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Abstract—For distributed smart camera networks to perform
vision-based tasks such as subject recognition and tracking,
every camera’s position and orientation relative to a single 3D
coordinate frame must be accurately determined. In this paper,
we present a new camera network localization solution that
requires successively showing a 3D feature point-rich target
to all cameras in the network. Using the known geometry
of a 3D target, cameras estimate and decompose projection
matrices to compute their position and orientation relative to
the coordinatization of the 3D target’s feature points. As each 3D
target position establishes a distinct coordinate frame, cameras
that view more than one 3D target position compute translations
and rotations relating different positions’ coordinate frames, then
share the transform data with neighbors to realign all cameras
to a single coordinate frame established by one chosen target
position. Compared to previous localization solutions that use
opportunistically found visual data, our solution is more suitable
to battery-powered, processing-constrained camera networks be-
cause it only requires pairwise view overlaps of sufficient size to
see the 3D target and detect its feature points, and only requires
communication to determine simultaneous target viewings and
for the passing of the transform data. Finally, our solution gives
camera positions in a 3D coordinate frame with meaningful units.
We evaluate our algorithm in both real and simulated smart
camera network deployments. In the real deployment, position
error is less than 1” when the 3D target’s feature points fill only
2.9% of the frame area.

Index Terms—Camera calibration, smart cameras, camera
network localization.

I. INTRODUCTION

D ISTRIBUTED smart camera networks consist of multiple

cameras whose visual data is collectively processed to

perform a task. The area covered by distributed smart camera

networks can be small, viewing only a table for 3D capture

and reconstruction of an object, covering a room, perhaps in

a health care facility, or covering a very large area, such

as an office building, airport, or outdoor environment for

documentation, surveillance, or security.

Localization of a smart camera network means to determine

all camera positions and orientations relative to a single 3D

coordinate frame. Once localized, distributed smart camera

networks can track a subject moving through the network

by determining the subject’s trajectory and triggering other

cameras that are likely to soon view the subject. If the

localization method provides camera positions in meaningful

units such as feet or meters, the network can determine

the actual size, depth, and position of detected subjects and

objects, facilitating recognition and movement interpretation.

Due to obstructions in the deployment environment, such

as walls or uneven terrain, hand-measuring camera positions

and orientations is time consuming and prone to error. GPS

is not accurate enough for vision-based tasks, nor does it

provide camera orientation information. It is possible to use

a network’s available visual data to accurately localize the

network, but these techniques impose a deployment constraint:

the network’s vision graph—in which vertices are cameras

and edges indicate some view overlap—must be connected. A

connected vision graph not only implies that each camera’s

view overlaps at least one other camera’s, but also that some

cameras in the network, if not most, have separate view

overlaps with two or more cameras.

Vision-based localization has been well studied. The most

recent solutions opportunistically search for robustly identi-

fiable world features and correlate them between pairs of

cameras with view overlaps [1], [2], [3]. Correlated features

are used to estimate either the essential or fundamental matrix

for two view overlapping cameras and which decomposed

provides the camera pair’s relative position and orientation,

which is the data needed for network localization [4], [5].

The appeal of essential and fundamental matrix estimation

localization methods—that they require image data only—

can also be considered a shortcoming because they can only

provide relative camera positions only up to an unknown

scale factor, one which will vary for each separate pairwise

localization. To adjust each pairwise localization to fit into a

single network-wide coordinate frame, some solutions require

triple-wise camera overlaps, implying the need for densely

deployed networks. More recent solutions wave an LED-lit

rod of known length through every camera’s view, providing

the means to establish a consistent scale [6], [7].

Our localization solution expands the advantage of the LED-

lit rod by using a simple, 3D feature point-rich target of known

geometry. A 3D target provides all feature points in one frame

needed by one camera to determine its position and orientation

relative to the target. Figure 1 shows a 3D target we designed

and used to localize a small network. It has 288 3D feature

points, far more than are needed for accurate localization, and

includes colored areas to facilitate detection and correlation of

the feature points projected to an image.

When a smart camera images the 3D target, it uses the well

known DLT method [4], [8] to estimate a projection matrix

from the feature points’ known 3D and detected 2D coordi-

nates. It then decomposes the estimated projection matrix to

extract its position and orientation relative to the 3D target’s

coordinate frame, which is represented by the coordinatization

of the 3D feature points. While the 3D target shown in Figure

1 is only one possible design, a 3D target is required for

projection matrix estimation from a single frame. 2D planar
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Fig. 1. The 3D target of known geometry used in our tests. The target
contains 288 feature points, which are the corners of the white squares on
the six separate grids. The green sphere on top of the target and the colored
areas bounding the grid facilitate target detection, as described in Section IV.

targets, like the checkerboard patterns used to estimate a

camera’s intrinsic parameters [9], [10], do not satisfy the

general position requirement, as explained in Section IV.

