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3‑D twelve‑port multi‑service 
diversity antenna for automotive 
communications
Lekha Kannappan1, Sandeep Kumar Palaniswamy1*, Malathi Kanagasabai2, 
Preetam Kumar3, M. Gulam Nabi Alsath4, Sachin Kumar1, Thipparaju Rama Rao1, 
Mohamed Marey5, Apeksha Aggarwal6 & Jayaram K. Pakkathillam7

This paper presents a twelve‑port ultra‑wideband multiple‑input‑multiple‑output (MIMO)/diversity 
antenna integrated with GSM and Bluetooth bands. The twelve‑port antenna is constructed by 
arranging four elements in the horizontal plane and eight elements in the vertical plane. The antenna 
element, which is created using a simple rectangular monopole, exhibits a frequency range of 3.1 to 
12 GHz. The additional Bluetooth and GSM bands are achieved by introducing stubs into the ground 
plane. The size of the MIMO antenna is 100 × 100  mm2. The antenna offers polarization diversity, 
with vertical and horizontal polarization in each plane. The diversity antenna has a bandwidth of 
1.7–1.9 GHz, 2.35–2.55 GHz, and 3–12 GHz, the radiation efficiency of 90%, and peak gain of 2.19 dBi. 
The proposed antenna offers an envelope correlation coefficient of < 0.12, apparent diversity gain 
of > 9.9 dB, effective diversity gain of > 8.9 dB, mean effective gain of < 1 dB, and channel capacity 
loss of < 0.35 bits/s/Hz. Also, the MIMO antenna is tested for housing effects in order to determine its 
suitability for automotive applications.

In today’s fast-paced world, there is an increasing demand for connected vehicles, which allow automobiles to 
communicate with one another. Vehicles could be linked to more communication devices in the future to provide 
a more comprehensive, autonomous, and intelligent driving experience. This necessitates the use of automotive 
antennas capable of supporting multiple frequency bands/vehicular wireless services. However, multiple anten-
nas increase the complexity of the transceiver and also require a large space for their integration on the printed 
circuit  board1. A multiband antenna, on the other hand, can be designed to combine multiple frequencies into a 
single antenna and may serve as the foundation for future development in automotive applications.

Automotive multiband antennas are required for a variety of applications in intelligent transportation systems 
(ITS), such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-everything (V2E) com-
munication. The automotive antenna may play a role in the advanced driver assistance system (ADAS), which is 
a collection of active safety systems that allow drivers to take timely control of their vehicles by warning them of 
potential road hazards. In the context of automobiles, the ADAS system includes autonomous parking, conges-
tion avoidance via re-routing, and blind spot detection. The Internet of things (IoT) facilitates this ADAS system. 
The term “automotive IoT” refers to the incorporation of IoT technologies into automotive systems in order to 
develop new applications and solutions that can make vehicles smarter and more intelligent, resulting in safer, 
more efficient, and more comfortable driving. Vehicle IoT technology enables applications such as autonomous 
driving, braking, automatic parking, traffic tracking, route and driver control.

