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3-D Thermal-ADI: A Linear-Time Chip Level
Transient Thermal Simulator

Ting-Yuan Wang and Charlie Chung-Ping Chen

Abstract—Recent study shows that the nonuniform thermal dis-
tribution not only has an impact on the substrate but also inter-
connects. Hence, three–dimensional (3-D) thermal analysis is cru-
cial to analyze these effects. In this paper, the authors present and
develop an efficient 3-D transient thermal simulator based on the
alternating direction implicit (ADI) method for temperature esti-
mation in a 3-D environment. Their simulator, 3D Thermal-ADI,
not only has a linear runtime and memory requirement, but also
is unconditionally stable. Detailed analysis of the 3-D nonhomo-
geneous cases and boundary conditions for on-chip VLSI applica-
tions are introduced and presented. Extensive experimental results
show that our algorithm is not only orders of magnitude faster than
the traditional thermal simulation algorithms but also highly accu-
rate and memory efficient. The temperature profile of steady state
can also be reached in several iterations. This software will be re-
leased via the web for public usage.

Index Terms—ADI, design automation, finite difference
methods, thermal simulation, temperature.

I. INTRODUCTION

B
ECAUSE of the rapid increase of power and packaging
densities, thermal issues have become important factors

of the reliability and performance concerns for advanced very
large scale integration (VLSI) design and manufacturing. A
comprehensive analysis of the thermal effects in high-perfor-
mance VLSI has been discussed recently [1]–[4]. Management
of thermal issues is becoming a key factor to success for the
next-generation high-performance VLSI design.

In general, thermal effects are caused by the power distribu-
tion and dissipation. The primary power consumption in chips
is associated with devices. However, the thermal effects in in-
terconnects are becoming more serious even though the Joule
heating only contributes a small part of the chip power consump-
tion. The trend of temperature distribution along the vertical dis-
tance from upper surface of silicon substrate to top metal level
is shown in Fig. 1 [5]. This is due to the fact that the scaling
trends make the thermal effects worse because of the increase
of interconnect levels, current density, and thermal coupling as
well as the introducing of low- dielectrics.

High temperature not only causes timing failures for both
transistors and interconnects but also degrades chip reliability.
For example, the temperature-induced logic fault occurs in a
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Fig. 1. The trend of maximum temperature distribution along vertical distance
from upper surface of silicon substrate to top metal level [5].

10-bit adder because a large temperature gradient causes the ar-
rival time of an input signal at the tenth bit to become slower
than expected [6].

Therefore, how to effectively analyze the chip-level three–di-
mensional (3-D) thermal distribution and hot-spot locations is
important. There are some issues making the problem hard to
deal with. The uniform heat distribution does not guarantee the
uniform temperature profile due to the complex 3-D nature of
heat spreading. This addresses another 3-D thermal issue. If the
thermal analysis of interconnects is based on single isolated
lines, this approach cannot solve the highly integrated VLSI
chip. The reason is that the interconnects form a complicated
3-D array. The total heating in the interconnects could be more
severe due to self-heating and thermal coupling.

Several approaches have been proposed to perform thermal
analysis. The finite-difference method with equivalent RC
model has been presented [6], [7]. However, due to the com-
plexity of solving the large scale matrix, the existing direct
matrix-solving algorithms suffer superlinear runtime and
memory usage for large scale problems. Reference [8] pre-
sented a full-chip thermal analysis, but simplified the problem
with function blocks. A two-dimensional (2-D) full-chip
thermal simulation was also presented [9].

In this paper, we propose an efficient transient thermal
simulator using the alternating direction implicit (ADI) method
[10] to simulate the 3-D temperature profile. Basically, the
ADI method is an alternative solution method which instead
of solving the 3-D problem, solves a succession of three
one-dimensional problems. Our simulator, 3D Thermal-ADI,
is not only unconditionally stable but also has a linear runtime
and a linear memory requirement. Extensive experimental
results show that our algorithm is not only orders of magnitude
faster than the traditional thermal simulation algorithms but
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Fig. 2. The flowchart of the 3D Thermal-ADI simulator.

also highly accurate and memory efficient. The temperature
profile of steady state can also be reached in several iterations.

The remainder of the paper is organized as follows. Overview
of the simulator is presented in Section II. Section III discusses
the problem formulation by finite-difference method. Sec-
tion IV deals with the ADI method. The implementation and
experimental results are presented in Section V, followed by the
conclusion in Section VI. The proof of unconditional stability
of the ADI method is in the Appendix.