3D target-based localization still requires the network to

have a connected vision graph. It also requires moving the

3D target through the network so it appears in each shared

view overlap. But 3D target-based localization only requires

pairwise view overlaps because when two or more cameras

simultaneously localize to the 3D target, their position and

orientation relative to each other is also automatically known,

providing the data required for network localization. Of course,

each time the 3D target is moved its coordinate frame changes

relative to previous target positions—but our solution doesn’t

require measuring or tracking the target’s movement. This is

because any camera in the network that has separate view

overlaps with two or more neighbors—and so localizes to

more than one target position—can compute six transform

parameters (3 rotation, 3 translation) between two of the target

positions and pass the transform to the appropriate neighbors

who then can realign their own positions and orientations

to be relative to a target position they could not see. A

simple algorithm running through the network can trigger

the systematic realignment of all cameras to any one target

position, thus localizing the network.

The contributions of this paper are:

• We present a new smart camera network localization

solution with low processing and communication costs

that requires only small pairwise camera view overlaps

and provides camera positions in meaningful units. Cam-

eras do not need to analyze frames to opportunistically

extract local features because the 3D target provides all

feature points necessary for projection matrix estimation.

Also, because an algorithm to detect and localize to the

3D target runs independently on each smart camera, the

only communication required to acquire two (or more)

cameras relative position and orientation is to establish

simultaneous viewings of the target. View overlaps that

connect the network’s vision graph need only be large

enough for the two cameras to both see the target, while

the target only need be large enough for its feature

points to be clearly detected. Knowing camera positions

in meaningful units allows the network to use computer

vision algorithms to determine the actual size, depth,

speed, and trajectory of detected objects.

• We present a design for a 3D target with sufficient

feature points in general position to estimate a camera’s

projection matrix from a single frame. Colored areas of

the 3D target facilitate detection of its feature points and

correlation of the set of detected pixel coordinates with

the feature points’ known 3D coordinates.

• We validate our solution by localizing actual and simu-

lated smart camera networks, and explore the impact of

target size and position in frame, as well as the number

of detectable feature points it provides.

The first item in particular makes our solution more appro-

priate for battery-powered smart camera networks with only

a small CPU at each smart camera and for which wireless

transmissions must be minimized to preserve network lifetime.

In Section II of this paper, we present an overview of extant

smart camera network localization solutions and how they

differ from our own. Section III presents our camera model and

a brief overview of projection matrix estimation and decom-

position. Sections IV and V discuss design considerations and

requirements for 3D targets and how we use our to localize a

network. Section VI presents localization results for both real

and simulated camera networks.

II. RELATED WORK

Automated methods to localize sensor networks require the

means to gather range information between nodes, or between

nodes and mutually observed targets. Non-camera-equipped

networks consisting of resource-constrained scalar sensors can

measure range information from ultrasound, radio, or acoustic

signals [11]. Smart camera networks, to which our localization

solution applies, can infer range information from visual data.

Visual data needed for localization is gathered, in general, in

one of two ways: 1) by tracking the motion of subjects viewed

by multiple cameras, or 2) by finding the pixel coordinates of

robustly identifiable features that either happen to appear or

are deliberately placed in the views of cameras.

Solutions that track motion infer camera positions and

orientations relative to the estimated trajectories of tracked

subjects. These solutions pose the problem as a probabilistic

inference task and maintain a joint distribution over camera

and subject parameters. An issue with motion tracking is that

subjects may change direction between camera views. Funiak

et al. require view overlaps so that tracked subjects never fall

out of view [12], while Meger et al. avoid requiring view

overlaps by tracking a robot following a programmed path

[13]. Another issue faced by motion tracking-based solutions

is that posing the problem as a probabilistic inference task

requires representing the joint distribution as a Gaussian,

which so far is only done for camera positions and orientations

in two dimensions. Rahimi et al. lift the solution to 3D by pre-

computing homographies between each camera’s image plane
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and a commonly viewed ground plane on which all tracked

motion must occur [14].

