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Abstract

The objective of this research is to develop a new 3-D video coding system which can

provide better coding efficiency with improved subjective quality as compared to

existing 3-D video systems such as the depth image based rendering (DIBR) system.

Clearly, one would be able to increase overall performance by focusing on better

“generic” coding tools. Instead, here we focus on techniques that are specific of

3-D video. Specifically, we consider improved representations for depth information

as well as information that can directly contribute to improved intermediate view

interpolation.

As a starting point, we analyze the distortions that occur in rendered views

generated using the DIBR system, and classify them in order to evaluate their

impact on subjective quality. As a result, we find that the rendered view distortion

due to depth map coding has non-linear characteristics (i.e., increases in intensity

errors in the interpolated view are not proportional to increases in depth map coding

errors) and is highly localized (i.e., very large errors occur only in a small subset

of pixels in a video frame), which can lead to significant degradation in perceptual

quality. A flickering artifact is also observed due to temporal variation of depth

map sequence.

To solve these problems, we first propose new coding tools which can reduce the

rendered view distortion by defining a new distortion metric to derive relationships

between distortions in coded depth map and rendered view. In addition, a new

xiii



skip mode selection method is proposed based on local video characteristics. Our

experimental results show the efficiency of the proposed method with coding gains

of up to 1.6 dB in interpolated frame quality as well as better subjective quality

with reduced flickering artifacts.

We also propose a new transform coding using graph based representation of a

signal, which we name as graph based transform. Considering depth map consists

of smooth regions with sharp edges along object boundaries, efficient transform

coding can be performed by forming a graph in which the pixels are not connected

across edges. Experimental results reveal that coding efficiency improvement of 0.4

dB can be achieved by applying the new transform in a hybrid manner with DCT

to compress a depth map.

Secondly, we propose a solution in which depth transition data is encoded and

transmitted to the decoder. Depth transition data for a given pixel indicates the

camera position for which this pixel’s depth will change. For example in a pixel

corresponding to foreground in the left image, and background in the right image,

this information helps us determine in which intermediate view (as we move left

to right), this pixel will become a background pixel. The main reason to consider

transmitting explicitly this information is that it can be used to improve view

interpolation at many different intermediate camera positions. Simulation results

show that the subjective quality can be significantly improved using our proposed

depth transition data. Maximum PSNR gains of about 2 dB can also be observed.

We foresee further gains as we optimize the amount of depth transition data being

transmitted.
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Chapter 1

Introduction

3-D video services are becoming reality in the consumer market thanks to recent

improvements on high quality 3-D display technologies and 3-D content production

skills, which is a significant step towards a more realistic multimedia experience

[13, 52]. For the advanced 3-D video services, two application scenarios have been

discussed [67]; first, providing ability to vary the baseline distance for stereo video to

adjust the depth perception to help avoiding fatigue and other viewing discomforts,

and secondly, supporting auto-stereoscopic displays, which do not require for the

viewer to wear special glasses to feel the depth. In both cases, multiple number of

views are required at the display side.

As 3-D video requires multiple video sequences captured from different camera

positions, it becomes challenging to transmit and store such a large amount of

data. This has lead to significant interest in investigating efficient view rendering

methods. For this purpose it has been studied how to sample the plenoptic function

or the light field [1, 80] to reconstruct missing views using image based rendering

techniques [6]. To improve the rendered view quality, multiview video plus depth

formats are being developed, where only selected views are coded along with their
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corresponding depth maps, and other views are interpolated at the decoder using

depth image based rendering (DIBR) technique [76,83].

