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SUMMARY 
A quantitative model using elastic dislocation theory has been developed to model 
the near-field subsurface displacement field associated with faults and fault arrays 
within an elastic layer above an elastic half-space. A fault is modelled as a surface 
across which there is a discontinuity in prescribed displacements. Fault displace- 
ments may be oblique as well as dip-slip. The mathematical expressions for the 
surface and subsurface displacements are formed using the Thomson-Haskell matrix 
technique. Faults may intersect the free surface or may be blind. The model has 
been used to determine the 3-D surface and subsurface displacement fields for a 
rectangular fault with constant slip and for an elliptical fault on which the slip varies 
from a point of maximum displacement at the centre to zero displacement at an 
elliptical tip-line. The 3-D displacement field and associated strain tensor may be 
determined for individual slip events on a fault or for cumulative fault displace- 
ments. Displacement contour maps may be constructed for either originally 
horizontal, vertical or inclined horizons. The model has also been applied to 
multiple fault arrays. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Key words: coseismic subsurface fault displacement, elastic dislocation. 

1 INTRODUCTION 

A fault may be regarded as a dislocation created by fracture 
of the rock material separating two rock masses. During 
fracture the two opposing fault surfaces suffer displacement 
with respect to each other. The static coseismic deformation 
associated with earthquake faults has been studied 
extensively using elastic dislocation theory. Many methods 
based on the elastic dislocation theory are available to 
calculate surface displacements in a homogeneous half-space 
(Chinnery 1961; Maruyama 1964; Savage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hastie 1966; 
Mansinha & Smylie 1971) and in a layered half-space 
(Ben-Menahem & Gillon 1970; Jovanovich, Husseini & 
Chinnery 1974a; Rundle 1982). 

The main aims of previous studies have been to interpret 
geodetic observations and to derive earthquake source 
parameters such as rupture zone size, depth of hypocentre, 
seismic moment and stress drop (Savage & Hastie 1966; 
Mikumo 1973). Traditionally, the elastic dislocation theory 
has been used to compute surface displacement only. 
Recently Roth (1990) derived new kernel functions for 
subsurface displacements associated with point sources 
within a layered elastic medium. However, Roth’s 
determination of displacement fields was restricted to an 

area below the free surface and above the point source 
level. In studying the deformation generated by a finite size 
fault, most workers assumed that the fault surface is a 
rectangular plane with constant slip. Real faults do not 
possess a rectangular geometry neither do they have 
constant displacements. 

The objective of the work described in this paper is to 
determine 3-D subsurface displacement and strain fields for 
a fault with a more realistic fault geometry and displacement 
distribution. The well-developed Thomson-Haskell Matrix 
technique has been used to derive new kernel functions for 
displacement below a point source. The theory developed 
by Jovanovich et al. (1974a) and Roth (1990) has been 
extended further to compute the displacement field at any 
point surrounding a fault in the upper elastic layer. A new 
formulation has been derived which permits displacements 
to be determined at the free surface, or in the subsurface 
either above or below the source. For the purpose of 
comparison and testing against existing theory, the 
developed model has been used to compute the 3-D surface 
displacement field for a rectangular fault with constant slip 
for which existing solutions are available. 

The subsurface displacement fields for such a simple 
rectangular fault are also shown. Surface and subsurface 
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are from Roth (1990). In this paper, we derive the new 
kernel functions for subsurface displacements below a 
source level. Those who are particularly interested in the 
mathematical background and derivations should refer to 
the cited papers. 

Fig. l(a) shows a cylindrical coordinate system (r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, z) 
with the z-axis positive downwards. A point source 
representing an infinitesimal dislocated fault surface is 
located at ( r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, z = h). is the rake of the fault, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is 
the dip of the fault. The strike of the point source is taken 
along the x-axis while the slip is taken with respect to the 
hanging wall. Fig. l(b) shows an elastic layer of thickness H 
overlying an elastic half-space for which we will determine 
the generalized 3-D fault displacement field. The point 
source is located at z = h  within the top layer. The 

displacement fields have also been determined for a more 
realistic fault geometry and displacement distribution in 
which the slip varies from a point of maximum displacement 
at the centre to zero displacement at an elliptical tip-line as 
suggested by the fault growth model proposed by Walsh & 
Watterson (1987). The control by fault dip, fault depth and 
fault slip direction on subsurface displacement fields has 
been explored. The developed mathematical model has also 
been used to determine the strain fields (normal and 
volumetric strains) associated with single faults. As well as 
being applied to the cumulative fault displacement field, the 
new model has also been used to determine the incremental 
subsurface displacement field associated with a single fault 
slip event, corresponding to a single seismic cycle. 

2 THEORY 

In the following work the modelling of displacements due to 
earthquake faulting using elastic dislocation theory will be 
restricted to dealing with the static problem only. Waves 
and transient dynamic features associated with the 
earthquake will be neglected. It is also assumed that the 
effects of the Earth's curvature, its gravity and temperature 
on the displacement field are negligible. The elastic 
continuum will also be assumed to be isotropic so that the 
laws of classical linear elasticity apply. 

The use of dislocation theory to determine the static 
deformation accompanying faulting within a semi-infinite, 
isotropic, elastic medium has been discussed by Steketee 
(1958a, b) who developed a Green's function method to 
calculate the stresses and displacements produced by a 
strike-slip fault. Maruyama (1964) derived the remaining 
five sets of Green's functions, which allow the displacement 
field due to an arbitrary displacement dislocation in a 
semi-infinite medium to be determined through the Volterra 
relation. Rybicki (1971) presented analytical solutions for a 
2-D strike-slip fault both in an infinite homogeneous 
half-space and a layered half-space. Sat0 (1971) developed a 
method of calculating surface displacements for 3-D 
strike-slip and dip-slip faults in a layered elastic medium. 
The practical applications of elastic dislocation theory to 
rectangular earthquake faults in an elastic half-space were 
addressed by Chinnery (1961), Savage & Hastie (1966) and 
Mansinha & Smylie (1971). Ben-Menahem & Singh (1968) 
extended the results of Steketee and Maruyama to a layered 
half-space. Singh (1970) applied the Thomson-Haskell 
propagation matrix technique to solve the problem of the 
static deformation of a multilayered elastic half-space. Each 
layer of the multilayered medium is assumed to be 
homogeneous and isotropic, and interfaces are assumed to 
be in welded contact. The point source is represented as a 
discontinuity in the depth-dependent coefficients of the 
displacement and stress at the source level. Following Singh, 
Jovanovich et al. (1974a) described a procedure for the 
numerical evaluation of the kernel functions. 