Several researchers have proposed distributed smart camera

network localization solutions that extract pixel coordinates

of local features to estimate either essential or fundamental

matrices between every pair of cameras with an overlapping

view. These matrices express the epipolar geometry between

two cameras in stereo configuration. The strength of epipolar

geometry-based solutions is that they require only the net-

work’s available visual data; knowledge of the geometry of

the 3D world is not required. Still, these solutions require

detecting in images from both cameras the pixel coordinates

of a minimum of eight commonly viewed world features.

Moreover, these features must be correctly correlated between

views. Detecting and correlating world features found in

multiple camera views is commonly referred to as the point

correspondence problem.

Lymberopoulos et al. solve the point correspondence prob-

lem by deploying nodes with self-identifying lights [3], but

this solution may not be practical in bright or specular-filled

environments. Mantzel et al. extract feature points by analyz-

ing tracked motion, and correlate the features across views

using time synchronization [1]. Mantzel et al. compensate for

inaccurate correlations by determining a subset that produces

the essential matrix estimate with the least error according to

the epipolar constraint.

Devarajan et al. use SIFT [15] to find feature point corre-

lations [2]. SIFT is an opportunistic feature point detection

and correlation algorithm that searches a frame for candidate

feature points, then gives ones it finds 128-dimension descrip-

tors which are passed to other cameras in the network who

probabilistically determine matches with their own descrip-

tor sets. This type of opportunistic feature point detection

and correlation has both high computation costs (for frame

analysis) and communication costs (to discover correlations)

that may be too expensive for resource-constrained smart

camera network platforms. Also, it biases deployment towards

larger view overlaps to increase the likelihood of finding

sufficient correlations. Of course, it will fail in environments

lacking trackable motion or extractable features. Our own

solution avoids this possibility by providing all feature points

required for network localization on a 3D target, the design

considerations of which are discussed in Section IV.

As already mentioned, using essential or fundamental matrix

estimation, the relative positions of all pairwise localized

cameras will vary by an unknown scale factor. To adjust the

different scale factors to fit a single coordinate frame, Manztel

et al. and Devarajan et al. require that most cameras in the

network view the same area as two others, which allows

resolving camera triples to the same scale factor but implies

the need for a dense deployment. Lymberopoulos et al.’s

solution replaces the triple-wise overlapping view constraint

with one requiring that some cameras see each other. Note that

the units of the final coordinate frame which all cameras are

resolved to will remain unknown, leaving the network unable

to determine the actual size or depth of detected objects.

Two recent epipolar geometry-based solutions solve both

the point correspondence and unknown scale factor prob-

lems by waving through the network a rod of known length

with LED lights at each end [7], [6]. Both solutions use

time-synchronized detections of the LED lights to provide

correlated feature points. Then, after estimating fundamental

matrices, both solutions use the known length of the bar to

fix the units of relative camera positions. To reduce the error

introduced by inaccuracies in the detected pixel coordinates

of the bar’s LED lights, Kurillo et al. use a bundle adjustment

[16] performed at a central processor. Mederios et al. use

a recursive technique that refines a camera’s position and

orientation estimate each time the camera or one of its known

neighbors discover a new camera it can estimate a fundamental

matrix with. Notably, both solutions require only pairwise view

overlaps.

Like the rod-based solutions, our solution reduces the cost

of feature point detection, eliminates the unknown scale fac-

tor problem, and reduces the number of required overlaps.

However, our solution also eliminates the need to find world

feature point correlations in shared camera views, and reduces

the amount of required view overlap to only that needed for

each camera to identify the target’s feature points (which will

vary based on target size, camera resolution, and lens focal

length).

III. CAMERA MODEL AND PROJECTION MATRIX

ESTIMATION

A. Camera model

Cameras project the 3D Euclidean world to 2D images,

dictated by the camera’s perspective point, as shown in Figure

2a. We adopt the standard camera model in which the camera’s

perspective point C is the origin of a camera coordinate frame

(CCF ) and the image plane is parallel to the CCF ’s xy-plane.

The mapping of a 3D point in the CCF to the image plane is

performed by the camera’s five intrinsic parameters contained

in calibration matrix K:

K =





αu s u0

0 αv v0
0 0 1



 (1)

where αu and αv are the lens focal length in pixels and will

differ if the horizontal spacing of pixels on the imager differs

from their vertical spacing. s is a skew factor that accounts

for image warping that occurs in images of other images [4]

and can also account for distortion from the z (optical) axis

not being strictly perpendicular to the image plane. Principal

point (u0, v0) is the point at which the optical axis intersects

the image plane expressed in pixel coordinates.