Recently, a few ultra-wideband (UWB) antennas with integrated multi-standard bands have been reported 
for automotive applications. Despite the numerous advantages of UWB technology, multipath propagation and 
fading degrade system performance by decreasing the signal to interference ratio. The fading problem can be 
alleviated by introducing a diversity scheme. Diversity improves signal reliability by obtaining replicas of the 
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information signal across multiple pathways. The combination of multiple-input-multiple-output (MIMO) and 
UWB technologies can improve system robustness by avoiding the effects of fading and multipath propaga-
tion. MIMO transmits and receives uncorrelated signals while increasing channel capacity by forming parallel 
resolvable channels. However, the main challenges in MIMO antenna design are high inter-element coupling 
and compact size suitable for integration with other high-frequency  devices2.  In3, a UWB antenna with GSM, 
WCDMA, and WLAN integrated bands was presented. The ground plane of the antenna was modified with 
capacitively loaded line resonators. The multiband operation was achieved without increasing the size of the 
antenna, but the antenna showed single polarization.  In4, a rectangular patch antenna with multiple standards 
was reported, where an octagonal-shaped slot was used to integrate multiple bands.  In5, slots were introduced 
in the ground plane to achieve multiple band resonance without increasing the physical size of the antenna.  In6, 
a compact UWB monopole antenna with a notch and resonating strips was designed to achieve the quad-band 
performance.  In7, a compact-sized UWB antenna with band-notched characteristics was developed. The antenna 
offered good isolation, but its polarization was limited.  In8, a dual-polarized UWB MIMO antenna with integrated 
1.9 GHz and 2.4 GHz was presented.  In9, a MIMO antenna was designed with good isolation for IEEE 802.11 
a/b/g/n applications, however, only single polarization was obtained. The band-notched multiband antennas were 
designed  in10–12.  In13, a UWB MIMO antenna with improved isolation and dual polarization was proposed.  In14, 
a quad-port UWB antenna with an integrated GSM band was proposed without increasing the overall antenna 
size. The antenna offered horizontal and vertical polarization.  In15, a uniplanar four-port differently driven UWB 
antenna was presented, where high isolation and low cross-polarization were achieved through different feed-
ing mechanisms.  In16, a UWB antenna integrated with Bluetooth and WLAN bands was presented, where ring 
slots were loaded in the patch for achieving multiband characteristics. However, the overall size of the antenna 
element was larger.  In17, the antenna elements were located perpendicular to each other, and good isolation was 
obtained without any isolation technique.  In18, an RF amplifier was integrated with the UWB MIMO antenna, 
but only one type of polarization was achieved.  In19, a compact broadband MIMO antenna for indoor wireless 
communication systems was proposed. The antenna offered good isolation without the use of decoupling struc-
tures, but it was limited to two polarization vectors.  In20, eight differentially-fed microstrip antenna elements 
with dual polarization were arranged. The antenna covered the N79 band for 5G, but it had a low efficiency.  In21, 
a slit/slot antenna fed by a transmission line was proposed for tri-polarized MIMO applications. A tri-polarized 
single-layer MIMO antenna with vias, which allows the different modes to resonate at the same frequency, was 
reported  in22. However, the antenna geometry in the majority of the above-mentioned designs was complex and 
difficult to integrate with other circuits.

In this paper, a MIMO antenna with twelve resonators arranged in horizontal and vertical planes is proposed. 
The main features of the presented work are:

1. The antenna covers two narrow bands (GSM and Bluetooth) and the entire UWB. Numerous wireless services 
required in automobiles are integrated into a single radiator, eliminating the need for multiple patches.

2. The 3-D orientation of the radiators reduces the total area occupied by the antenna, allowing more elements 
to be incorporated into a small space.

3. The polarization diversity is achieved by arranging the radiators orthogonally to each other.
4. Placing the antenna elements in both the E-plane and the H-plane result in additional polarization. In com-

parison to other antennas in the literature, the proposed design generates additional polarization vectors, 
resulting in a more robust diversity scheme.

5. The link reliability and channel capacity are improved due to the increased degree of freedom offered by the 
proposed antenna.

6. Isolation greater than 20 dB is obtained, without the usage of any decoupling structures.
7. The housing effects are investigated for the reliability test of the antenna for automotive applications. The 

horizontal and vertical orientations of the proposed antenna are tested in the presence of conducting bodies. 
The housing effects results validated the stability of the antenna.

8. The far-field performance of the proposed antenna on the vehicle is investigated, and the results show that 
the antenna exhibits omnidirectional characteristics when placed on the car body.

First and second sections present the design of the antenna element and MIMO antenna, respectively. Third 
section presents the results and diversity characteristics of the antenna. The antenna housing effects are discussed 
in fourth section, and fifth section presents the conclusion.

Antenna design
Evolution of the UWB antenna element. The proposed UWB monopole antenna element is depicted 
in Fig. 1. The overall size of the antenna element is 30 × 30  mm2. The antenna element is designed on the FR-4 
substrate with relative permittivity of 4.4, loss tangent of 0.025, and thickness of 1.6 mm. The design equation for 
the UWB planar monopole antenna is given  as23,24

where fl is the lowest resonating frequency of the antenna and p is the distance between the patch and the ground 
plane, and the empirical constant k is calculated as

(1)fl =
7.2

(

l + r + p
)

× k

(2)k = 4
√
εeff
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For the proposed antenna, Eq. (1) is modified as

where 0.335π[(a+ b)] corresponds to the expression (l + r), and the semi-length and semi-width are denoted 
by a and b, respectively.