Since depth maps have to be sent to the decoder, it is necessary to develop

efficient compression methods for depth maps. Even though a depth map can

be treated as a gray scale image, and compressed using standard image or video

coding techniques, better coding efficiency can be achieved if depth-map-specific

characteristics are exploited, since some of these properties are quite different from

those of standard image or video. Many researchers have aimed to improve the

efficiency of depth map coding by exploiting these characteristics. For example,

typical depth maps tend to lack texture so that they can generally be well approx-

imated as piecewise smooth signals, with relatively constant depth areas separated

by sharp edges where each smooth depth region may correspond to an object at a

different depth. Many approaches have been proposed along these lines. Morvan et

al [29] and Merkle et al [28] used platelet coding, and Maitre and Do [27], Daribo et

al [10], and Sanchez et al [44] used edge-adaptive wavelet transforms, which seek to

design transform that avoid filtering across edges or object boundaries in a depth

map. In our work, we have shown that better coding efficiency can be achieved

by edge adaptive coding tools such as the edge adaptive intra prediction [50] and

the edge adaptive transform [49]. Other such approaches include compressed sens-

ing based methods [45] and the reduced resolution with edge-preserving upsam-

pling [12]. Besides, other depth map specific characteristics are utilized to achieve

better coding efficiency in the researches, such as dynamic range reshaping [23],

3-D motion estimation [62], warping based inter-view prediction [30], reuse of video

motion information to reduce encoding complexity [34], and sparsity-based in-loop

filtering [24].
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In these previous works depth-map-specific characteristics are utilized to im-

prove coding efficiency. However, it is also very important to understand how the

depth map is used for the view synthesis. In standard video compression, quantiza-

tion errors directly affect the rendered view quality by adding noise to the luminance

or chrominance level of each pixel. In contrast, the distortion in the depth map will

affect indirectly the rendered view quality. Considering that the depth map itself

is not displayed but used to provide additional geometry information to help the

view synthesis process, it would be inefficient to maintain same level of quality for

the whole depth map area using the aforementioned methods. For example, a small

amount of geometry error can cause large distortion in the rendered view in regions

of complex texture or at object boundaries with high contrast to the background

intensity. Instead, large amounts of geometry error can lead to negligible artifacts

in the rendered view in the case of flat regions. Therefore, it is crucial to analyze

the relationship between the depth map error and the distortion in the rendered

view in order to achieve optimal performance of depth map coding.

There has been research to evaluate the impact of depth error to the rendered

view distortion. Müller et al [31] studied experimentally the impact of bitrate

distribution between the video and depth map on the rendered view quality, but

no theoretical analysis was given to find the relationship between the depth map

error and the rendered view distortion. Merkle et al [28] measured geometry error

caused by depth map error by calculating the distance between the 3-D surfaces

constructed from the original and the coded depth map, respectively, using the

Hausdorff distance; however, no method was given to find how the geometry error

causes the rendered view distortion, and the depth map distortion itself is used to

optimize the depth map coding.

3



Nguyen and Do [33] derived an upper bound on the mean squared error in the

rendered view due to geometry error using Taylor series expansion. Ramanathan

and Girod [40] used the power spectral density with Gaussian modeling of image

signal in order to estimate the distortion in rendered view due to geometry error,

where global relationship can be found between the geometry error and the rendered

view distortion. These approaches can be used to analyze the effect of geometry

error on the rendered view quality; however, both the global Gaussian model and

the upper bound derivation do not provide a precise estimation of how local depth

coding distortion (e.g., within a block) lead to distortion in the rendered view.

Because of this, distortion estimates obtained using the aforementioned methods

may not be sufficiently accurate for rate-distortion (RD) optimization in depth map

coding.

In our previous work [18], the relationship between depth map error, geometry

error, and distortion in the rendered view was analyzed, with a global linear model

used to characterize the distortion in the rendered view as a function of depth map

error. A problem with such a global distortion is that there may exist significant

local mismatches, since the rendered view distortion varies according to local char-

acteristics of the reference video. For example, the amount of the distortion caused

by the geometry error will be small for a smooth region of the video as compared

to a region with complex textures.

In this thesis, we start by focusing on the different types of distortion affecting

the DIBR process. Clearly, the quality of decoded video frames that are used for

view interpolation is an important factor, but since they are likely to be coded using

standard tools (e.g., H.264/AVC) it is relatively simple to control their distortion.