Camera calibration matrix K projects a 3D point in the

CCF by scaling it to the image plane and translating it to pixel

coordinates via the principal point. We treat the projected point

as a homogenous point in order to get its 2D pixel coordinates

in the uv plane:
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(a) A camera model of the projection of 3D point X to pixel point (u, v) on
the camera’s image plane. The projection is a scaling along the ray from the
camera’s perspective point C and through X, and a translation by principal
point (u0, v0) from the image plane’s xy coordinate frame to the uv pixel
coordinate frame. f is the lens focal length.
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(b) Feature points in the world, in this case in the 3D target coordinate
frame (TCF ), prior to projection to the image plane must first be rotated
and translated to the camera coordinate frame (CCF ).

Fig. 2. The geometry of projection that maps 3D world points to 2D pixel
coordinates.

In our localization solution, 3D points are expressed in the

3D target’s coordinate frame (TCF ), as shown in Figure 1. A

3D rotation and 3D translation realigns target feature points

to the CCF , as shown in Figure 2b. We can rewrite this

realignment using 3D homogenous coordinates:

(x, y, z)CCF = R(X,Y, Z)TCF +T

≡ [R | RT] (X,Y, Z, 1)
T

(3)

Including the transformation by K gives a camera’s projec-

tion matrix:

(u, v) ≡ P (X,Y, Z, 1)
T

(4)

where

P = K [R | RT] (5)

B. Projection matrix estimation

We estimate a projection matrix using the well-known DLT

method from the 3D coordinates of the target’s feature points

and their corresponding pixel coordinates in one image of the

target taken by the camera. Each target and pixel point pair

satisfies the equivalence:

u ≡ PX (6)

where P is the camera’s projection matrix and X is expressed

in homogenous coordinates, as in Equation 4. We express the

projection as an equivalence because P projects all 3D points

on the ray through X and perspective point C to pixel point

u. Interpreting u and PX as vectors [4] yields the relation:

u× PX = 0 (7)

Linearizing the cross product in the elements of P gives

Ap = 0, where the elements of coefficient matrix A are

expressions in the 3D target points’ and correlated pixel points’

coordinate values, and p is a 12×1 vector of the elements of P .

Because P has 11 degrees of freedom, solving for p requires

a minimum of six 3D and pixel point pairs in general position,

as discussed in Section IV. The singular value decomposition

of A gives p.

C. Decomposing an estimated projection matrix

Decomposing an estimate of a projection matrix recovers

the intrinsic parameter matrix K, the rotation matrix R and

the translation vector T. T and the three orientation angles in

R comprise the camera’s six extrinsic parameters, and are the

camera’s position and orientation in the TCF . If we let M be

the left 3× 3 submatrix of P , then M = KR because:

P = K [R | RT] ⇒ P = KR [I3×3 | T] (8)

K is an upper triangular matrix and R is a rotation matrix,

so we decompose M using the RQ decomposition, which

multiplies by Givens rotation matrices on the right in order

to successively zero the elements under M ’s diagonal [17].

To recover the camera’s position in the 3D coordinate frame,

we note that because C is the origin of the camera coordinate

frame, C = −T, and that C is in the nullspace of P [4]

because:

[I3×3 | −C]
�

C 1
�T

= 0 (9)

D. Extrinsic parameter refinement

Due to noise in the determination of the pixel coordinates

of projected 3D target points, which is caused both by de-

tection inaccuracies and lens distortion, we perform iterative

refinement of the extracted parameters using the Levenberg-

Marquadt optimization. The cost function we minimize is:

n
�

i=1

(ui − PLDXi)
2 (10)

where n is the number of 3D and pixel point pairs used in

the estimation, ui and Xi are the coordinates of the pixel

and 3D points, and PLD is the projection of X using the

refined camera parameters and two coefficients of radial lens

distortion obtained using Zhang’s well-known camera calibra-

tion technique [9]. Zhang’s camera calibration technique also

gives good estimates of the camera’s five intrinsic parameters,

so we use them as fixed values in the refinement. Thus, only

the six extrinsic parameters giving the camera’s position and

orientation relative to the target are actually refined.