II. OVERVIEW OF THE SIMULATOR

3D Thermal-ADI is a linear time chip-level transient thermal
simulator. It simulates the temperature profile by the finite-dif-
ference method based on the ADI method. The main procedure
is described as follows and shown in Fig. 2.

The geometric information and locations of the interconnects
and transistors are given. The simplified problem which has the
geometry and locations of the function blocks can also be han-
dled. These information may be extracted from the GDSII file
or other sources. The corresponding power densities are given
from the power estimation tools [11], [12]. The package infor-
mation and chip size are given in order to apply the boundary
conditions. The temperature sensitive physical parameters as
well as the technology information are given. The system ini-
tializes the computation by combining all the information and
begins the calculation by the ADI-based solver.

In order to converge to the thermal steady state, at least several
transient iterations are needed. Each transient iteration repeats
the following procedure. The system checks whether the tem-
perature profile converges to steady state or not. If the results do
not converge, the physical parameters and the power are updated
by the current temperature solutions. Then the next iteration will
be calculated according to the new power and physical values.
If the results do converge, the temperature profile approaches a
steady state. Some detailed discussions are described as follows.

A. Kernel of 3D Thermal-ADI Solver

The temperature distribution in a chip is governed by the fol-
lowing partial differential equation of heat conduction [13]:

(1)

Fig. 3. ADI method.

subject to the thermal boundary conditions

(2)

where is the time dependent temperature at any point, is the
density of the material, is the specific heat, is the thermal
conductivity as a function of temperature and position, is the
heat energy generation rate, is the heat transfer coefficient on
the boundary surface of the chip, is an arbitrary func-
tion on the boundary surface , and is the differentiation
along the outward direction normal to the boundary surface .

The physical meaning of (1) is described as follows. Consider
the energy-balance condition for a small control volume. The
rate of energy stored in a control volume causing the tempera-
ture increase is . Suppose that the rate of heat

conduction through surface is . Then the rate

of heat flow entering the control volume is
. The power generated in a control volume is

. For the convection boundary conditions, the function
in (2) is , where is the ambient temperature.

Note that the thermal time constant of the heat conduction
is much larger than the circuit clock period, which implies that
the temperature variation caused by transient currents is small.
Therefore, we are able to use the average power dissipation in
calculating the heat generation rate.

First, the finite-difference method is used to solve (1), and
efforts are made to keep the formulas with second-order accu-
racy in time and space. Since there is not only one material in
the chip, the homogeneous and nonhomogeneous cases are also
discussed. However, the computational inefficiency due to the
large size of the problem and the complicated situation of the
nonhomogeneous cases requires long runtime and large memory
usage.

Therefore, we introduce the ADI method to alleviate the prob-
lems. By the ADI method, only the variables in one direction
are implicit in each step, thus the matrix for solving the ADI
method at each direction is tridiagonal. This implies that no ma-
trix solving is needed, and runtime for solving the tridiagonal
matrix is linear. The detailed method and the formulas we de-
rived are discussed in Section IV.
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Fig. 4. The cross-sectional view of the PowerPC with C4/CBGA package and
heat sink.

Fig. 5. The simplified thermal resistance network model for PowerPC.

B. Boundary Conditions

One of the critical factors under simulation is to determine
the temperature distribution on the boundary conditions. In this
paper, the complicated thermal problems of packaging and heat
sink are modeled by generating a thermal resistance network.
Then, the equivalent thermal resistance, , of the thermal re-
sistance network is calculated.

For example, the Motorola PowerPC microprocessors which
are available in a controlled-collapsed-chip-connection/ce-
ramic-ball-grid-array (C4/CBGA) single-chip package are
shown in Fig. 4 [14]. The simplified thermal network for Pow-
erPCs with the C4/CBGA package mounted on a printed-circuit
board is illustrated in Fig. 5 [15].

The equivalent thermal resistances, , on the six sides of the
chip boundary are applied to model the effective heat transfer
coefficient, , where is the chip area normal to
the direction of heat flow. Then, (2) can be used to model the
equivalent convection boundary conditions with and

(3)

Fig. 6. The modeling strategy of 3D Thermal-ADI simulator. The chip is
simulated with the ADI method governed by the 3-D heat equation. The
package and the heat sinks are modeled as 1-D equivalent thermal resistances.