Instead, we focus on how the quality of depth maps transmitted to the decoder

4



affects overall quality, which has non-linear characteristics (i.e., increases in inten-

sity errors in the interpolated view are not proportional to increases in depth map

coding errors) and is highly localized (i.e., more significant errors occur only in a

small subset of pixels in a video frame).

The main contribution of our research is to improve the rendered view quality

using the new coding tools and new data format specifically designed to reduce the

distortion occurred in the rendered view. First, we propose a simple and precise

local estimation method to estimate the distortion generated in the rendered view

due to depth map coding. Of course, the rendered view distortion can be exactly

measured if the intermediate view is synthesized and compared to the ground truth.

However, this is not practical, since the ground truth for an arbitrary view position

may not exist, and the view synthesis process would be too complex to be used

during the depth map coding. Instead, we propose a simple and precise estimation

method, which reflects local video characteristics, so that it can be used during

depth map coding to achieve optimal performance.

First, we derive a relationship between errors in the depth map and geometry

errors in rendering using the camera parameters. We then estimate the resulting

intensity distortion in the rendered view. The estimation has to reflect local video

characteristics corresponding to the local depth map area. For example, if there

is a depth error, but the intensity of the image to be synthesized using the depth

information is locally almost constant, distortion caused by depth error will be very

small. On the other hand, even one pixel displacement caused by depth error can

cause large distortion in the rendered view, if the image area to be synthesized

consists of object boundaries or complex textures. This will be more noticeable if

there is high contrast between different objects or within the texture.
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Two methods are proposed to accurately estimate the rendered view distortion

by reflecting the local video characteristics. In the first method, the geometry error

is translated into a “pixel displacement” in the interpolation process, i.e. pixels

used for interpolation are shifted with respect to those that would be chosen if the

exact depth map were used. Then, the rendered view distortion is estimated by

computing the error between each pixel and the pixel in a shifted position, where

the shift corresponds to the geometry error caused by the exact depth error at

that pixel location. This method provides precise estimation results at the cost of

random pixel access in the reference frame memory, which would break the burst

access mode of dynamic random access memory. In the second method, instead of

accessing pixel by pixel, the local video characteristics are modeled using an au-

toregressive model, so that the estimation can be done with reduced computational

complexity for real time processing. These approaches are thus local in nature,

taking into account both the local value of depth map distortion and local video

characteristics.

Then, the proposed distortion metrics are applied to depth map coding to im-

prove the coding efficiency of the 3-D video system. To select the optimal coding

mode for the depth map the Lagrangian optimization is performed with the pro-

posed distortion metrics. The new Lagrange multiplier is also derived using the

proposed distortion metric based on the autoregressive model as a function of the

quantization step size. Note that the proposed methods are not restricted to a

specific coding method, but can be applied to various coding methods to achieve

optimal results.

Experiments are performed using various test materials to evaluate the per-

formance of the proposed methods. Improved coding efficiency is observed when

applying our proposed methods with the average peak signal to noise ratio (PSNR)
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gains of 0.6 and 0.2 dB with the first and the second estimation methods, respec-

tively, when compared to the standard H.264 [54] approach without any rendered

view distortion estimation.

We also propose a new skip mode for depth map coding, which can reduce the

flickering artifact in the rendered view. The flickering artifact occurs when the

temporal variation is larger in depth map than in the video due to lack of precision

in depth estimation. By choosing a skip mode in depth map coding based on video

information, the flickering artifact can be efficiently suppressed as shown in the

experimental results.

To improve the efficiency of depth map coding we also propose a new transform

coding based on graph representation of signal. Considering a depth map consists

of smooth regions separated by sharp edges along the object boundaries, a graph

can be formed so that no connection is made among pixels across those edges in a

given coding block. Then, the eigenvectors of Laplacian matrix of the graph can

be used as transform kernel. We name this new transform coding as the graph

based transform (GBT). The advantage of GBT is that it can be applied to the

block based coding, which is a dominant design of standard video codecs such as

MPEG-4 and H.264. We propose to apply GBT and DCT in a hybrid form so that

the best transform can be applied to each block. With the proposed method 0.4 dB

PSNR gain or 21 % bitrate saving is observed on average when applied to various

depth map sequences.