IV. THE 3D LOCALIZATION TARGET

Due to widely varying environmental and lighting condi-

tions in which smart camera networks may be deployed, as

well as variations in camera quality, lens focal length, and

distance between cameras, it is unlikely that a single 3D target

design will be detectable by all possible networks. Rather, the

deployment conditions should dictate the type of target used.
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Still, any target design must provide at least six feature

points in general position to allow for projection matrix

estimation. The general position requirement applies to both

the 3D space of the target’s feature points and the 2D space

of the image plane. The requirement exists because, in the

projection matrix estimation method described in Section III,

coefficient matrix A must have rank eleven yet points not

in general position produce linearly dependent rows. More

precisely, any three or more collinear target feature points

provide only five linearly independent rows for A, while any

four or more coplanar target feature points (no three collinear)

provide only eight linearly independent rows. This means that

any target designed for projection matrix estimation must have

at a minimum either two non-coplanar sets of three non-

collinear points, or four coplanar points with no three collinear

and two other points non-coplanar with the other four.

Checkerboard patterned targets and grids consisting of par-

allel circles or squares commonly used for intrinsic parameter

estimation obviously violate the general position requirement.

Calibration targets have these regular patterns—including our

own test target design—to facilitate both feature point de-

tection and correlation with the target’s known geometry.

Patterns also increase robustness to detection noise because

collinear/coplanar feature points provide an oversampling of

the constraints they represent. Using virtual cameras, we

experimented with target configurations of two adjacent grids

with varying angles between them, as well as a three-grid

cube configuration. The results of single camera localizations

relative to 3D targets with two adjacent grids set from 5◦ to

175◦ apart are shown in Figure 3. The results are acceptable

but targets designed with only two grids risk the possibility

that one grid may not be accurately detected, particularly

for cameras set far apart. Similarly, three grids in a cube

configuration requires an undesirably precise placement to

ensure that all three sides are equally visible. Ultimately, we

designed the 3D target shown in Figure 1 with six 48-point

grids set vertically on a base at angles of −30◦, −30◦, 20◦,

−20◦, 5◦, and −5◦ relative to the y-axis. The novelty of our

design is that it combines ease of detection while supporting

widely spaced cameras and has sufficient feature points to

be robust to both single grid detection failures and detection

noise. The results of single camera localization relative to our

six grid target using either 2, 3, 4, 5, and all 6 grids is shown in

Figure 4. In Section VI we present results using fewer feature

points per grid.

3D target design considerations also include efficient feature

point detection and correlation. On our six grid 3D target, the

green ball and colored areas bounding the left and top sides

of each grid serve this purpose. The ball appears as a circle

from any viewpoint and serves both as an initial indication

that the target appears in frame and as a starting point for

finding the rest of the target. Scanning along radii of the green

circle, we find the top row’s middle (blue) grid and thereby

learn the orientation of the target (which is not required to

appear upright). From the top middle grid we scan left and

right (target orientation) to find the colored areas of the other

two top row grids, then down to find the bottom row’s colored

areas. Next we find edge fits to the grid-side borders of the
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Fig. 3. Single camera localization error for a virtual 5mm camera with
moderate barrel distortion localized to 3D targets comprised of two long-edge
adjacent grids. Detection noise is simulated at 0.5 max pixel displacement.
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Fig. 4. Single camera localization error for a virtual 5mm camera with
moderate barrel distortion localized to the target shown in Figure 1 using
2, 3, 4, 5, and all 6 grids. Detection noise is simulated at 0.5 max pixel
displacement.

colored areas as they define two sides of a parallelogram

that contain the grid’s feature points. Finally, we can either

scan over the parallelogram to find edge fits to the rows and

columns of white squares, or use a corner detection algorithm

such as that provided in OpenCV or the Camera Calibration

Toolbox for Matlab. These steps to detecting the 3D target are

shown in Figure 5.

V. TARGET-BASED NETWORK LOCALIZATION

When a camera localizes to the 3D target, we discover

the camera’s position and orientation relative to the target’s

coordinate frame, which is represented by the coordinatization

of the target’s feature points. If all cameras in a smart camera

network are oriented such that they can see and localize

to the 3D target simultaneously, then the network can be

localized with just one target placement. More likely, though,

the cameras do not all view the same area.