The design parameters of the UWB monopole antenna are given in Table 1. The evolution of the proposed 
UWB antenna element is depicted in Fig. 2. The length and width of the monopole radiator are optimized to 
achieve the UWB specifications. The gap between the patch and the ground plane is important for improving 
radiator performance. The lower corners of the monopole are truncated to improve impedance matching. A 
hexagonal-shaped defect is introduced in the ground plane to improve impedance matching. The simulated 
reflection coefficients of the design steps are shown in Fig. 3.

Integration of bluetooth and GSM bands. The ground plane of the antenna element is modified to 
integrate Bluetooth and GSM bands with the UWB, as shown in Fig. 1b. A stub of length ‘b’ is added to the 
ground plane for Bluetooth (2.4 GHz) resonance. Also, a stub of length (s = t + u) is added to the ground plane 
for the GSM frequency band. The widths of the stubs are adjusted to improve impedance matching. It is also 

(3)fl =
7.2

(

0.335π[(a+ b)]+ p
)

× k

Figure 1.  Proposed antenna element: (a) front view and (b) back view.

Table 1.  Antenna parameters.

Parameter L q b c h o

Value (mm) 30 1 16.8 3 11 4

Parameter m n k p t u

Value (mm) 8 5.4 4.5 5.5 20 6

Figure 2.  Evolution of the UWB antenna element: (a) Antenna-1, (b) Antenna-2, (c) Antenna-3 and (d) 
Antenna-4.
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ensured that the stubs introduced for the additional bands have no significant impact on UWB performance. The 
measured and simulated reflection coefficients of the antenna element are shown in Fig. 4.

Equivalent circuit of the proposed antenna. The equivalent circuit is used to investigate the physical 
mechanism of the  antenna25. The equivalent circuit is calculated using the impedance characteristics, shown in 
Fig. 5. The two maximum impedance points (3.83 GHz and 9.86 GHz) are selected from the reflection coefficient 
characteristics, and the corresponding circuit for UWB is derived. When the impedance curve moves from low 
(negative) to high (positive), a series resonant circuit is drawn, and when the curve moves from high (positive) 
to low (negative), a parallel resonant circuit is  drawn26. The equivalent circuit of the antenna is shown in Fig. 6, 
and the corresponding RLC parameters are shown in Table 2. The two parallel resonant circuits correspond to 
1.8 GHz and 2.4 GHz, respectively, and the two series resonant circuits correspond to UWB.
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Figure 3.  Reflection coefficients of the design steps.
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Surface current distribution of the antenna. The surface current is an important parameter to con-
sider as it influences the bandwidth, radiation pattern, and input impedance of the antenna. The surface current 
distribution of the antenna element at 1.8 GHz, 2.4 GHz, 3.1 GHz, 5 GHz, 7 GHz, and 9 GHz is shown in Fig. 7. 
Figure 7a, b show the surface current at 1.8 GHz and 2.4 GHz, respectively. The longer stub has a higher current 
density at 1.8 GHz, while the shorter stub has the highest current density at 2.4 GHz. The surface current distri-
bution for UWB shows that truncation of patch edges aids in higher current density.

Development of the MIMO antenna
The proposed twelve-port MIMO antenna configuration is depicted in Fig. 8a. The antenna is created by arrang-
ing four elements in the horizontal plane and eight elements in the vertical plane. The two vertical planes, each 
with four elements, are arranged in a cross configuration with the horizontal plane. The overall size of the antenna 
is 100 × 100  mm2. Inter-element isolation can be improved by increasing the distance between the antenna ele-
ments or by using a decoupling structure between  them27.

The spacing between the resonating elements is 0.24λ0 to achieve better isolation. In comparison to the 
conventional 2-D arrangement, the 3-D orientation of the radiators provides polarization flexibility. When the 
radiators are oriented in opposite directions, the correlation between them decreases, and the isolation increases. 
As a result, the MIMO antenna prototype provides polarization diversity while also increasing reliability.

Fabrication and measurement
The antenna element and MIMO antenna are fabricated in order to test their performance. The Anritsu MS2037C 
VNA is used to test the S-parameters of the twelve-port MIMO antenna.
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Figure 6.  (a) Equivalent circuit and (b) S-parameters of the equivalent circuit.

Table 2.  RLC parameters of the equivalent circuit.