One of the key novelties in our research is to propose a new 3-D video format

in which additional information is sent to the decoder (in addition to video from

selected views and depth information). Based on the observation that the rendered

view distortion due to depth map errors has non-linear and localized characteristics,

we develop a new data format, depth transition data (DTD) [20, 21]. To provide
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some intuition, this type of data considers a scenario where reference views are

transmitted and depth information for them is available. Focusing on a specific

pixel in one view, we can determine its corresponding location in the other view.

Given their corresponding depth information, if depth information for the second

view indicates a significantly different depth value than for the first view, this is a

sign that there is a depth transition somewhere between these two views. For these

situations we transmit to the decoder the view location at which this transition

occurred (from an object at a certain depth to another at a different depth).

Providing explicit information about where this transition occurs has several ad-

vantages. First, it leads to improved interpolation for arbitrary intermediate camera

positions. Second, in cases where no depth information is available for intermediate

views, DTD could also be derived from depth information at the transmitted views.

However, by explicitly representing transition information we are able to improve

quality (by using more bits) at those locations where this information matters the

most. Finally, in cases where depth or video information is available for interme-

diate views (but is not going to be transmitted), the DTD can be corrected using

these information, so that improved interpolation can be achieved without hav-

ing to transmit additional depth maps or video. Our experimental results show

that our proposed DTD representation can lead to significant perceptual quality

improvement in the rendered frames, with PSNR gain of up to 2 dB.

The rest of the thesis is organized as follows. The distortion in the rendered

view is analyzed in Chapter 2. The proposed rendered view distortion estimation

methods and the new skip mode method are described in Chapter 3. The new 3-D

video format is described in Chapter 4. Conclusions and future work are discussed

in Chapter 5.
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Chapter 2

Distortion Analysis in Rendered View

In this chapter, the view synthesis process using depth map is reviewed, and the

distortion in the rendered view is analyzed. Through the analysis various factors

affecting the rendered view quality are determined. Among them we focus our effort

on investigating the relationship between the depth map error and rendered view

distortion, since the analysis reveals that the depth map error has great impact

on rendered view quality. We qualitatively analyze the depth map quantization

error, which reveals non-linear and localized features of the rendered view distortion

from depth map error, and propose a quality measurement method to reflect these

features. In addition, flickering artifacts are observed due to depth map estimation

error, and we propose a quantitative way to measure this.

2.1 View synthesis process using depth maps

In a DIBR system, a few views are transmitted to the decoder, while the other views

are synthesized using the decoded views [76,83]. A depth map sequence is included

for each transmitted view along with video sequence in order to improve the quality

of the synthesized video quality. To analyze the distortion in the rendered view,
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Figure 2.1: Mapping of a pixel from reference view (p) to the world coordinate and
to the target view (p′), where (xim, yim) and (x′

im, y′
im) are the location of pixel in

the reference view and the target view, respectively.

it will be helpful to understand how an intermediate view is generated using the

neighboring views that are available at the decoder side. In this section the view

synthesis process using depth map is reviewed.

To synthesize a view (target view) using the decoded view (reference view), each

pixel in the decoded video frame can be mapped to the target view using the camera

parameters, such as baseline distance, focal length, and rotation and translation

matrix, and per-pixel depth value. This is done by first mapping from the reference

view to the world coordinate, and then mapping from the world coordinate to the

target view, as illustrated in Fig. 2.1. A more detailed mapping procedure is given

in Section 3.1.1.