We can still localize the network, though, by successively

placing the 3D target in the view overlaps that connect the

network’s vision graph. Of course when we move the 3D

target from one view overlap to another, we lose its position
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Fig. 5. Our detection algorithm first finds the center point of the green
sphere, then uses it as a reference point to search in the direction of radii
for the top outer edge of the top blue grid. The trajectory between these two
features indicates the target’s orientation in frame. (Detection does not require
the target to appear upright.) Next, the algorithm finds line fits for the inner
edges of the colored areas. The line fits define a parallelogram containing the
corner points.

and orientation relative to the previous target placements. This

means that camera positions and orientations computed by

localizing to the different placements will be unrelated. Yet

recall that in a network with a connected vision graph, many

cameras have separate view overlaps with at least two other

cameras, and so these cameras will localize to two different

3D target placements, one visible in each view overlap. A

camera that localizes to two different 3D target placements can

use its positions and orientations in both coordinate frames to

compute the transform from one coordinate frame to the other,

as shown in Figure 6a. Passing this six parameter transform (3

rotation, 3 translation) to a neighbor lets the neighbor realign

its position and orientation to a target placement that it did

not see, as shown in Figures 6b and c.

We can organize the realignment of cameras to a single

network-wide coordinate frame in different ways. A linear

approach chooses the first target placement as the global

coordinate frame and then only moves the target into a

view overlap of an already localized camera and one of its

unlocalized neighbors. At this point all previously unlocalized

cameras that can detect the target localize relative to it, and

then are immediately passed the transform data to realign

themselves to the global coordinate frame. While straightfor-

1 2 3

R

T T

R R R

T T

(a) Cameras 1 and 2 localize to, and determine position and orientation
relative to, the left 3D target placement, and cameras 2 and 3 localize to, and
determine position and orientation relative to, the right 3D target placement.

1 2 3

R

T

R,T

(b) Camera 2 uses its position and orientation relative to both target
placements to compute the rotation and translation between the two target
placement’s different coordinate frames.

1 2 3

R

T T

R R

T

(c) Camera 3 applies the rotation and translation from camera 2 to is position
and orientation relative to the right target placement and thereby determines
its position and orientation relative to the left target placement, which it
cannot see nor localize directly to.

Fig. 6. Realigning a camera to a target placement that it did not see. Cameras
1 can only see the target placement on the left, camera 2 sees both target
placements, and camera 3 only sees the target placement on the right.

ward to implement and requiring the least amount of node-to-

node communication, the linear approach is not ideal because

single camera localization errors are inherently included in

passed transform data. A better approach minimizes error

propagation by choosing for the global coordinate frame the

3D target placement that results in the fewest number of cam-

era realignments. We do this by finding a maximum spanning

tree of the connected vision graph, finding the longest path

in the spanning tree, and choosing for the global coordinate

frame the middle 3D target placement on the longest path.

Because the larger the 3D target appears in a camera’s frame
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typically means the more accurate the localization, we use 3D

target frame appearance size as the edge weight to determine

the maximum spanning tree.

VI. EXPERIMENTAL RESULTS

Earlier we stated one advantage 3D target-based localization

has over essential or fundamental matrix estimation-based

methods is smaller required view overlaps between cameras.

This is because our solution requires view overlaps only large

enough for both cameras to see and detect the 3D target

simultaneously. Therefore we are interested in localization

accuracy in relation to target size in frame, as this will dictate

the amount of overlap needed.

We also stated that errors in estimates of camera posi-

tions and orientations from single camera localizations are

propagated in realignment transforms passed to neighboring

cameras. The size of these errors depends on the accuracy of

the detection of the 3D target’s feature points as well as on

the accuracy of the estimated intrinsic parameters and lens

distortion model used during the refinement step in Section

III-D. Because estimated camera models are more accurate

near the center of the frame than near the frame edges where

the effects of lens distortion are greatest, we explore the

propagation of localization error in a large virtual camera

network with the 3D target placed both near the center of

frame and in the corner, while also varying the amount of

feature point detection noise.

Finally, to explore the effect on localization accuracy of

the number of feature points provided on a target, we present

results for single camera localizations using the 3D target

design shown in Figure 1 but with only 32, 24, and 16 feature

points per grid used to estimate the projection matrix. Note that

fewer feature points on the target would also mean a physically

smaller target that would further decrease the required overlap

between cameras.

The goal of localization is accurate computation of camera

positions and orientations. We report position error as the

Euclidean distance between the actual and estimated camera

positions, and directly measure the difference between actual

and estimated camera orientation angles.

A. Implementation

1) Actual testbed: We test our 3D target-based localization

algorithm on an actual network of five distributed smart cam-

eras using the Panoptes [18] embedded smart camera platform.