In this paper, we deal with a model consisting of one 
elastic layer overlying an elastic half-space. It is obvious that 
the results can easily be extended to a multilayer model by 
introducing extra layer matrices. The integral expressions 
used for calculating displacements are from Singh (1970) 
and Javanovich et al. (1974a). The expressions of the kernel 
functions for subsurface displacements above a source level 
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Figure 1. (a) Geometry of arbitrary fault in the cylindrical 
coordinate system ( r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ~ ,  z) with origin 0. P is the point of 
observation at a distance R from the source. 6, y and Uo are the 
rake, dip and slip respectively. The strike is taken along the x-axis. 
(b) Model used for computations-an elastic layer (H = 35 km) 
above an elastic half-space. The source level is at depth h. Lame's 
constants are: p ,  = 7.0 X 10" N m-2, A, = 8.22 x 10" N m-2; p 2  = 
1.55 x 10" N m-2, & = 1.82 x 10" N m-2. 
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544 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
observation points may be either on the free surface or on 
an horizon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zk which can be above or below the source 
level. Numerical values of elastic constants are listed in the 
caption of Fig. 1. This two-layer model will be used 
throughout this paper. 

The vector displacement u,, in the nth layer, satisfies the 
Navier equation of static elasticity for an infinite medium. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X .  Q. Ma and N .  J .  Kusznir 

[V2+ (1 + A,,/p,) grad divlu, = 0. (1) 

Three independent vector solutions of equation (1) for u,, 
are given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N:, = exp ( f k z ) (  f P, + B,), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F:,,, = exp ( f k z ) [ ( f l  - 26,kz)P, - (1 + 26,kz)B,], 

M:, = exp ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf kz)C,, 

where 6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=(An + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,,)/(L,, + 3pn)  and P,.B, and C, are 
three cylindrical basis vectors. 

P, = e,J,(kr) exp ( imq) ,  

(2) 

d 
B,= (3) 

where e,, e,, e, are the orthogonal triad of unit vectors in 
the z, cp and r directions respectively. 

The general solution of equation (1) is expressed in the 
spatial domain as a sum of integrals in the wavenumber 
domain. 

(4) 

where u,, is a linear combination of the three independent 
vector solutions 

u,,(k) = AA,Ni, + A:,NT, + BL,Fi, + B:,F;, 

+ CA,,,Mi,,, + CA,MT,, (5) 

where A:,, A",,, B:,, B",, are layer coefficients 
By substituting (2) into ( S ) ,  we get: 

unm(k) = x n m P m  + YnrnBm + ZnmCrn, ( 6 )  

where x,,,, y,, and z,, are kernel functions in which 
subscript n denotes layer number and subscript m depends 
on source slip vector. 

x,, = -exp (-kz)AA, + exp (kz)Ay,, - (1 + 26,,kz) 

x exp (-kz)BA, + (1 - 2S,,kz) exp (kz)Bt,, 

y,, = exp (- kz)A:, + exp (kz)AL, - (1 - 26,kz) (7) 

x exp (-kz)BA, - (1 + 2S,kz) exp (kz)Bt,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z,,, = exp (-kz)CA, + exp (kz)CA,. 

The stress vector T,,, across a plane of constant z associated 
with the displacement u,, is given by 

T,,, = 2kX,,,P, + 2kY,,,B, + kZ,,C,, (8) 

where X,,, Y,, and Z,, are kernel functions for stress 
vectors, which can be expressed in a similar form (7). 

In order to determine the kernel functions, Singh (1970) 
split the problem into 'R' and 'L' problems. IIe applied the 

conditions of zero normal traction for the free surface at 
z = 0, those of zero displacement, stress and potential at 
infinite depth, and displacement and stress continuity across 
layer boundaries. He incorporated a source by creating a 
layer boundary at  the source depth h and prescribing 
appropriate discontinuity conditions across the boundary for 
the source. By further using the Haskell matrix relationship, 
he derived the kernel function expressions for calculating 
surface displacements. 

xlm(o) = - E13E41)(Fm)3 + - EllE33) 

(Fm)4]/[E31E43 - E33E41) - (Fm)l]~ 

Ylrn(O) = [(E21E43 - E23E41)(Fm)3 + ( E 2 3 E 3 1  - E Z l E 3 3 )  (9) 

x (Frn)4l/[(E31E43 - E33E41) - (Frn121, 

z,rn(O) = [EkI(Kz),L- Ekl(Fk)1IIE,L,. 

The (E) matrices and the (F,) vectors for a single layer 
overlying a half-space are given by: 

E = aI[z,(H)l? 

EL = a:[Z,(H)L], 

F, = a,JL ,  
(10) 

L - I, I. 
F m  - as.lDm, 

where a, and a; are the layer matrices, [Zp(H)] and 
[Zb(H)] are the coefficient matrices of the half-space, and 
D, and Dk are the source vectors, which are determined 
from the property of the discontinuities in displacement and 
stress at  the source level. 