In the 3D Thermal-ADI simulator, the problem is modeled
as illustrated in Fig. 6. First, the chip containing the intercon-
nects and a portion of the silicon substrate is simulated with the
ADI method governed by the 3-D heat equation, in (1), for a
high degree of accuracy. The other part of the silicon substrate
is included in the thermal resistance network. If the temperature
distribution of the whole silicon substrate is interested, big dis-
cretization size, , or a large discretization number in the
direction is needed.

Second, the complicated package and heat sink structures are
modeled as 1-D equivalent thermal resistances, and the equiva-
lent thermal resistances on each side are employed to simplify
the boundary conditions as expressed in (3). Note that the tem-
perature can not be known inside the equivalent thermal resis-
tances, and the absolute magnitude of temperature in the chip is
dependent on the external thermal resistance.

C. Mutual Relation of Power–Temperature

The temperature and the power are related to each other. In
general, the physical parameters, e.g., resistivity, thermal con-
ductivity, specific heat, density, and carrier mobility are sen-
sitive to temperatures. This implies that the power caused by
short-circuit and leakage currents in the gates and the power
generated by self-heating in the interconnects are temperature
sensitive. For example, the power generated from self-heating
which is proportional to resistivity is especially sensitive to tem-
perature. On the other hand, the temperature profile needs the
accurate power estimation for heat sources, since the different
power distribution may have a very different temperature pro-
file.

Since the temperature and power are mutually related, the up-
date of power and temperature are needed for the calculation in
each transient iteration in the ADI method. As shown in Fig. 2,
the first power estimation is calculated by the given initial tem-
perature. After that, the estimated power for each transient it-
eration is dependent on the temperature profile of the previous
iteration. Similarly, the calculation of temperature profile by the
ADI method in each transient iteration is dependent on the pre-
vious power estimation. The process is stopped when the tem-
perature profile converges to a steady state.
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In the following section, we will discuss the problem formu-
lation by the finite-difference method to have second-order ac-
curacy both in time and space. We also derive the formulas for
homogeneous and nonhomogeneous cases.

III. PROBLEM FORMULATION BY FINITE-DIFFERENCE METHOD

For a given chip, the temperature distribution is governed by

(1) and is subject to the boundary conditions in (3). To solve (1)

with the finite-difference method, discretization is needed both

in time and space.

A. Discretization

For the homogeneous material, the term

in (1) can be replaced by . Then the heat con-

duction equation can be rewritten as

(4)

where .

This equation is a second-order parabolic partial differential

equation. The first step to establish a finite-difference solution

method of the partial differential equation is to discretize the

continuous space domain into a grid with a finite number of grid

points. At time step , the temperature at grid point

( ) can be replaced by which is

denoted as for the rest of the paper. According to central

finite-difference discretization, the second-order partial deriva-

tive of with respect to can be expressed as

(5)

where the truncation error (TR) is , and

. A similar process

can be applied to the and directions.

The next step is to consider the time discretization problem.

Since (4) comes from energy conservation, the rate of the energy

stored in a control volume equals the net rate of energy trans-

ferring into the control volume and power generated. Hence,

the forward-difference with time on the left-hand side of (4)

is the energy stored from time step to in the control

unit volume. Three time-marching methods will be considered

to apply on the right-hand side of (4) with respect to accuracy

and stability [16].

• Simple Explicit Method

Applying the explicit update on the right-hand side of the

discretized form of (4) at time step , we obtain

(6)

Noting that there is only one unknown, , in each

equation with respect to point ( ), the solution

is obvious. This method has second-order accuracy

in space and first-order accuracy in time [16], i.e.,

. Nevertheless, there

is a stability constraint [16] such that

(7)

This restricts the size of the time step, , for the given space

increments, , , and .

• Simple Implicit Method

Applying the simple implicit update on the right-hand side

of (4) at time step , we get

(8)

even though there are five unknowns in each equation at

point ( ) to solve the time step . The simple im-

plicit method is unconditionally stable. TR is the same as the

simple explicit method [16].

• Crank–Nicolson Method

Crank and Nicolson dealt with the time marching

problem by taking the average of simple explicit and

implicit methods. According to (4) and (5), we have

(9)

After rearrangement, we get the difference equation as

(10)

where , ,

, and ,

, . There are

seven unknowns in each equation at point ( ) to solve

the time step . The Crank–Nicolson method has the

best accuracy with .

This method is also unconditionally stable [16].