The nodes consist of COTS webcams with 640x480 pixel

resolution connected to Crossbow Stargates with 400MHz

Intel PXA255 processors running Linux. To facilitate mea-

suring ground truth of camera positions and orientations, we

disassembled the webcams and mounted their board cameras

atop stands at various heights and angles, as shown in Figure 7,

then positioned the camera stands on a flat, measured surface

with our 3D target, also shown in Figure 7. Due to the small

size of the network, we used the linear realignment approach

described in Section V in order to force the most realignments.

Fig. 7. To measure ground truth, we mounted board cameras taken out of
webcams atop specially constructed stands, and set the stands and target on
a flat, measured grid surface.

Fig. 8. The high accuracy of the feature point detections by a camera in the
actual testbed experiments with the target successively smaller in frame. The
target’s feature points fill 9.21% of the frame area in the top image, 5.19%
of the frame area in the middle image, and 2.94% of the frame area in the
bottom image.
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2) Simulated testbed: We simulate our 3D target-based

localization algorithm in a virtual distributed smart camera

network, with user specified camera and 3D target positions

and orientations. We model cameras with five intrinsic param-

eters and 14 lens distortion parameters: four coefficients each

for radial, decentering and thin prism distortions and separate

axes of maximum tangential distortion for decentering and thin

prism distortions [19], [20]. While there is no extant method

to accurately estimate this many lens distortion parameters, we

base the plausibility of the values we chose on results from the

separate estimations of two radial distortion coefficients, and

on the dominating effects of radial distortion over tangential

distortion—on the order of 7 : 1—reported by Weng et al. [20].

The simulator recreates our localization algorithm as described

in Sections III-B, III-C, and III-D, which includes the separate

estimation of intrinsic and radial distortion parameters from

nine virtual images of a 2D checkerboard calibration target.

The simulator creates the set of pixel coordinates of detected

feature points by first projecting a virtual target using a cam-

era’s actual extrinsic, intrinsic and lens distortion parameters,

then introducing noise by randomly shifting each projected

feature point up to a user-specified maximum in a random

direction. To localize a network, the simulator either deter-

mines an optimal localization tree that minimizes realignment

transforms as discussed in Section V, or allows for a user-

specified tree. The simulator measures localization accuracy

by comparing the user-specified actual extrinsic parameters of

the virtual cameras with their estimated values.

B. Actual camera network results

To explore the effects of target appearance size, we per-

formed the actual testbed localization three times, each time

with the 3D target set further away from the cameras. In the

third localization, the target’s feature points occupy less than

3% of any camera’s frame area. The localization results are

shown in Figure 9. Figure 8 shows a sample of the feature

point detection accuracy for each target distance. The graphs

indicate that the frame appearance size of the 3D target has no

bearing on the localization accuracy. Position, orientation an-

gle, and coordinate errors are all almost unchanged across the

three localizations. We presume, without clear validation, that

the growth of z-axis orientation error compared to the nearly

flat x- and y-axis orientation errors, and similar growth of the

y coordinate error compared to the x and z coordinate errors,

may be attributable to a combination of flaws in our ground

truth measurements and an incomplete lens distortion model.

In the configuration of our testbed with the target’s z-axis

pointing towards the cameras, flaws in the flatness of the table,

the verticality of the camera stands, and the measurement of

the tilt of the cameras will manifest most as y-coordinate and

z-axis errors. Also, these singular parameter errors do not

appear in virtual cameras with well-estimated lens distortion

curves. For instance, in a simulated reconstruction of the actual

testbed configuration, discussed in the next subsection, the

localization error is significantly less and the coordinate and

orientation errors do not vary as significantly.
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Fig. 9. Error in the estimated camera positions, orientation angles, and
coordinate values in an actual testbed of five cameras localized three times,
each with a different general target size in frame.
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TABLE I
ACTUAL TESTBED VS. SIMULATED TESTBED INTRINSIC AND LENS DISTORTION PARAMETER ESTIMATIONS FOR EACH CAMERA

act. sim. act. sim. act. sim. act. sim. act. sim. act. sim. act. sim.
C est. αx est. αx est. αy est. αy est. s est. s est. u0 est. u0 est. v0 est. v0 est. k1 est. k1 est. k2 est. k2

1 809.43 808.95 810.04 809.60 -2.854 -2.870 300.61 300.82 223.03 223.18 .0950 .0829 -.2097 -.1959
2 809.63 809.57 809.58 809.60 -1.627 -1.672 339.83 341.63 243.59 241.78 -.0404 -.0415 .0536 .0555
3 790.60 790.56 792.86 792.79 -2.321 -2.297 334.95 334.32 244.37 244.87 .1066 .1044 -.0242 -.0334
4 789.47 789.34 790.58 790.41 -2.341 -2.356 320.19 322.07 255.35 255.47 .0985 .1015 -.0303 -.0494
5 815.12 814.94 815.94 815.72 -1.156 -1.178 341.60 343.30 264.51 264.58 -.0258 -.0221 -.0088 0.0098