Frequency (GHz) R (Ω) C (pF) L (nH)

1.8 20.64 0.403 19.38

2.4 28.31 0.112 39.3

3.823 52.91 0.799 2.196

9.865 59.02 1.93 0.137
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S‑parameters. The measured S-parameters of the twelve-port MIMO antenna are shown in Figs. 9 and 10. 
The S-parameters (S11, S66, and S1212) are measured at port-1 in the horizontal plane, and port-6 and port-12 in 
the vertical planes. The Sii characteristics show that the antenna has a good impedance over the UWB, GSM, and 
Bluetooth frequencies.

The mutual coupling characteristics of the proposed twelve-port MIMO antenna are depicted in Fig. 10. The 
Sij characteristics illustrate that the antenna elements offer isolation greater than 20 dB.

Radiation performance. The measured radiation patterns of the twelve-port MIMO antenna at 1.8 GHz, 
2.4 GHz, 3.1 GHz, 5 GHz, 6.8 GHz, and 8.5 GHz are depicted in Fig. 11. The radiation performance of the fab-
ricated prototype is measured in an anechoic chamber as depicted in Fig. 8b. Figure 12 presents the measured 
gain and efficiency of the prototype antenna. The gain and efficiency of the proposed antenna are greater than 
1.6 dBi and 90%, respectively.

Diversity performance. The diversity performance of the twelve-port MIMO antenna is estimated using 
metrics such as envelope correlation coefficient (ECC), diversity gain (DG), mean effective gain (MEG), total 
active reflection coefficient (TARC), and channel capacity loss (CCL). The ECC value should ideally be zero, but 

Figure 7.  Surface current distribution at (a) 1.8 GHz (b) 2.4 GHz (c) 3.1 GHz (d) 5 GHz (e) 7 GHz (f) 9 GHz.
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in practice it is < 0.5. ECC can be calculated using the S-parameter or the far-field, respectively, using Eqs. (4) 
and (5).

where Sij denotes the S-parameter of antenna i in relation to antenna j, Fi is the field radiated by the antenna. The 
calculated ECC values show that the antenna elements are less correlated, as shown in Figs. 13 and 14.

The two types of diversity gain are apparent diversity gain (ADG) and effective diversity gain (EDG), which 
are calculated using the Eqs. (6) and (7), respectively. They differ in the way that EDG includes efficiency while 
ADG does not. The practical limit for DG is > 9.9 dB. The ADG and EDG are calculated using the far-field and 
S-parameters, and they meet the practical limit for DG. Tables 3 and 4 present the ADG and EDG of the proposed 
MIMO antenna in relation to port-1 and port-12, respectively.
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∣

∣
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Figure 8.  Proposed twelve-port MIMO antenna: (a) layout and (b) measurement of the fabricated prototype in 
an anechoic chamber.
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where

MEG quantifies the ability of the antenna to receive transmitted electromagnetic power. MEG can be calcu-
lated using the far-field Eq. (8).

Ideally, the MEG difference should be less than 3 dB. The proposed MIMO antenna has a MEG difference 
of less than 1 dB.

TARC is another metric used to determine the impact of one antenna element on another. TARC is defined 
as the square root of the total reflected power divided by the total incident power, as shown in Eq. (9).

where ai is the incident signal and bi is the received signal. Figure 15 depicts the TARC of the MIMO antenna in 
relation to port-1 and port-12. The calculated results show that the lower the TARC value, the lower the mutual 
coupling.
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Figure 11.  Measured radiations pattern at 1.8 GHz, 2.4 GHz, 3.1 GHz, 5 GHz, 6.8 GHz, 8.5 GHz: (a) 
E-plane/yz/φ = 90°, (b) H-plane/xz/φ = 0°, (c) E-plane/yz/φ = 90°, (d) H-plane/xz/φ = 0°, (e) E-plane/yz/φ = 90°, 
(f) H-plane/xz/φ = 0°, (g) E-plane/yz/φ = 90°, (h) H-plane/xz/φ = 0°, (i) E-plane/yz/φ = 90°, (j) H-plane/xz/φ = 0°, 
(k) E-plane/yz/φ = 90°, (l) H-plane/xz/φ = 0°, (m) E-plane/yz/φ = 90°, (n) H-plane/xy/φ = 0°, (o) 
E-plane/xz/φ = 90°, (p) H-plane/xy/φ = 0°, (q) E-plane/yz/φ = 90°, (r) H-plane/xy/φ = 0°, (s) E-plane/xz/φ = 90°, 
(t) H-plane/xy/φ = 0°, (u) E-plane/yz/φ = 90°, (v) H-plane/xy/φ = 0°, (w) E-plane/xz/φ = 90°, (x) 
H-plane/xy/φ = 0°.
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CCL is used to investigate capacity loss due to correlation in MIMO channels. The CCL of a MIMO system 
can be calculated as