By using a similar technique, Roth (1990) derived the 
kernel functions for subsurface displacements above the 
source level. The kernel functions derived by Roth are: 

x k m ( z , )  = {E?l[E43(Kt)3 - E33(Fm)dI + ':3[E31(F,n)4 

- E41(Frn)31)/[(E31E43 - E33E4,) - (F;)IIv 

Ykm(zk) = {E21[E43(Fm)3 - E33(Fn)4I + E23[E31(Fm)4 (11) 

- E41(L)3l}/[(E3lE43 - E33E4,) - (F;)*I> 

z k m ( Z k )  = [ E ? , L ( F ~ ) ~  - ~ k 1 ( ~ : ~ ) 1 I / ~ k 1 7  

and 

where (akzp) and (ahzp) are matrices for the layer bounded 
by the observation horizon and the top boundary of the 
half-space, while (aklr) and (ahlr) are the matrices for the 
layer bounded by the observation horizon and the source 
horizon. 

Roth did not however derive the kernel functions for 
displacement beneath the source. To determine the kernel 
functions for the displacements below the source level, we 
divide the top layer into three layers, sl,  s2 and k2  (Fig. 
Ib). The lower boundary of the first layer (s l )  corresponds 
to the source level, where there are discontinuities in 
stresses and displacements. The lower boundary of the 
second layer (s2) is an horizon where observations are 
made. As shown in Fig. l(b), the source is at z = h ,  and the 
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(iii) For a 45" dip-slip source, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA545 

observation points are at zk .  If we let n in equation (22)  of 
Singh (1970) be k2, we get: 

A k 2 m ( ~ s 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a k 2 A k 2 r n ( z k 2 ) .  (13) 

Using (18) and (19) and boundary conditions in Singh, we 
get: 

(14) 
xk2rn(zs2) = EflA;rn + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEf3B;rnt 

~ k 2 r n ( z s 2 )  = EflA;rn + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEhB6rnt 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ef = a,2[Zp(H)1. 

A;,,, and BL,,, are coefficients for the half space and taken 

By arranging (14), we get: 
as those determined for surface displacements. 

xk2m(zs2) = { Ef l [E43(Fm)3  - E33(Fm)41 + Ef3[E31(Fm)4 

(15) 
- E 4 1 ( F m ) 3 1 ) / ( E 3 1 E 4 3 -  E 3 3 E 4 1 ) ,  

Y k 2 n 1 ( ~ s 2 )  = { E f l [ E 4 3 ( F m ) 3  - E33(Fm)41 + E&3[E31(Fm)4 

- E 4 1 ( F m ) 3 1 ) ~ ( E 3 1  E43 - E33E41)' 

The solution of the 'L' problem can be solved in the similar 
way, it is: 

~ k L Z m ( ~ s 2 )  = E f \ [ ( ~ k ) J E > l l ~  (16) 

where 

EfL = ak",[Z,"(H)]. 

The above solutions can easily be extended to those for a 
multilayered medium. 

Jovanovich et al. (1974a) derived the integral expressions 
for surface displacements for a vertical strike-slip, a vertical 
dip-slip and a 45" dip-slip point source. These expressions 
can also be used for subsurface displacements if the kernel 
functions for the surface displacements are replaced by 
those for subsurface displacements [see (17)-(19)]. 

(i) For a vertical strike-slip source, 

u, = - ~~[(1/ i)Y12(zs2)(a/akr)J2(kr) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
uq = - 1 [(llilYl2(z,2)(2/k.)J2J,(kr) 

+ zI2(zs2)(2/kr)J2(kr)]k dk sin 2 q ,  
a, 

(17) 

+ zI2(z , , ) (a/akr)J2(kr)]k dk cos 2q ,  

u, = - b [ ( l / i ) ~ ~ ~ ( z , ~ ~ ~ ( k r ) ] k  dk sin 2 q .  

m 

where x,,, y,,, z,, are kernel functions, and J,,, are Bessel 
functions. 

The displacement field due to an arbitrary point source 
located at ( r  = 0, z = h )  can be expressed in terms of three 
basic point source responses. The displacement components 
are: 

ui = sin B (u; sin 2 y  - uf cos 2 y )  

+ cos B (uf sin y - uf cos y ) ,  (20) 

where 6 and y specify the orientation of the source, as 
shown in Fig. l(a). The displacement uf, u:, u: are 
respectively the solutions for a vertical strike-slip source, a 
vertical dip-slip source and a 45" dip-slip source. The 
equation for u: is the same as that for u: with cp replaced by 
(q - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn / 2 )  (Jovanovich et al. 1974a). 

3 NUMERICAL EVALUATION 

While it might appear that the evaluation of equations 
(17)-( 19) to determine 3-D subsurface displacement field is 
a straight forward process, this is unfortunately not so. Since 
the kernel functions involve matrix products of highly 
disproportionate magnitudes dependent on the product of 
layer thickness H and wavenumber k ,  some numerical 
problems arise due to the fact that one must add hyperbolic 
sines and cosines of argument k H  which introduces 
round-off errors as kH increases. In order to avoid 
numerical overflow and underflow, the upper limit of 
wavenumber k in the integration has to be limited. As a 
result, the high-frequency components in displacements are 
lost especially within the near field, and the calculated 
displacements are not stable. In order to overcome this 
problem, we use a similar numerical method as proposed by 
Jovanovich et al. (1974a), to decompose the matrix a, and 
matrix 2, into the sum of four matrices. The E matrix may 
then be written as the product of matrices consisting of 
constants while all the exponentials and powers of k are 
carried outside the appropriate matrix product. The 
numerators of the kernel functions are formed from the 
second-order subdeterminants of the E matrix multiplied by 
the appropriate F,,, terms. The denominators, which are 
only the second-order subdeterminant of the E matrix, are 
treated in the same way as proposed by Ben-Menahem & 
Gillon (1970), i.e. the denominator is approximated by a 
truncated binomial series expansion and then the remainder 
of the series is fitted with a sum of exponential-polynomial 
terms usine. the method of least squares. As the 