To improve rendered view quality, it is important to obtain depth information

with enough precision. There are various ways to acquire depth information. For
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example per-pixel depth values can be estimated from neighboring video using

stereo triangulation, or it can be directly captured using various range cameras

such as laser scanner and time-of-flight camera [4]. Per-pixel depth values can be

converted into depth map value for efficient storing. The relationship between the

actual depth value, z, and the 8-bit depth map value, Lp(xim, yim), is given as

z =

(

Lp(xim, yim)

255

(

1

Znear

−
1

Zfar

)

+
1

Zfar

)−1

, (2.1)

where Znear and Zfar are the nearest and the farthest clipping planes, which corres-

pond to value 255 and 0 in the depth map, respectively, with the assumption that

z, Znear and Zfar have all positive or all negative values [66].

Figs. 2.2 and 2.3 show an example of the view synthesis procedure [57], where

Fig. 2.2 (a) and (b) are the warped views from left and right views to the target

view, and Fig. 2.3 is generated by combining these two warped views. When all

the pixels in the reference view are mapped to the target view, it is possible that

multiple of them are mapped to the same position in the target view. On the other

hand it is also possible that none of them can be mapped to certain positions in

the target view, which is called as the hole area. The hole area in the left warped

view is filled from the right warped view, and vice versa. Methods to generate

the target view by combining more than one warped view are called as a blending

processes, in which a weighted averaging can be used with the baseline distance

or depth value of each reference pixel used as the weight. It is also possible to

select only one reference pixel to avoid blurring artifact. When there remains a

hole area after blending, it can be filled using a hole filling process, e.g., based on

the inpainting [2].
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(a) Left reference view warped to the target view

(b) Right reference view warped to the target view

Figure 2.2: View synthesis procedure by warping neighboring reference views.
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Figure 2.3: Rendered view after blending left and right reference views warped to
the target view.

2.2 Classification of distortion in rendered view

In a DIBR system, reference video sequences and corresponding depth maps are

used to synthesize an intermediate view. We have analyzed the distortion in the

rendered view and found various factors that affect the rendered view quality. Dis-

tortion in the rendered view can be due to:

• Distortion in the reference video. This distortion could be due to sensor noise

during the acquisition of the reference video, as well as quantization error due

to coding. These distortions will be directly reflected in the rendered view.

The quantization error will affect the rendered view quality significantly and is

controllable by adjusting a quantization step size at the encoder side. There-

fore, how to choose the quantization step size will be an optimization problem

at the encoder side, which can be addressed with extensions of conventional

techniques.
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• Distortion due to synthesis. We have found two main reasons for this inac-

curacy. First, when we interpolate a view between left and right reference

views, an occlusion may occur, especially for an object near the camera or

the area behind this object, due to large difference in projection angle. In this

case each reference view can compensate the occlusion caused by the other

reference view, but this can result in large distortion, especially when the

reference views have different illumination conditions. Secondly, the blend-

ing process to generate the synthesized pixel value using reference pixels can

cause distortion. For example, by averaging left and right references, blurring

can occur.

• Distortion due to depth map inaccuracy. This could be due to inaccuracy

in the initial depth estimation as well as quantization errors due to lossy

representation of the depth map, which result in geometry error.

Since the first factor is directly controllable at the encoder side, the focus of the

analysis is on the other two factors.

To analyze the effect of various distortion sources, the subjective quality is

evaluated using Ballet sequence as shown in Figs. 2.4-2.7, where Fig. 2.4 is the

original 5th view, Fig. 2.5 is the rendered view using 4th and 6th view without

coding of video and depth maps, Fig. 2.6 is the rendered view with coded depth

map and uncompressed video, and Fig. 2.7 is the difference image between Fig. 2.5

and Fig. 2.6. For depth map coding H.264/AVC [54] is used with quantization

parameter (QP) set to 36.

First, by comparing Fig. 2.4 and Fig. 2.5 it can be observed that the view

synthesis process can cause the following types of distortion even without any coding

involved:
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Figure 2.4: Subjective quality comparison of Ballet sequence; Original 5th view

• High frequency components tend to be blurred throughout the image due to

the blending process during the view synthesis.