The difference equations in (10) are for those nodes whose

control volumes include only one material. However, there

are several different materials in the chip such as silicon,

polysilicon, silicon dioxide, silicon nitride, aluminum, copper,

and others. In the next section, we will discuss the nodes having

control volumes with two different materials.
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Fig. 7. The nonhomogeneous discretization example with node T on the
boundary surface of two different materials.

B. Nonhomogeneous Case

Consider the nodes located between two different materials;

there are 27 types of possible combinations of layout extraction.

For the geometry as shown in Fig. 7, for example, one-quarter of

the control volume is material 2 and three-quarters of the control

volume is material 1. The rate of energy stored in control volume

causing the temperature increase is

where is the control volume. The power gen-

erated in control volume is

The rate of heat conduction from to and

are and

, re-

spectively. The others can be calculated similarly. Then we

obtain ,

,

, and

. From energy

conservation, we have

(11)

It can be rearranged as follows:

(12)

This expression implies that it is the same as taking central

finite-difference discretization on (1) as discussed in Sec-

tion III-A. Therefore, the space accuracy is still second order.

The next step is using the Crank–Nicolson method to treat

the time discretization resulting in difference equations with

second-order accuracy in time. Note that the equations dis-

cussed so far are for those points inside the chip. The equations

for those points on the boundary will be discussed later.

For a 3-D grid with size , the number of degrees-of-

freedom for this system is , which requires a matrix

with size to store the coefficients. To solve the equations

by Cholesky decomposition with ordering the matrix

by the minimum degree ordering algorithm, which is known as

the fastest decomposition algorithm and the least fill-in ordering

method for a grid structure, it is still not fast enough to solve the

large size problem. The next section introduces the ADI method.

IV. ADI METHOD

Peaceman and Rachford [17], and Douglas and Gunn [10]

developed a variation on the Crank–Nicolson approximation

which is known as the ADI method. In this paper, we discuss

only the Douglas–Gunn scheme applied to the thermal prob-

lems. The reason is that the Peaceman Rachford approach has

second-order accuracy and is unconditionally stable for only the

2-D problems. It leads to conditionally stable and first-order ac-

curacy in time for the 3-D problems.

A. Douglas–Gunn Approach

Douglas and Gunn developed a general ADI scheme that is

unconditionally stable and retains second-order accuracy when

applied to the 3-D problem. We rewrite (9) as follows:

(13)

Instead of directly solving (13) at every time step , we solve

the same equations by three subtime steps at each time step

(14)

(15)

(16)
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Theorem 1: The ADI method in (14)–(16) is unconditionally

stable. The detailed proof is in the Appendix .

This method splits the time march from to into three

steps: from to , to , and

to as shown in Fig. 3. In Step I, the direction is implicit,

but the and directions are explicit. For each ( ) row of grid

points, there are equations of the corresponding ( )

point from (14), the other two equations of the corresponding

point from boundary conditions, which will be discussed in Sec-

tion IV-B. Since each point ( ) is related to three unknown

variables , , and , it is a tridiagonal

system of equations which must be solved for each ( ) row of

grid points. The tridiagonal matrix can be solved by the Thomas

algorithm [13] with time, where is the discretization

node number in the direction. Similarly, it applies to Step II

and Step III.

The detailed difference equations for these three steps with

the homogeneous and nonhomogeneous cases can be derived.

For example, the three steps of the homogeneous case can be

derived as follows:

(17)

(18)

(19)

In Step I as shown in (17), there are equations for each

( ) value. Also there are three unknown variables ,

, and for each equation. Then this system can

be expressed as

...

...
... (20)

where are the values on the right-hand side of the equal sign

in (17). Note the coefficients denoted with diamonds will be de-

termined by the boundary conditions. We will discuss this in

the next section. The tridiagonal matrix can be solved by the

Thomas algorithm [16] efficiently. For the 27 types of nonho-

mogeneous cases, the difference equations by the ADI method

can be calculated with the same rule.

B. Boundary Conditions

So far the equations we have discussed are only for the

points inside the chip. In this section, the equations related to

the boundary conditions will be discussed. These complete the

system to be solved, with the number of the unknown variables

equal to the number of the equations.

As mentioned in Section II-B, the complicated package and

heat sink problems can be modeled by (3). Suppose that we have

following boundary conditions:

at surface

at surface

at surface

at surface

at surface

at surface (21)

where , , , , , and are the effective heat

transfer coefficients calculated from the equivalent thermal re-

sistance on the boundary , , , , ,

and , respectively.

