^{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; H)$,

$$
\tilde{E}\left[\left(h, \int_{0}^{t} \tilde{g}\left(\tilde{y}^{m_{j}}(\tau), \tau\right) d \tilde{W}_{m_{j}}(\tau)\right)\right] \rightarrow \tilde{E}[(h, \eta)]
$$

It can be shown that $\eta=\int_{0}^{t} \tilde{g}(\tilde{y}(\tau), \tau) d \tilde{W}(\tau)$ by writing

$$
\begin{aligned}
& \tilde{E}\left[\left(h, \int_{0}^{t} g\left(\tilde{y}^{m_{j}}(\tau), \tau\right) d \tilde{W}_{m_{j}}(\tau)\right)\right]-\tilde{E}\left[\left(h, \int_{0}^{t} \tilde{g}(\tilde{y}(\tau), \tau) d \tilde{W}(\tau)\right)\right] \\
= & \tilde{E}\left[\int_{D} h \int_{0}^{t} \tilde{g}\left(\tilde{y}^{m_{j}}(\tau), \tau\right)-\tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(\tau) d \tilde{W}_{m_{j}}(\tau) d x\right] \\
+ & \tilde{E}\left[\int_{D} h\left[\int_{0}^{t} \tilde{g}^{\epsilon}\left(\tilde{y}^{m_{j}}\right)(\tau) d \tilde{W}_{m_{j}}(\tau)-\int_{0}^{t} \tilde{g}^{\epsilon}(\tilde{y})(\tau) d \tilde{W}(\tau)\right] d x\right] \\
+ & \tilde{E}\left[\int_{D} h \int_{0}^{t}\left[\tilde{g}^{\epsilon}(\tilde{y})(\tau)-\tilde{g}(\tilde{y}(\tau), \tau)\right] d \tilde{W}(\tau) d x\right]:=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

where $I_{1}, I_{3} \rightarrow 0$ by simple estimates using Hölder's inequalities while (3.61) already showed that $I_{2} \rightarrow 0$. This implies (3.57) as desired.

3.4. Existence of pressure term. We let

$$
h:=-\partial_{t} u-A_{1} u-(u \cdot \nabla) u+(b \cdot \nabla) b+\chi(\nabla \times w)+\tilde{f}_{1}(\tilde{y}, t)+\tilde{g}_{1}(\tilde{y}, t) \partial_{t} W_{1} .
$$

By Lemma 2.12 it suffices to show $h \in L^{1}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; W^{-1, \infty}\left(0, T ; \mathbb{H}^{-1}\right)\right)$. We fix $\phi \in L^{\infty}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; W^{1,1}\left(0, T ; \mathbb{H}^{1}\right)\right.$ and estimate

$$
E\left[\int_{0}^{T} \int_{D} \partial_{t} u \phi d x d t\right] \leq E\left[\int_{0}^{T}\|u\|_{\mathbb{L}^{2}}\left\|\partial_{t} \phi\right\|_{\mathbb{L}^{2}} d t\right] \lesssim 1
$$

by Hölder's inequalities and (3.49). Next,

$$
\begin{aligned}
E\left[\int_{0}^{T} \int_{D} \nabla u \nabla \phi d x d t\right] & \lesssim E\left[\int_{D}\|\nabla u\|_{L^{2}(0, T)}\|\nabla \phi\|_{L^{2}(0, T)} d x\right] \\
& \lesssim E\left[\|\nabla u\|_{L^{2}\left(0, T ; \mathbb{L}^{2}\right)}\|\phi\|_{W^{1,1}\left(0, T ; \mathbb{H}^{1}\right)}\right] \lesssim 1
\end{aligned}
$$

by Hölder's and Gagliardo-Nirenberg inequalities, Minkowski's inequality for integrals and (3.50). Similarly,