Figure 16 depicts the CCL of the MIMO antenna in relation to port-1 and port-12.
The correlation matrix of the receiving antenna is given by

where ρ11 =
(

1− |S11|2 − |S12|2
)

, ρ22 =
(

1− |S22|2 − |S21|2
)

.

(10)CCL = − log2
∣

∣�R
∣

∣

(11)�R =
[

ρ11 ρ12
ρ21 ρ22

]

Figure 11.  (continued)
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ρ12 = −
(

S∗11S12 + S∗21S12
)

, and ρ21 = −
(

S∗22S21 + S∗12S21
)

.
The practical limit of CCL is 0.4 bits/s/Hz, and the proposed antenna offers CCL less than 0.35 bits/s/Hz.
Maximal ratio combining (MRC) and selection combining (SC) are diversity combining techniques that com-

bine the signals received from the antenna to increase the mean signal to noise ratio (SNR) and yield reliability 
in fading environments. The Eq. (12) can be used to calculate the cumulative distribution function (CDF) of the 
MIMO antenna under the rayleigh  condition28. Figure 17 shows that the twelve-port configuration outperforms 
the two-element case in terms of diversity performance.

Figure 11.  (continued)
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where λ is the eigen value obtained from the signal covariance matrix (ΛMRC) and K is the number of antenna 
elements. The covariance matrix is given by Eq. (13).

(12)FMRC(γ ) = 1−
K
�

i=1
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K−1
i e

�

−x
�i

�

�K
j �=i

�

�i − �j

�





Figure 11.  (continued)



13

Vol.:(0123456789)

Scientific Reports |          (2022) 12:403  | https://doi.org/10.1038/s41598-021-04318-0

www.nature.com/scientificreports/

The CDF of the Rayleigh is calculated using Eq. (14), where Г is the average SNR.

(13)�MRC = ρe
√

MEGiMEGj

(14)FRayleigh(γ ) = 1− e−(
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Figure 12.  Gain and efficiency of the proposed antenna.
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Figure 13.  ECC of the MIMO antenna with respect to port-1.
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Antenna housing effects
The location of the antenna in the vehicle has a significant impact on its performance. The proposed antenna 
can be mounted on the roof of a car using a shark fin mount or integrated into the existing printed circuit board. 
The proposed automotive antenna can be installed on the roof of a car through the chassis  cavity29. For automo-
tive communications, the antenna housing effect is discussed in order to evaluate antenna performance in the 
presence of metallic  conductors30–32.

A metal plate is used to mimic the car roof to investigate the effects of antenna housing. The size of the metal 
plate ranges from 40 × 40 × 5  cm3 to 80 × 80 × 5  cm3.

Two scenarios are considered when studying the effects of antenna housing. The antenna is positioned in 
the xz- and yz-planes as shown in Fig. 18. In the xz-plane, the antenna is perpendicular to the metal conductor, 
while in the yz-plane, the antenna is to the side of the metal conductor. The omnidirectional characteristic is 
influenced if the antenna is placed at the top of the yz-plane. Figure 19 depicts the simulated reflection coefficients 
of the twelve-port antenna when antenna housing effects are taken into account. The simulation results show 
that the presence of a metal conductor has no significant effect on the antenna characteristic in either scenario. 
The presence of a metal plate has no effect on the xz-plane. Even in the presence of a metal plate, the antenna 
maintains its omnidirectional behavior.

The asymptotic solver in CST is used to estimate the far-field performance of the proposed antenna when 
integrated with a vehicle. An open-source CAD model of the Volkswagen Touareg is used for estimating the 
far-field characteristics. The on-car performance of the proposed antenna is depicted in Fig. 20. The results imply 
that the antenna exhibits omnidirectional characteristics when placed on the body of the vehicle. The directivity 
is greater than 6 dB for all observed frequencies.