C. Virtual camera network results

Using the simulator, we recreated the actual five camera

network configuration. To closely approximate the lens dis-

tortion of each actual camera, we used a set of 14 lens

distortion parameters that resolve in the separate intrinsic and

lens distortion parameter estimation to nearly the same two

coefficients of radial distortion. Table I compares the actual

and simulated parameters of the five cameras.

Because feature point detection should not be precisely

recreated in the simulation, detection accuracy is a variable.

The graphs in Figure 10a show the position, coordinate, and

orientation errors from the simulated network localization

at four different maximum random noise levels. As can be

expected, as noise decreases, accuracy increases. The sudden

growth of position error when the target is smallest and noise

is the highest occurs because randomly introduced pixel noise

is essentially a scattering effect on the closely spaced pixel

coordinates of the detected feature points. The graphs in Figure

10 show the individual coordinate and orientation angle errors

in the simulated reproduction at a maximum random noise

displacement of two pixels.

In Figure 11 we show the average position errors of 25 lo-

calizations of a large simulated network that required 20 daisy-

chained camera realignments prior to bringing the final camera

into the global coordinate frame. All simulated cameras have

wide aspect lenses and a maximum possible lens distortion

displacement of 25 pixels, though the cameras averaged eight.

We performed the localization at two different noise levels

and with two different target positions: one in which the target

appears either in the bottom left or right corners of the frame,

and second in which the target appears either halfway between

the center and left edge of frame or halfway between the center

and right edge of frame. Despite the fact that the target has a

larger appearance size when seen in the corner positions, the

localization is more accurate at the smaller appearance size

closer to the frame center. This is due to estimated camera

model being less accurate for points near the edge of frame.

Lastly, in Figure 12 we show results of single camera

localization to our 3D target when using only either 16, 24, or

32 of the available 48 feature points per grid at two different

maximum noise levels and when the 3D target’s feature points

occupy 2.5% of the frame area. As expected, at the higher

noise level there is greater localization error. Yet the use of

fewer points has almost no impact on accuracy. These results

indicate that our 3D target could be reduced to having only

16 feature points per grid.

VII. CONCLUSION AND FUTURE WORK

We have presented a new 3D target-based localization so-

lution for smart camera networks that is a practical alternative

to existing epipolar geometry-based localization solutions.

Generally, epipolar geometry-based solutions are most useful

for deployments where large view overlaps are desired, such

as small stereoscopic vision systems. Our solution, though,

requires only small, pairwise view overlaps, making it more

suitable for larger networks deployed for human or environ-

mental monitoring. Also, because the 3D target provides all

feature points needed for localization in one frame, compu-

tation and communication costs are acceptable for battery-

powered, processing-constrained networks. Our solution also

gives camera positions in meaningful units, facilitating de-

tected object measurements.

The accuracy of the camera positions and orientations

provided by our solution depends solely on the accuracy of

the estimation of the camera’s projection matrix—which in

turn depends on the accuracy of the detection of the pixel

coordinates of the target’s feature points. It also depends on

the accuracy of prior estimates of the camera’s intrinsic and

lens distortion parameters. The many experiments we have

performed strongly suggest the need for improvement in the

latter, and so this will be a focus of our future work.

There are also other physical aspects of our solution to be

explored, such as spatial resolution of the cameras and impact

of other target designs, such as spherical. We also plan to

explore possible error refinement methods, such as performing

a sparse bundle adjustment on pairwise localizations, and

a bundle adjustment over the entire network configuration

estimation.
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Fig. 10. Error in the estimated position, coordinate, and orientation angles in
a simulated reproduction of the actual testbed of five cameras and localized
three times, each with a different general target size in frame. The graph
of position errors includes results from different detection noise levels. The
graphs of coordinate and orientation angle errors show results only for a
maximum of two pixels noise displacement per detected feature point.
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Fig. 12. Error in the estimated position, coordinate, and orientation angles
for a simulated testbed camera when using fewer target feature points for
localization. The top and bottom graphs show the results at a maximum
random detection noise of 0.5 pixels and 1.0 pixels, respectively.
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