$$
\begin{aligned}
& \int_{0}^{T} \int_{D}[(u \cdot \nabla) u-(b \cdot \nabla) b-\chi(\nabla \times w)] \phi d x d t \\
\lesssim & \int_{D}\|\tilde{y}\|_{L^{\frac{8}{3}}(0, T)}^{2}\|\nabla \phi\|_{L^{4}(0, T)}+\|\tilde{y}\|_{L^{2}(0, T)}\|\nabla \phi\|_{L^{2}(0, T)} d x \\
\lesssim & \left(\int_{0}^{T}\|\tilde{y}\|_{\mathbb{L}^{4}}^{\frac{8}{3}} d \tau\right)^{\frac{3}{4}}\|\phi\|_{W^{1,1}\left(0, T ; \mathbb{H}^{1}\right)}+\|\tilde{y}\|_{L^{2}\left(0, T ; \mathbb{L}^{2}\right)}\|\phi\|_{W^{1,1}\left(0, T ; \mathbb{H}^{1}\right)} \\
\lesssim & \left(\int_{0}^{T}\|\tilde{y}\|_{\mathbb{L}^{2}}^{\frac{2}{3}}\|\tilde{y}\|_{\mathbb{H}^{1}}^{2} d \tau\right)^{\frac{3}{4}}\|\phi\|_{W^{1,1}\left(0, T ; \mathbb{H}^{1}\right)}+\|\tilde{y}\|_{L^{2}\left(0, T ; \mathbb{L}^{2}\right)}\|\phi\|_{W^{1,1}\left(0, T ; \mathbb{H}^{1}\right)} \\
\lesssim & {\left[\sup _{t}\|\tilde{y}(t)\|_{\mathbb{L}^{2}}^{2}+\sup _{t}\|\tilde{y}(t)\|_{\mathbb{L}^{2}}^{\frac{1}{2}}\left(\int_{0}^{T}\|\nabla \tilde{y}\|_{\mathbb{L}^{2}}^{2} d \tau\right)^{\frac{3}{4}}+\|\tilde{y}\|_{L^{2}\left(0, T ; \mathbb{L}^{2}\right)}\right]\|\phi\|_{W^{1,1}\left(0, T ; \mathbb{H}^{1}\right)} }
\end{aligned}
$$

by Hölder's and Gagliardo-Nirenberg inequalities and Minkoswki's inequality for integrals. This leads to

$$
E\left[\int_{0}^{T} \int_{D}[(u \cdot \nabla) u-(b \cdot \nabla) b-\chi(\nabla \times w)] \phi d x d t\right] \lesssim 1
$$

by Hölder's inequalities, (3.49)-(3.50). Next,

$$
\left.E\left[\int_{0}^{T} \int_{D} \tilde{f}_{1}(\tilde{y}), t\right) \phi d x d t\right] \lesssim E\left[\int_{0}^{T}\left(1+\|\tilde{y}(t)\|_{\mathbb{L}^{2}}\right)\|\phi\|_{\mathbb{H}^{1}} d t\right] \lesssim 1
$$

by Hölder's inequality, (2.5) and (3.49). Finally,

$$
\begin{aligned}
& E\left[\int_{0}^{T} \int_{D} \tilde{g}_{1}(\tilde{y}(t), t) \frac{d W_{1}}{d t} \phi d x d t\right] \\
\leq & \int_{D}\left(E\left[\sup _{\tau \in[0, T]}\left|\int_{0}^{\tau} \tilde{g}_{1}(\tilde{y}(\lambda), \lambda) d W_{1}(\lambda)\right|^{2}\right]\right)^{\frac{1}{2}}\left(E\left[\left\|\partial_{\tau} \phi(x, \tau)\right\|_{L^{1}([0, T])}^{2}\right]\right)^{\frac{1}{2}} d x \\
\lesssim & \int_{D}\left(E\left[\int_{0}^{T}\left|\tilde{g}_{1}(\tilde{y}(\lambda), \lambda)\right|^{2} d \lambda\right]\right)^{\frac{1}{2}}\left(E\left[\left\|\partial_{\tau} \phi\right\|_{L^{1}([0, T])}^{2}\right]\right)^{\frac{1}{2}} d x \\
\lesssim & \left(E\left[\int_{0}^{T} 1+|\tilde{y}(\lambda)|^{2} d \lambda\right]\right)^{\frac{1}{2}}\left(E\left[\left\|\partial_{\tau} \phi\right\|_{L^{1}\left(0, T ; \mathbb{L}^{2}\right)}^{2}\right]\right)^{\frac{1}{2}} \lesssim 1
\end{aligned}
$$

by Hölder's and Burkholder-Davis-Gundy inequalities, (2.5) and (3.49). Thus, we have shown $h \in L^{1}\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P} ; W^{-1, \infty}\left(0, T ; \mathbb{H}^{-1}\right)\right)$.

Acknowledgment. The author expresses gratitude to Professor Jiahong Wu and Professor David Ullrich for their teaching and the referee for valuable advice that has improved the manuscript greatly.