Table 5 compares the reported and proposed MIMO antenna designs. The main advantages of the proposed 
antenna are:

1. In comparison to the antenna  structures7,14,20,33–59, the proposed antenna geometry has twelve-elements, and 
covers two narrow bands (GSM and Bluetooth) and the entire UWB.

Table 3.  ADG and EDG of the proposed antenna in relation to port-1.

Parameter Frequency (GHz)

Port

1 and 2 1 and 3 1 and 4 1 and 5 1 and 6 1 and 7 1 and 8 1 and 9 1 and 10 1 and 11 1 and 12

ADG
(far-field)

1.8 9.997 9.997 9.970 9.996 9.967 9.998 9.990 9.997 9.998 9.998 9.998

2.4 9.986 9.993 9.959 9.991 9.973 9.998 9.996 9.994 9.998 9.999 9.999

3.1 9.945 9.999 9.999 9.997 9.996 9.999 9.999 9.995 9.996 9.988 9.994

5 9.998 9.997 9.999 9.992 9.999 9.999 9.999 9.997 9.995 9.999 9.999

6.8 9.984 9.998 9.999 9.999 9.999 9.999 9.998 9.997 9.999 9.949 9.999

8.5 9.999 9.999 9.997 9.984 9.989 9.999 9.999 9.998 9.998 9.982 9.999

ADG
(S-parameter)

1.8 9.998 9.998 9.99 9.998 9.998 9.998 9.998 9.999 9.999 9.999 9.999

2.4 9.998 9.999 9.994 9.996 9.999 9.999 9.999 9.988 9.998 10 10

3.1 9.999 10 10 9.999 9.999 10 9.999 9.999 9.999 9.999 9.999

5 9.999 9.999 9.999 9.999 9.999 9.999 9.999 9.999 9.998 9.999 9.999

6.8 9.999 9.999 10 10 9.999 10 9.999 9.999 10 9.999 10

8.5 10 10 9.999 9.999 9.999 10 9.999 9.999 9.999 9.99 10

EDG
(far-field)

1.8 9.059 9.058 9.033 9.057 9.031 9.053 9.052 9.060 9.050 9.051 9.050

2.4 9.492 9.498 9.466 9.481 9.479 9.504 9.501 9.499 9.503 9.504 9.504

3.1 9.749 9.790 9.790 9.790 9.799 9.790 9.789 9.795 9.790 9.788 9.794

5 9.136 9.135 9.136 9.129 9.136 9.136 9.136 9.136 9.135 9.136 9.136

6.8 9.896 9.911 9.911 9.911 9.911 9.911 9.911 9.909 9.911 9.862 9.911

8.5 9.166 9.165 9.164 9.165 9.166 9.165 9.166 9.164 9.161 9.164 9.166

EDG
(S-parameter)

1.8 9.1 9.1 9.061 9.060 9.060 9.059 9.053 9.061 9.053 9.053 9.06

2.4 9.503 9.52 9.51 9.49 9.504 9.52 9.504 9.49 9.503 9.52 9.52

3.1 9.796 9.799 9.799 9.797 9.796 9.799 9.799 9.799 9.796 9.799 9.799

5 9.138 9.136 9.137 9.137 9.137 9.137 9.137 9.137 9.136 9.136 9.146

6.8 9.999 9.98 9.98 9.98 9.98 9.99 9.99 9.995 9.99 9.97 9.999

8.5 9.166 9.166 9.166 9.166 9.166 9.166 9.167 9.168 9.166 9.166 9.166
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2. The proposed antenna achieves diversity by using 3-D orientations, whereas 2-D orientations were used 
 in7,14,20,33–48,50–53,57–59.

3. Unlike the antenna structures reported  in14,20,34,36–48,50–59, the proposed MIMO antenna configuration occupies 
less area while having a larger number of resonating elements. The antennas  in7,33,35,47 occupied an equivalent/
smaller area but had fewer elements.

4. The proposed MIMO antenna outperforms in terms of ECC, DG, MEG, TARC, and CCL, whereas all of 
these diversity factors were not investigated in the majority of reported  papers14,20,33–38,40,41,43–45,47,49,51–55,58,59.

5. The housing effect and on-car body performance of the proposed 3-D MIMO antenna are investi-
gated, whereas they were previously studied only for single-element/two-element/2-D MIMO antenna 
 designs1,31,32,45,55.