I 

JO denominator is a function of model parameters such as 
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546 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. Q. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand N. J .  Kusrnir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
physical dimension and elastic properties (A, p ) ,  the 
least-square fitting process has to be carried out for each 
physical model. For a two-layer model, as we have 
described, the denominator has a relatively simple form 
(four terms) and the time for computing the non-linear fit is 
very short. However as the number of layers increases, the 
expression of the denominator, i.e. the second-order 
subdeterminant of the E matrix, becomes far more 
complicated and as a consequence the computation time for 
determining the denominator as well as for the non-linear fit 
increases. The kernel functions are obtained by multiplying 
the exact numerator series by the approximated inverse 
denominator series. For a simple model consisting of one 
layer overlying a half-space, there are 58 exponential- 
polynomial terms in the kernel functions of the ' R  problem, 
and 10 terms for the 'L' problem. The final expressions of 
surface displacements are the sum of the Lipshitz-Hankell 
integrals (21), and their exact quadrature can be found in 
Erdelyi (1954). However, care must be taken in evaluating 
the associated Legendre polynomials, as individual authors 
have defined the polynomials in different forms giving a 
difference of a constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(- 1)'". 

u ( r )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc I n  2 a, rk"e(-*Dl)J,,,(kr) 0 dk (21) 

(where aln are constant coefficients, and D, are the 
exponential arguments which are a function of layer 
thickness, source depth and depth of an observation point). 

In the case of subsurface displacements, the kernel 
functions have a more complicated form than those for 
surface displacements because E:EjI - E: E,, is no longer 
simply a second-order subdeterminant of matrix E. 
Although they can be treated in the similar way as the 
above, the number of terms in the kernel functions of the 
'R' problem increases to 180, compared to 58 for surface 
displacements. Moreover, since the kernel functions take 
different forms for an observation point above and below 
the source, they have to be evaluated separately. 

The computations have been programmed in Fortran-77 
using a Sun Sparc Workstation. For the model described in 
Section 2, the computation of the surface displacement field 
for an arbitrary point source takes about 5 s, and about 13 s 
for the subsurface displacement field. The displacements 
due to a point source of arbitrary orientation have been 
obtained using formula (20). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 RECTANGULAR FAULT WITH 
CONSTANT SLIP 

The surface displacement field for a rectangular dip-slip 
fault of constant displacement is well known and has been 
determined by Savage 8c Hastie (1966) and Rundle (1982). 
The generalized subsurface displacement model presented in 
this paper has been used to compute surface displacement 
for the rectangular constant displacement fault example in 
order that the newly developed formulation described in this 
paper may be tested. 

Fig. 2(a) shows the coordinate system and geometry for a 
rectangular dip-slip fault in an elastic layer above an elastic 
half-space. The fault dips down towards the positive Y 
direction. The strike of the fault is taken along the X-axis. 

In order to determine the displacement field caused by this 
fault, the fault surface is subdivided by a rectangular grid 
and the displacement response of a point source is computed 
at each grid rectangle centre. The displacements due to a 
dip-slip point source is a linear combination of the response 
from both a vertical dip-slip and a 45" dip-slip point 
sources. The total fault displacements are then obtained by 
integrating the point source responses over the entire fault 
region. 

Consider the example where the length of the fault (215) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
40 km, the width (W) 20 km, and the constant slip on the 

0 

-1 fo / .Q 

-zl 
Figure 2. (a) Coordinate system and geometry of a rectangular 
dip-slip fault of length 2L=40km,  width W =20km, dip y = 6 0 "  
and constant slip U,= 1 km. The fault is located within an elastic 
layer above an elastic half-space and intersects the free surface 
(D = 0 km). (b) Vertical surface displacement (U,) contour map. 
Note that positive values correspond to subsidence while negative 
values correspond to uplift. (c) Horizontal surface displacement 
(U,) contour map. (d) Horizontal displacement (U,,) contour map. 
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Figure 2. (continued) 

fault surface is 1 km. If the grid size is 2 km X 2 km, then the 
total number of grid elements is 200. Since the kernel 
functions for a model vary only with the depth and slip of 
the source, and 20 identical point sources on any rows of the 
discretized fault surface are at the same depth, and we need 
to calculate only one point source response on that row. 
Therefore, for this example only 10 point source responses 
for 10 different sets of kernel functions need to be 
computed. 

Figs 2(b)-(d) show the surface displacement for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60" 
dip-slip fault which cuts through the upper part of the top 
layer and intercepts the free surface. The arrows on the 
diagrams indicate the directions of material movement. The 
material on the downthrow side in Fig. 2(c) moves inwards 
while on the upthrow side they move outwards. One of the 

conspicuous features in Fig. 2(b) is the asymmetry of the 
displacement contour pattern, i.e. the uplift marked by 
negative vertical displacement values are relatively small 
compared to the subsidence. The degree of this asymmetry 
varies with fault dips. A vertical fault will show an absolute 
symmetry in displacements with respect to the fault surface. 

When the same model parameters are used as in Rundle's 
(1982) paper, i.e. 2L=200km, W =30km, y=30°, the 
surface deformation calculated by our model is equivalent to 
the coseismic deformation curve in Rundle's Fig. 2. The 
comparison of the calculated displacements of a normal fault 
with those a thrust fault may be made by changing the sign 
of the displacement. 

Subsurface vertical displacements are shown in Fig. 3 for 
a blind (buried) rectangular fault. The fault dips at 60°, and 

Y 

3 D 
I 

I 

A C 

A B 

Figure 3. (a) Plan view of a rectangular fault and three vertical 
sections. The fault is at depth D = 8 km. Both sections AB and EF 
cut through the fault centre. Section CD is 2 km away from the fault 
edge. (b) Vertical displacement contour map along the section AB. 
(c) Vertical displacement contour map along the section CD. (d) 
Vertical displacement contour map along the section EF. 
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548 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. Q. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMa and N .  J .  Kusznir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD 

E F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. (continued) 

is at depth D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 8 km from the free surface. The locations of 
three vertical sections (AB, CD,  EF) are shown in Fig. 3(a). 
Sections AB and CD are normal to the strike of the fault 
while section E F  is parallel to the strike. 