In order to achieve second-order accuracy, the central-dif-

ference approximation will be used to discretize the boundary

condition equations. First, we introduce the virtual temperature

nodes , , , , , and

by expanding the distance , , and to external

boundary. Then we apply the central-difference approximation

to discretize the boundary condition equations, e.g., at

and time step in (21), we have

(22)

Thus the virtual point can be expressed as

(23)
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Fig. 8. The boundary conditions for node at point (0,0,0).

The other virtual points, , , , , and

, can be derived in the same way. Then, these derived

virtual points can be used to eliminate the virtual points occur-

ring on the boundary points.

For instance, consider the point (0,0,0) on the boundary

as shown in Fig. 8. The energy generated in the con-

trol volume is . The rate of energy

stored causing the temperature increase is

. The rates of heat transfer

as shown in Fig. 8 are

, ,

,

, , and

. Then, the differ-

ence equation of the Crank–Nicolson method derived by

energy conservation at point (0,0,0) is

(24)

After rearranging, we have

(25)

where , ,

, ,

, . This

equation is the same as substituting virtual points, ,

, , , , and into the

Fig. 9. There are 26 different locations of the point T on the boundary
surface. T , for example, shows that the location of the points is on
intersection of the surface y = 0 and surface z = N .

Crank–Nicolson equation at point (0,0,0) in (10). Note that

the coefficients in (25) are very important to maintain the

symmetry of the matrix when solving the problem. If both sides

of (25) are multiplied by 4, the symmetry of the matrix will be

destroyed. There are 26 different locations of the point

on the boundary surface as shown in Fig. 9. All 26 types can be

derived in the same way. Furthermore, the difference equations

of the 26 different locations on the boundary conditions of the

ADI method can similarly be derived by substituting virtual

points for each step from (17) to (19).

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed simulator, 3D Thermal-ADI, was implemented

with C++ language and executed on a PC with a 1.4-GHz Pen-

tium 4 processor and 1 GB of memory. Note that the matrix in

the Crank–Nicolson method is solved by the Choleskey decom-

position with ordering of the matrix by the minimum degree or-

dering method in order to make a fair comparison.

The runtime comparison of the simulator with the

Crank–Nicolson method and the 3D Thermal-ADI method per

iteration is illustrated in Fig. 10. Note that the scale in the

axis is a logarithm on the top. As can be seen in Fig. 10, the

runtime of 3D Thermal-ADI is linearly proportional to the

number of the grid nodes. The time complexity can be analyzed

as follows. Suppose that the grid size is , then the total

node count is . Three subroutine steps are executed

in each transient iteration, and each step needs . For

example, in Step I, we need to solve the tridiagonal matrix

with runtime for each ( ) value. Therefore, the total

time complexity is , where is

the number of transient iterations. However, the runtime of the

Crank–Nicolson method increases dramatically.

The comparison of memory usages of the simulator with the

Crank–Nicolson method and the 3D Thermal-ADI method is

illustrated in Fig. 11. On the top figure, the axis is also a loga-

rithm. The memory usage of the 3D Thermal-ADI is linear with

respect to the node number. However, the memory usage of the
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Fig. 10. Runtime comparison of the simulations with the Crank–Nicolson and
the 3D Thermal-ADI approaches.

Crank–Nicolson method increases quickly, which limits the size

of the problem which can be solved on a given machine.

Next consider a chip whose layout is illustrated with hierar-

chical function blocks in Fig. 12. The size of the chip is 11.3

mm 14.4 mm. The power in each block is shown in Fig. 13.

The chip is discretized in the direction with m, the

direction with m, and the direction with

m. Therefore, the discretization size is 565 720 7. Here,

we only consider the volume near the substrate surface, and the

substrate is included in the equivalent thermal resistance as dis-

cussed in Section II-B. The effective heat transfer coefficients,

, are supposed to be 7 10 W m K in the primary heat

transfer path, 8 10 W m K in the secondary heat transfer

path, and 5 10 W m K around the side faces. The size of

the time increment is 10 s, and the simulation runs

1200 iterations. The runtime is about 311 min. The results of

the temperature profile are shown in Fig. 14. The highest tem-

perature is about 180 C which is influenced by the effective

heat transfer coefficients. There are three main parameters that

affect the temperature: the board-level component population

(thermal loading), the heat sink style and design, and the air ve-

locity on the components and/or the heat sink [15].