Thus, it can be concluded that the proposed design has packed more elements in a smaller space while main-
taining a high degree of isolation between them. Further, the distinct orientation of the antenna elements offers 
a wider range of polarization vectors, which is highly desirable in a rich scattering and deep fading environment.

Conclusion
In this work, a MIMO antenna that operates in the UWB, Bluetooth, and GSM bands is presented. The antenna 
is made up of twelve elements that are arranged in horizontal and vertical planes. The antenna diversity per-
formance is investigated, and the values are within the limits. The proposed antenna achieves high gain and 
efficiency. The antenna housing effect is investigated to determine the consistency of the radiator when it is 
installed in a vehicle. The reflection coefficients and directivity investigated from the antenna housing effect are 
satisfactory. The antenna can be installed in automobiles for automotive applications such as V2V communica-
tion and ITS.

Table 4.  ADG and EDG of the proposed antenna in relation to port-12.

Parameter Frequency (GHz)

Port

12 and 1 12 and 2 12 and 3 12 and 4
12
and 5 12 and 6 12 and 7 12 and 8 12 and 9 12 and 10 12 and 11

ADG
(far-field)

1.8 9.9 9.999 9.999 9.969 9.997 9.899 9.989 9.999 9.999 9.999 9.998

2.4 9.999 9.908 9.999 9.989 9.996 9.989 9.999 9.990 9.999 9.944 9.985

3.1 9.999 9.959 9.995 9.999 9.998 9.986 9.999 9.993 9.997 9.998 9.697

5 9.999 9.999 9.989 9.999 9.986 9.996 9.999 9.996 9.999 9.994 9.995

6.8 9.989 9.999 9.999 9.999 9.991 9.998 9.998 9.989 9.999 9.998 9.999

8.5 9.997 9.999 9.987 9.998 9.998 9.999 9.967 9.987 9.997 9.999 9.996

ADG
(S-parameter)

1.8 9.999 10 10 9.999 9.999 9.999 9.999 10 10 10 9.999

2.4 10 9.999 10 9.999 9.997 9.999 10 9.999 10 9.999 9.999

3.1 10 9.999 9.999 10 9.999 9.999 10 9.999 9.999 9.999 9.999

5 10 10 9.999 10 9.999 9.997 10 9.999 10 9.998 9.999

6.8 9.999 10 10 10 9.998 9.999 9.999 9.999 10 9.999 10

8.5 9.998 10 9.998 9.999 9.999 10 9.999 9.998 9.999 10 9.999

EDG
(far-field)

1.8 9.459 9.372 9.459 9.458 9.457 9.449 9.459 9.450 9.459 9.407 9.445

2.4 9.416 9.379 9.413 9.417 9.416 9.405 9.417 9.411 9.415 9.416 9.133

3.1 8.964 8.964 8.964 8.964 8.953 8.962 8.964 8.962 8.964 8.963 8.960

5 9.132 9.133 9.104 9.124 9.044 9.124 9.114 9.124 9.133 9.133 9.134

6.8 9.972 9.971 9.972 9.971 9.972 9.972 9.940 9.960 9.971 9.970 9.969

8.5 9.850 9.851 9.851 9.852 9.852 9.852 9.852 9.852 9.852 9.852 9.852

EDG
(S-parameter)

1.8 9.459 9.45 9.459 9.459 9.46 9.459 9.46 9.452 9.459 9.459 9.459

2.4 9.417 9.418 9.418 9.418 9.41 9.418 9.417 9.417 9.417 9.417 9.417

3.1 8.964 8.964 8.965 8.965 8.965 8.965 8.964 8.964 8.965 8.964 8.964

5 9.134 9.134 9.133 9.134 9.13 9.134 9.134 9.134 9.134 9.134 9.135

6.8 9.973 9.972 9.973 9.973 9.972 9.973 9.973 9.972 9.972 9.972 9.973

8.5 9.853 9.852 9.852 9.853 9.852 9.853 9.855 9.854 9.853 9.854 9.853
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Figure 18.  Housing effect: (a) case-1 and (b) case-2.
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Figure 20.  On-car performance of the proposed antenna: (a) 1.8 GHz, (b) 2.4 GHz, (c) 3.1 GHz, (d) 6.8 GHz, 
(e) 8.5 GHz.
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