Section AB cuts the fault through its centre. Fig. 3(b) is 
the vertical displacement contour map along section AB, 
and shows the deformation on both sides of the fault. 
Positive contour values correspond to subsidence while 
negative values correspond to uplift. Note that the straight 
line formed by the zero displacement contour within the 
fault zone is at an angle of 60” with the horizontal and 
exactly corresponds to the prescribed dip of the fault. 
Displacements on each side of the fault are maximum 
adjacent to the fault and tend to zero downwards and 
laterally. 

Fig. 3(c) shows the vertical displacement contour map on 
the vertical section CD which is 2 km away from the edge of 
the fault. In comparison with (b), it can be seen that the 
displacement values for this section are significantly 
reduced. Furthermore, the point of maximum displacement 
on the downthrow side has moved upwards while the point 
of maximum displacement on the upthrow side of the fault 
has moved downwards. Although the section does not 

intersect the fault surface, a fault zone indicated by closed 
displacement contours is still apparent. Fig. 3(d) is the 
displacement contour map on the vertical section EF, and 
shows two concentric elliptical contour lines within foot and 
hanging walls. The zero displacement contour line 
corresponds to the level of the fault centre, which is at 
16.6 km depth below. 

5 ELLIPTICAL FAULT WITH 
CUMULATIVE DISPLACEMENT 

Field observations and seismic reflection data show that a 
fault surface, whether for a blind fault or one intersecting 
the free surface, is never rectangular, nor is the fault 
displacement constant. The fault geometry and displace- 
ments vary from fault to fault. Fault geometry and 
displacement information extracted from UK coal mine 
records and from high-resolution seismic reflection data 
from offshore UK has shown a systematic displacement 
variation for blind faults with fault dying out upwards, 
downwards and laterally (Barnett ef al. 1987). An idealized 
blind fault has an elliptical fault surface defined by the zero 
displacement contour and displacement which varies from a 
point of maximum displacement at  the centre to zero 
displacement at  the tip-line. Contours of equal displacement 
form ellipses centred on the point of maximum displace- 
ment. The displacement gradient normally varies with 
direction on the fault surface, the ellipse usually being 
elongated laterally. Fig. 4(a) shows the displacement 
contour map for an idealized blind fault, and corresponds to 
those of the Watterson and Walsh fault growth model 
(Watterson 1986; Walsh & Watterson 1987). The fun- 
damental concepts of the Walsh & Watterson (1987) fault 
growth model are that the slip increases linearly with fault 
radius as the fault grows so that the fault displacements 
increase approximately with the square of the fault width. 
For a fault growth model in which the maximum slip in 
successive slip events is increased by a constant amount, the 
cumulative displacement can be calculated. The formula 
(22) is an expression derived by Walsh & Watterson (1987) 
for the steady-state fault surface displacement profile for 
such a blind fault grown by multiple slip events. 

d = 2{[(1 + r)/2]’ - r2}”’(1 - r ) ,  (22) 

where d is the normalized displacement at  a point on a 
radius of the fault ellipse, and r is the normalized radial 
distance from the centre of the fault. The actual displacement 
at a point is obtained by multiplying the normalized 
displacement by the maximum displacement at the centre. 
The displacement distribution shown in Fig. 4(a) has been 
used to define the fault displacement distribution for our 
dislocation model throughout this section. 

The computation procedures are similar to those for a 
rectangular fault. The displacement geometry differs in that 
the slip on the fault surface now varies from point to point, 
rather than having a constant value for a rectangular fault. 
Unit slip is assumed for all the point sources followed by 
linear scaling to incorporate displacement variation, since 
the D, vector in (10) and (12) contains a factor U,dS (with 
(I,, as the average dislocation on a point source and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS as the 
size of the rupture area) which can be factored out of any 
integrals in (17)-(19). After the integrals for point sources 
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v v  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lenglh(2L) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA----+ 

Width(W) 

1 

Figure 4. (a) Cumulative displacemcnt geometry on an elliptical 
fault of long axis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 km and short axis 20km. Note that the slip 
varies from maximum displacement (1 km) at the centre to zero 
displacement at the tip-line. (b) Vertical surface displacement ( U z )  

contour map for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60" dip-slip fault intersecting the free surface. 
The observation horizon is the free surface. (c) Horizontal surface 
displacement (Ur) contour map. (d) Horizontal surface displace- 
ment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U,,) contour map. 

I 
1 ] 1 ' 1 1 ] ' , 1 ' , , , , , ] , , ' ,  , 1 , ,  , 

-40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-50 -20 -10 0 lb 2b ;a 4 

I 301 

have been evaluated, the actual displacements due to an 
elliptical fault are obtained by multiplying the results from 
integrations by appropriate slips determined from (21). 

Figs 4(b)-(d) show the vertical and horizontal surface 
displacement contour maps calculated for the elliptical fault 
growth model described above. The fault dips at 60" and 
intersects the free surface (D = 0). It can be seen that the 
displacement values and deformed area in any one of the 
contour maps are smaller than those of the rectangular 
constant slip fault in Fig. 2. The concentric ellipse-like 
contours formed by equal horizontal displacement (U,)  in 
(c) are closer to each other than that for the rectangular 
fault. For the vertical displacement (Uz), the closed 
contours on both sides of the fault in Fig. 4(b) are less 
flattened than those in Fig. 2(b). The asymmetry of vertical 
displacements on both sides of the fault is still apparent. 