Let us observe a random chosen point with ,

, and , which is on the substrate surface. The transient

temperature profile at this point is shown in Fig. 15. From the

figure we can find that the thermal time constant in this problem

Fig. 11. Comparison of the memory usage of the simulations with the
Crank–Nicolson and the 3D Thermal-ADI approaches.

is about 0.07 s. The temperature at point

reaches steady state at time 0.07 s or at iteration 700. The tem-

perature difference between time 0.07 and 0.12 s is 0.3%.

However, we need 700 iterations to reach the steady state in

this circuit. In order to decrease the number of iterations to ap-

proach the steady state, we can increase the size of time step .

Is there any limit for the maximum ? For the problem solved

by the Crank–Nicolson method, there is a criterion for the max-

imum [18]. If the is bigger than the criterion, then the

simulation begins to oscillate. After careful analysis, the esti-

mate of the critical time step can be expressed as follows:

(26)

where depends on the location of the point as discussed

in the nonhomogeneous case, and , , and depend on

the location of the point in the boundary conditions. The

meaning of (26) is as follows. Calculate the value of each dis-

cretization point on the right-hand side of (26), then find

the minimum value which is the criterion for the maximum

among all points. For example, the case shown in Fig. 7

has one-quarter of material 2 and three-quarters of material 1.

Therefore, the value of is . We have ,
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Fig. 12. A chip layout example is displayed with hierarchical function blocks.

Fig. 13. The illustration of the power in each function block.

, and if the point is

located on the boundary surface , , and , respectively. Oth-

erwise, we have , , and . Let us look at the

example in Fig. 8. The point is located on the left plane at

, the front plane at , and the bottom plane at .

Hence, we have , ,

and . The value of in this example is

8.293 10 s.

However, for the problem solved by the Thermal-ADI

method, there is no such restriction. The transient results for
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Fig. 14. Thermal profile at t = 0:12 s.

Fig. 15. The transient results for a point at (60,500,3) with �t = 10 s.

a point at with 10 s,

10 s, and 10 s are shown in Fig. 16. Obvi-

ously, there is no oscillation for bigger than 8.293 10 s.

If the time increment is 10 s, it only takes six iterations

to reach the thermal time constant. Therefore, ten iterations

are enough to reach the steady state. However, it takes 700

iterations for 10 s and 70 iterations for 10 s

to reach the steady state, respectively.

From Fig. 16, there are deviations between the transient

thermal results. How big are the differences between the re-

sults? The differences between the transient temperature results

by comparing 10 to 10 are from 0.007% to

0.037% in 0.1 s. Comparing 10 with 10 , the

differences are from 0.03% to 2.96% in 0.1 s. Therefore, the

error of 10 is about 100 times larger than 10 .

Fig. 16. The transient results for a point at (60,500,3) with �t = 10 s,
�t = 10 s, and �t = 10 s.

It satisfies that the Thermal-ADI has second-order accuracy in

time. Therefore, a tradeoff between the runtime (i.e., iteration

number) and accuracy depends on the designer’s requirements.

If the time increment is too big, the Thermal-ADI method

still can convergence to steady state. For instance, the time in-

crements are s and s as shown in Fig. 17.

Even though we cannot know the transient results because of

the oscillation, the results still converge to steady state in ten it-

erations.

VI. CONCLUSION

In this paper, an efficient transient 3-D thermal simulator

based on the ADI method, 3D Thermal-ADI, has been presented
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Fig. 17. The transient results for a point at (60,500,3) with �t = 10 s,
�t = 10 s, �t = 5� 10 s, �t = 10 s, and �t = 0:1 s.

and developed. Detailed analyses of the 3-D nonhomogeneous

material and boundary conditions for on-chip VLSI applications

are also presented. The experimental results show that our simu-

lator not only has a linear runtime and memory requirement, but

also is unconditionally stable. The temperature profile of steady

state can also be reached in ten iterations.

In the future, we will extend the 3D Thermal-ADI as a general

tool to develop an electrothermal simulator as well as a thermal

reliability diagnosis tool.

APPENDIX

In this section the unconditional stability of the ADI method

in (14)-(16) is proved.

A. Proof

After rearranging (14)-(16), we have the following form:

Step 1

Step 2

Step 3

where

In order to see the ADI method is unconditionally stable, we take

the discrete Fourier transform of the nonhomogeneous case of

equations to have

Solving the equations for as a function of , we have

the equation shown at the bottom of the page. From that equa-

tion, we have the second equation shown at the bottom of the

page. Therefore, the ADI method is unconditionally stable.
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