References

1. Ahmadi, G., Shahinpoor, M.: Universal stability of magneto-micropolar fluid motions, Int. J. Engng. Sci. 12 (1974), 657-663.
2. Barbu, V., Da Prato, G.: Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations, Appl. Math. Optim. 56 (2007), no. 2, 145-168.
3. Bensoussan, A.: Some existence results for stochastic partial differential equations, in: Stochastic Partial Differential Equations and Applications, Trento, 1990, in: Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow 268 (1992), 37-53.
4. Bensoussan, A.: Stochastic Navier-Stokes equations, Acta Appl. Math. 38 (1995), no. 3, 267-304.
5. Cao, C., Wu, J., Yuan, B.: The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal. 46 (2014), no. 1, 588-602.
6. Constantin, P.: Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.
7. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers' equation, NoDEA Nonlinear Differential Equations Appl. 1 (1994), no. 4, 389-402.
8. Deugoue, G., Razafimandimby, P. A., Sango, M.: On the 3-D stochastic magnetohydrodynamic - α model, Stochastic Process. Appl. 122 (2012), no. 5, 2211-2248.
9. Deugoue, G., Sango, M.: On the stochastic 3D Navier-Stokes- α model of fluids turbulence, Abstr. Appl. Anal. Art. ID 723236 (2009), 27pp.
10. Deugoue, G., Sango, M.: On the strong solution for the 3D stochastic Leray-alpha model, Bound. Value Probl. Art. ID 723018 (2010), 31pp.
11. Dong, B.-Q., Zhang, Z.: Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations 249 (2010), no. 1, 200-213.
12. Eringen, A. C.: Simple microfluids, Int. J. Engng. Sci. 2 (1964), 205-217.
13. Eringen, A. C.: Theory of micropolar fluids, J. Math. Mech. 16 (1966), 1-18.
14. Flandoli, F.: Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl. 1 (1994), no. 4, 403-423.
15. Flandoli, F.: An introduction to 3D stochastic fluid dynamics, in: SPDE in Hydrodynamic: recent progress and prospects, lecture notes in mathematics, Springer 1942 (2008), 51-150.
16. Galdi, G. P., Rionero, S.: A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Engng. Sci. 15 (1977), no. 2, 105-108.
17. Inoue, H., Matsuura, K., Ǒtani, M.: Strong solutions of magneto-micropolar fluid equation, Dynamical systems and differential equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst. (2003), 439-448.
18. Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus, Springer, New York, 1991.
19. Krylov, N. V., Röckner, M.: Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields 131 (2005), no. 2, 154-196.
20. Langa, J. A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochastic Navier-Stokes equations, Appl. Math. Optim. 48 (2003), no. 3, 195-210.
21. Leray, J.: Sur le mouvement d'un fluide visqueux emplissant l'espace , Acta Math. 63 (1934), no. 1, 193-248.
22. Lions, J. L.: Quelquels Méthodes de Réesolution des Problémes aux Limites Non Linéaires, Dunod, Gauthiers-Villars, Paris, 1969.
23. Lukaszewicz, G.: Micropolar Fluids, Theory and Applications, Birkhäuser, Boston, 1999.
24. Majda, A. J., Bertozzi, A. L.: Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2001.
25. Meyer, P. A.: Probability and Potentials, Blaisdell publishing company, New York, 1966.
26. Ortega-Torres, E. E., Rojas-Medar, M. A.: Magneto-micropolar fluid motion: global existence of strong solutions, Abstr. Appl. Anal. 4 (1999), no. 2, 109-125.
27. Prokhorov, Y. V.: Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956), 157-214.
28. Rojas-Medar, M. A.: Magneto-micropolar fluid motion: existence and uniqueness of strong solutions, Math. Nachr. 188 (1997), 301-319.
29. Rudin, W.: Real and Complex Analysis, McGraw-Hill, Inc., New York, 1966.
30. Sango, M.: Magnetohydrodynamic turbulent flows: existence results, Phys. D 239 (2010), no. 12, 912-923.
31. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 (1983), no. 5, 635-664.
32. Simon, J.: Compact sets in the space $L^{p}(0, T ; B)$, Ann. Mat. Pure Appl. 146 (1986), no. 1, 65-96.
33. Skorokhod, A. V.: Limit theorems for stochastic processes, Theory Probab. Appl. 1 (1956), 261-290.
34. Skorokhod, A. V.: Studies in the Theory of Random Processes, Dover Publications, Inc., New York, 1965.
35. Sritharan, S. S., Sundar, P.: The stochastic magneto-hydrodynamic system, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), no. 2, 241-265.
36. Yamaguchi, N.: Existence of global strong solution to the micropolar fluid system in a bounded domain, Math. Meth. Appl. Sci. 28 (2005), no. 13, 1507-1526.
37. Yamazaki, K.: $(N-1)$ velocity components condition for the generalized MHD system in N-dimension, Kinet. Relat. Models 7 (2014), no. 4, 779-792.
38. Yamazaki, K.: Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity, Discrete Contin. Dyn. Syst. 35 (2015), no. 5, 2193-2207.
39. Yamazaki, K.: Unique strong solution for the 2-D stochastic micropolar and magnetomicropolar fluid systems, submitted.
40. Yuan, B.: On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2025-2036.

Kazuo Yamazaki: Department of Mathematics, Washington State University, PullMAN, WA 99164-3113, USA

E-mail address: kyamazaki@math.wsu.edu

[^0]: Received 2014-7-12; Communicated by the editors.
 2010 Mathematics Subject Classification. Primary 35Q35; Secondary 60H15.
 Key words and phrases. Micropolar fluid system, magneto-micropolar fluid system, martingale solution, noise, Prokhorov theorem, Skorokhod theorem.