Fault dip controls the displacement distribution and as a 

consequence the symmetry/asymmetry of displacement 
patterns on the downthrow and upthrow sides. It is well 
known that a vertical dip-slip fault displays an absolute 
symmetry in displacement on both sides. Any faults whose 
dips are less than 90" will show an asymmetry in vertical 
displacements, and the asymmetry increases with decreasing 
fault dips. The asymmetry is such that fault uplift is reduced 
relative to subsidence for a normal fault. At the same time, 
a decrease in fault dip is accompanied by a decrease in the 
vertical component of displacement. The ratios of the 
maximum amount of uplift to the maximum amount of 
subsidence on the free surface are about 1 ,9 ,24  and 100 per 
cent, corresponding to 30, 45, 60 and 90" dip-slip elliptical 
faults respectively. These ratios and their dependence on 
fault dip are different for the elliptical fault growth model 
and rectangular constant slip fault because of their different 
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550 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
displacement distributions [refer to fig. 3(a) of King, Stein zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Rundle 1988-variation of the vertical surface displacement 
with dips for a rectangular fault of constant slip]. 

Subsurface fault displacement patterns differ profoundly 
from those of the surface. The displacement contour pattern 
is shown in Fig. 5 for a subsurface horizontal plane which 
intersects the centre of an elliptical blind fault. Fig. 5(a) is a 
perspective view of a blind fault and a subsurface horizon. 
The blind fault also dips at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60" and has a depth of 10 km 
below the free surface. Figs 5(b)-(d) show the three 
components of displacements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, U,, U, at a depth of 
18.6 km, which corresponds to the depth of the horizontal 
plane cutting through the centre of the fault. The fault 

X. Q. M a  and N .  J .  Kusznir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T 

LAYER 2 1 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2 lir" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l " ' ~ l " " I " " ~ " " ~ " " ~ " "  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-30 -20 -10 0 H) 20 

Figure 5. (a) Perspective view of an elliptical fault and an 
observation horizon. (b) Vertical displacement ( U z )  contour map 
for a 60" dip-slip fault at depth D = 10 km. The observation horizon 
is originally horizontal and at depth z = 18.6 km, which cuts through 
the fault centre. (c) Horizontal displacement ( U x )  contour map. (d) 
Horizontal displacement (U,,) contour map. 

4 I ) , ,  ~ ~ , , 1 , , , , , , , , , 1 , , , , 1 , , ~ ~  
-30 -20 -10 0 lo 20 

Figure 5. (continued) 

displacement geometry is otherwise the same as in Fig. 4(a). 
Positive values in Fig. 5(b) correspond to subsidence while 
the negative values correspond to uplift. Note that although 
the horizon crosses the centre of the fault, the vertical 
displacement contour patterns are not symmetric on the 
downthrow and upthrow sides, i.e. there is a greater amount 
of subsidence than uplift. This is because the depth of the 
fault (10km) is not great enough, compared to the 
dimension of the fault (width 20 km), to eliminate 
free-surface effects. A striking feature of the horizontal 
displacement (U,) contour map of Fig. 5(c) is that, in 
contrast to the similar map in Fig. 2(c) for the rectangular 
fault, Fig. 5(c) shows outwards movement in a direction 
parallel to the strike of the fault on both sides of the fault. 
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E F 

A B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C D 

Figure 6. (a) Plan view of an elliptical fault and three vertical 
sections. The fault is at depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 8 km. (b) Vertical displacement 
contour map along the section AB from an elliptical fault with 
cumulative displacement. (c) Vertical displacement contour map 
along the section CD. (d) Vertical displacement contour map along 
the section EF. 

Figure 6. (continued) 

The displacement contour patterns for U,, are almost 
symmetric with respect to the fault plane. 

Vertical sections of the vertical displacement for the 
buried elliptical fault growth model are shown in Fig. 6. The 
locations of the vertical profiles are shown in Fig. 6(a). The 
general characteristics of contour patterns for profiles AB 
and EF are similar for the elliptical fault growth and 
rectangular fault models except for the reduced displace- 
ment values of the elliptical fault growth model. The two 
points of maximum displacements on both side of the fault 
in (b) are closer for the elliptical fault growth model than 
those for the rectangular fault. A conspicuous fault zone for 
profile CD which passes by the side of the elliptical fault is 
no longer evident. This is because the more realistic 
displacement distribution on the elliptical fault decreases 
strains near the edge of the fault. 

6 STRAIN CHANGES ASSOCIATED WITH 
FAULTING 

Strains can be used to characterize the extensions 
(contractions) and shear distortions of a material element in 
three dimensions. The generalized strain tensor usually has 
nine components which completely characterize the local 
state of strain. The strain tensor may be reduced to six 
independent parameters. The components of infinitesimal 
strain can easily be expressed in terms of displacement 
components: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

au au, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ax ' ax ay 

Ex, = - au, E x , = - + - ,  

au.. au- au.. 
, &,,=-+-L, 

Eyy = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ay az 

au, auz auz 
az ' az ax 

&,=-+-, &,, = - 

where U,, U, and Uz are the x ,  y and z components of 
displacement respectively. The quantities E,, E,, and E,, 

are normal components of the strain tensor and E ~ , ,  E , ~ ,  E, 

are shear components. The normal components of strain 
E,,, E,, and E,, are assumed, by convention, to be negative 
for compression and positive for tension. Volumetric strain 
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552 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. Q. Ma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand N .  J .  Kusznir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
may be defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,, + E~~ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,,. (24) 

It is negative when the volume of the element is decreased 
by compression. 

The 3-D subsurface displacement field for an elliptical 
fault growth model has been used to determine strain 
changes. The fault is at depth 0 = 10km, and its 
displacement geometry is taken the same as in Fig. 4(a). 
Strain changes associated with faulting were calculated by 
finite difference using equation (23). 

/o 
zol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-20 -x, 0 10 20 

I I I I 1 

-50 -x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb Yo i0 

FQure 7. (a) Normal strain ( E ~ ~ )  contour map due to the fault 
defined in Fig. 4(a). The observation horizon is at depth z = 8 km, 
which is 2 km above the fault. The original strain values are 
multiplied by a scaling factor 1.0 X lo3. Negative strain values 
correspond to contraction while positive values correspond to 
extension. (b) Normal strain ( E ~ , , )  contour map. (c) Normal strain 
( E * * )  contour map. (d) Volumetric strain (A)  contour map. 