• There are very clear errors in the occluded regions, for which the blending is

not used, and only one reference video is used instead to fill those regions. This

is due to differences in illumination between different views (if no averaging is

performed across views, the illumination of the interpolated will be similar to

that of one of the reference view, which may not reflect the true illumination).

• There exists distortion around object boundaries. This is due to occlusion

and/or depth map estimation error.

Secondly, from Fig. 2.6 it can be observed that severe distortion occurred along

the object boundary. Since the difference between Fig. 2.5 and Fig. 2.6 lies only

in depth map coding, we can infer that this artifact comes from the depth map
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Figure 2.5: Subjective quality comparison of Ballet sequence; Synthesized 5th view
without coding reference views. This results in 33.2 dB (Y PSNR).

coding distortion. The difference image Fig. 2.7 clearly shows that large distortion

occurred along the object boundary, and it can be noticed that the foreground

object boundary is eroded by background area. Therefore, we call this an erosion

artifact.

2.3 Erosion artifact

Fig. 2.8 illustrates how erosion artifacts occur. When a depth map is compressed,

distortion occurs due to transform and quantization. Since the boundary area

contains more energy in high frequency components, it is more likely to be damaged

by compression. In the distorted depth map, along the object boundary there will

be both eroded and dilated regions. In an eroded region pixels corresponding to the
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Figure 2.6: Subjective quality comparison of Ballet sequence; Synthesized 5th view
with coded depth maps (QP=36) and uncompressed reference views (Y PSNR 32.1
dB),

object will now have depth values associated to the background. Correspondingly,

in the dilated region parts of the background, pixel data will be associated to

foreground depth values. When rendering a view with this distorted depth map,

the regions corresponding to foreground depth (i.e., the object minus the eroded

regions) will be warped with larger displacement than the background region (for

example if the background has “infinite” depth, there will be no displacement from

view to view). Note that this leads to different artifacts. Since the eroded region

no longer has foreground depth value it will not move with the foreground object.

Therefore, the object that is displaced will itself be eroded in its boundary. Instead,

note that the error is less visible for dilated regions. This is because in those

dilated regions, background intensity data is associated to foreground depth and is
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Figure 2.7: Difference image between the synthesized views with and without depth
map coding. 128 is added for visualization.

displaced along with the foreground object. This will not cause errors in the object

shape, although it may mean (if the background is not uniform) that there will be

a mismatch between the interpolated background and the true one. In summary,

the foreground object boundary will suffer from erosion errors, which significantly

degrades the subjective quality of the rendered view.

2.4 Characteristics of rendered view distortion

due to depth map error

In the previous sections it is examined that depth map coding error can cause

significant distortion in the rendered view. In this section we further analyze the

distortion in the rendered view due to depth map coding error. Since the depth map
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Figure 2.8: Occurrence of erosion artifact from depth map distortion. Depth map
coding error generates eroded and dilated region along object boundary as can be
seen in ‘coded depth map with error’. This causes erosion artifact in ‘synthesized
video’.

provides geometry information to warp pixels in the reference view (reference pixels)

to the target view in order to be synthesized, quantization error in depth map will

cause the reference pixel to be mapped to the wrong place in the target view. The

distortion in the rendered view from the incorrectly mapped reference pixel depends

on local video characteristics. For example in a flat region the intensity value of the

incorrect reference pixel is likely to be similar to the ground truth, while around

object boundary it is less likely if different object has different intensity value.

Therefore, larger distortion is expected in the object boundary area than in the flat

region, which means that the distortion in the rendered view is localized.

In addition, the amount of distortion in the rendered view depends on various

factors. First, the amount of geometry error depends on camera parameters such

as baseline distance and focal length, then its effect on the rendered view distor-

tion depends on local video characteristics such as amount of texture and contrast
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between neighboring pixels. Therefore, the rendered view distortion has non-linear

feature.