I 
I I I I I 

-20 -x) 0 x) 20 

Figure 7. (continued) 

Fig. 7 shows three normal strains and a volumetric strain 
on an initially horizontal plane z = 8 km. It can be seen that 
large strains are concentrated on the sides and faces of the 
elliptical fault and take the form of a pattern of positive and 
negative lobes (Fig. 7a). Fig. 7(a) also shows the contraction 
of material on the downthrow side indicated by negative 
strain values, and extension of material on the upthrow side 
by positive strain values. Fig. 7(b) shows large tensile E,, 

strains at the centre and compressive strains on the upthrow 
side. Fig. 7(c) shows the E,, strain distribution. The strain 
values for E,, are generally larger than the previous two 
components. It can be seen that large compressive E,, strain 
occurs on the upthrow side while extension occurs on the 
downthrow side of the fault. Fig. 7(d) shows the volumetric 
strain distribution. The contour pattern resembles that of 
Fig. 8(c), indicating that the 60" dip-slip normal faulting is 
dominated by vertical deformation, and that after faulting 
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3-0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsubsurface displacement and strain fields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA553 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
there is an increase in volume on the downthrow side and a 
decrease in volume on the upthrow side. 

When the observation horizon is through the fault centre, 
the strain field changes dramatically. Fig. 8(a) shows the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,, 

strain component. Here the signs of the strain values are the 
same on both sides of the fault, both indicating extensional 
deformation, whereas compression occurs at fault edges. 
Fig. 8(b) shows tensile strains (e-",,) at the centre sandwiched 
by compressive strains on both sides. Fig. 8(c) demonstrates 
the domination of compressive E,, strains on this horizon. 
Note that the strain values in this figure are much larger 

20 

10 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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-2 
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0 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 8. (a) Normal strain ( E ~ ~ )  contour map due to the fault 
defined in Fig. 4(a). The observation horizon is at depth 
z = 18.6 km, which is through the centre of the fault. The original 
strain values are multiplied by a scaling factor 1.0 x 10'. (b) Normal 
strain ( E ~ , , )  contour map. (c) Normal strain (.c2*) contour map. (d) 
Volumetric strain (A)  contour map. 
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Figure 8. (continued) 

than in Fig. 7 corresponding to the greater deformation 
occurring on this level. The volumetric strain contour map 
in Fig. 8(d) indicates that there is an increase in volume in 
the area adjacent to the fault centre on the upthrow side, 
and a decrease in volume further away from the fault centre. 

7 SINGLE SLIP EVENT FAULT 

Slip refers to the fault displacement increment occurring 
during a single seismic event or cycle. Walsh & Watterson 
(1987) suggest that the maximum slip increases linearly with 
fault radius whereas maximum total displacement increases 
approximately with the square of the fault radius. The 
pattern of normalized displacement versus normalized 
distance from the centre of the fault is therefore different for 
the total displacement and individual event slip. Fig. 9(a) 
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40; 

30- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

M -  

0 -  

-10- 

-2c- 
7 

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-3 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, 

Figure 9. (a) Displacement geometry on a single slip event fault. 
The fault length 2L = 40 km, and width W = 20 km. The maximum 
slip at the centre is 4m. Note the displacement gradient near the 
tip-lines is higher than that near the central part of the fault. (b) 
Vertical displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Uz)  contour map due to a single slip event 
fault dipping at 60". The fault intersects the free surface. The 
observation horizon is the free surface. (c) Horizontal displacement 
( U x )  contour map. (d) Horizontal displacement ( U y )  contour map. 

shows the displacement distribution from a single slip event 
fault where the slip varies from a point of maximum slip 
(4m) at the centre to zero slip at the tip-line. The slip 
contour pattern differs from that of the total displacement 
distribution shown in Fig. 4(a). Specifically, the slip gradient 
(change in displacement/radial distance) is higher within a 
narrow zone adjacent to the tip-line loop of the slip surface. 
For simplicity and comparison, we choose a fault with the 
same dimension as in Fig. 4(a). Let us suppose we have 
obtained by some means the slip profile of an active fault 
from the nth event as shown in Fig. 9(a). What is the 
displacement field caused by this single slip event fault, and 
how does it compare with that for the grown fault where the 
cumulative displacement distribution is used? 

The vertical and horizontal displacement contour maps 
are shown at the surface for a single slip event in Figs 

-2 

-3 i U 

4 0  -50 -20 -M 0 10 20 30 

Figure 9. (continued) 

9(b)-(d). The fault dip is also taken as 60". The contour 
patterns resemble those of total displacement profile of the 
elliptical fault (see Fig. 4) but have sharper displacement 
gradient towards the edges. 

8 OBLIQUE SLIP FAULT 

So far, only dip-slip faults have been examined. The model 
can also be applied to a fault with oblique slip. Referring to 
Fig. l(a), the rake /3 can be chosen as any values from 0 to 
360". If /3 = O", the fault is strike-slip; if /3 = 90°, the fault is 
dip-slip; if /3 =270°, the fault refers to a thrust fault. 
Mathematically, the displacements due to an oblique slip 
fault is a linear combination of displacements from a vertical 
strike-slip, a vertical dip-slip and a 45" dip-slip fault [see 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALAYER 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

. .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
30 

o\ 
\ 

-4 
I " " l " " l " "  " " I " "  " I '  I " '  

-40 -30 -20 -x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb 10 2b I 

Figure 10. (a) An oblique slip fault dipping at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60". and the rake ( p )  
is 45". The displacement geometry is the same as defined in Fig. 
4(a). (b) Vertical displacement (Uz) contour map due to the oblique 
fault intersecting the free surface. The observation horizon is the 
free surface. (c) Horizontal displacement (U,) contour map. (c) 
Horizontal displacement (U,) contour map. 

formula zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20)]. Figs 10(b)-(d) show the surface displacement 
patterns for an oblique slip fault intersecting the free 
surface. The fault has an elliptical shape and displacement 
gradient as predicted by Walsh & Watterson (1987). The 
fault parameters are the same as in Fig. 4 except for 0 = 45". 
As would be expected there is a substantial difference in 
contour patterns compared to the pure dip-slip example 
especially for the two horizontal displacement components 
(see Figs 1Oc and d). 

9 FAULT ARRAYS 

It is rare to see a single isolated fault. Geological 
observation shows that the displacement fields of adjacent 

- 4 6  , \ / \, 
l " " l " " l " " l ~ " ' l ' ~ ~ ' I '  4 

-40 -30 -20 -lO 0 10 20 30 4 

Figure 10. (continued) 

faults overlap, and that structure contours are resultants of 
displacements on multiple faults. To obtain the overall 
pattern of displacement contour maps for two or more 
faults, we must first consider the displacement field of 
isolated single faults separately; the composite displacement 
field may then be obtained by superposition of the 
displacement fields of individual faults. Fig. l l (a) is a plan 
view of two identical faults located 10 km apart. Both faults 
intersect the free surface. The fault parameters are the same 
as in the model of Fig. 4. Figs ll(b)-(d) show the 
overprinted displacement due to the fault array. The three 
contour plots clearly demonstrate how rocks deform within 
the fault overlap zone. Figs 12(b)-(d) show the vertical 
displacement contour maps on three vertical sections whose 
locations are given in Fig. 12(a). The vertical section of Fig. 
12(b) shows two parallel faults and a highly deformed 
interference zone between them. For profile CD (Fig. 12c) 
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a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fault 1 

"i"' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 

20 - 

n- 

0 -  

-10- 

-20- 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. (a) Plan view of two identical faults intercepting the free 
surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(D = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 km). Two faults dip towards the positive Y direction 
and are 10 km apart from each other. The observation horizon is 
the free surface. (b) Total vertical displacement field ( U z )  due to 
the fault array. (c) Total horizontal displacement field (Ux) .  (d) 
Total horizontal displacement field (U,,). 

the two points of maximum displacements on both sides of 
the fault are shifted some distance towards the positive Y 
direction. 

The theory described in this paper may be applied to fault 
systems of many faults of arbitrarily relative orientation and 
slip. 

10 DISCUSSION 

The elastic dislocation model described in this paper can 
only predict the coseismic deformation which occurs at the 

Figure 11. (continued) 

time of the earthquake. Although it does take into account 
fault growth, it does not consider the effects of gravity of 
fault-induced topography, of lower crustal plastic deforma- 
tion, of lithosphere temperature and density field perturba- 
tions, or of erosion or sediment deposition. Other loads, 
whether positive or negative, will result in crustal 
deformation and regional-scale vertical displacement. The 
amount of vertical displacement will depend on the flexural 
rigidity of the lithosphere and the densities of crust and 
mantle (Kusznir, Marsden & Egan 1991). The isostatic 
loading effects on the final geological structure for a normal 
or a thrust fault cutting the free surface are greater than for 
a blind fault, because they generate greater surface 
culmination and subsidence than blind faults. The elastic 
dislocation model described in this paper does not take into 
account interseismic deformation due to the relaxation of 
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Fault zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFault 1 

I 
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I 
I 
I 
I 

1 I 
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 

A 

F 

--b 
X 

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C D 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. (a) Plan view of two identical faults and three vertical 
sections. The faults are at depth 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 8  km. (b) Vertical 
displacement contour map on the section AB. (c) Vertical 
displacement contour map on the section CD. (c) Vertical 
displacement contour map on the section EF. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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E F 

Figure 12. (continued) 

stresses in the viscoelastic layer of the lower CNSt  and 
mantle, nor its modification by isostasy, which play a large 
role in controlling the final crustal structure equilibrium. 

So far, only planar faults have been considered. In 
practice, fault dips may vary with depth and with formation 
lithology. The variation of fault curvatures will affect the 
displacement geometry on the fault and control the 
displacement fields within a medium surroudning a fault. It 
is anticipated that future fault displacements models will be 
able to take into account viscoelastic and isostatic effects as 
well as variable fault curvature. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11 CONCLUSIONS 

(1) Novel kernel functions for expressing displacements in 
the subsurface have been derived using the Thomson- 
Haskell Matrix technique. By combining the results of other 
workers with our newly derived expressions for subsurface 
displacement, it is possible to evaluate 3-D displacements at 
any points in the volume containing a fault. 

(2) For the purpose of comparison with the existing 
model, a rectangular fault with constant slip has been 
modelled. The horizontal and vertical displacement fields 
have been computed for both surface and subsurface. The 
results for surface displacements are consistent with those 
determined by Rundle (1982). 

(3) Surface and subsurface 3-D displacements have been 
calculated for an elliptical fault with cumulative growth 
displacements. The effects of fault dip and observation 
horizon depth on displacements have been explored. 
Displacements on various vertical sections within an elastic 
continuum have been computed using elastic dislocation 
theory. 

(4) Surface and subsurface 3-D displacement may be 
determined not only for dip-slip faults but also for 
strike-slip and oblique slip faults. 

( 5 )  If the slip distribution on a single slip event fault is 
known, the surface and subsurface displacements associated 
with the fault may also be determined. As a consequence, 
the deformation associated with earthquake faulting may be 
used to derive earthquake parameters. 

(6) The composite displacement field for a multiple fault 
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array may be determined by superposing the displacement 
of individual isolated faults. This may be applied for faults 
of arbitrary relative orientation and slip. 

(7) The three normal strain and volumetric strain changes 
in the subsurface volume containing a single fault have been 
determined and allow us to examine the distribution of 
extension and compression of material as a result of 
faulting. Cycling of volumetric strain may have implications 
for fluid flow. 

(8) This subsurface dislocation model may be used to 
predict the subsurface displacement field from observed 
fault plane displacement distributions obtained for real 
faults using 3-D seismic reflection data. 
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