Figs. 2.9 and 2.10 illustrate non-linear and localized characteristics, where the

absolute difference between the synthesized views with and without depth map

coding is represented as a temperature image. Even though quantization is applied

uniformly throughout the frame, its effect on view interpolation is much more sig-

nificant near edges. As the quantization step size Q increases, the geometry error

increases and thus the rendered view distortion also increases. Note, however, that

even though quantization error in depth map increases, the rendered view distortion

still remains localized in a relatively small portion of pixels in the frame.

2.5 Quality measurement of rendered view

3-D video quality measurement can be different from that of 2-D video. However,

some studies show that the quality of rendered view, which can be treated as 2-D

image or video, significantly affect overall 3-D video quality. In this section we will

discuss how to measure the quality of rendered view. Previous works are briefly

reviewed and a method is proposed to efficiently measure the distortion in the

rendered view that significantly degrades subjective quality.

2.5.1 Review of previous work

We review some existing quality measurement methods for 2-D image or video first,

and review how they can be extended to measure 3-D video quality.

To assess the quality of the general 2-D image or video, various quality measure-

ment methods have been proposed to reflect the characteristics of the human visual

system into objective quality [48,68], such as NTIA General Video Quality Metric

20



200 400 600 800 1000 1200

100

200

300

400

500

600

700

20

40

60

80

100

120

140

160

(a) Champagne Tower, QP = 24
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(b) Champagne Tower, QP = 36

Figure 2.9: Temperature images of the absolute difference between the synthesized
view with and without depth map coding, Champagne Tower.
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100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500
10

20

30

40

50

60

70

80

90

(b) Mobile, QP = 36

Figure 2.10: Temperature images of the absolute difference between the synthesized
view with and without depth map coding, Mobile.
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(VQM) [38], and structural similarity index (SSIM) [70] and multi-scale structural

similarity index (MS-SSIM) [71], which are also adopted in the H.264/AVC refer-

ence software [22]. However, mean square error (MSE) and PSNR are widely used

for objective quality metrics both in the academia and industry [56,69]. They can

be calculated as

MSE =

∑N

i=1 |xi − x̃i|
2

N
,

PSNR = 10log10

x2
max

MSE
(dB), (2.2)

where xi is the reference value, x̃i is the value to measure the distortion, N is the

total number of pixels in a frame, and xmax is the peak signal value, e.g., 255 in 8

bit image or video.

There have been many studies on 3-D video quality measurement including ren-

dered view quality evaluation. Goldmann et al [15] studied 3-D video acquisition

procedure and subjective quality evaluation methodology, and Leon et al [25] eval-

uated subjective quality of 3-D video with varying depth map quality. Various

2-D image or video quality metrics are used to assess 3-D video quality. PSNR

and MSE are used to evaluate the rendered view distortion from video and depth

map compression [26, 31], and SSIM and VQM are applied to assess 3-D video

quality [17,60]. When the ground truth is available the distortion can be measured

with respect to the ground truth [64]. But, when an arbitrary view is synthesized of

which the ground truth is not available, the rendered view without any compression

(no compression of video or depth map) can be used as the reference to measure

the distortion due to compression [65].
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These previous studies reveal that the rendered view quality has great impact on

the overall 3-D video perceptual quality, and both video and depth map quality play

important roles on rendered view quality. Therefore, to evaluate the performance

of the proposed algorithms in the following chapters, we measure the 2-D rendered

view quality. For simplicity, we mainly use PSNR of luminance component, which

has been widely accepted as an effective objective quality metric.

2.5.2 Measuring localized distortion

In general video coding, quantization errors usually spread throughout a frame.

However, as examined in Section 2.4, the rendered view distortion has non-linear

and localized features, which causes significant subjective quality degradation. To

improve overall subjective quality, it would be more important to reduce this local-

ized distortion rather than reduce distortion all over the frame. Therefore, it would

nice if the distortion in these area can be measured separately.

Spatial alignment in VQM cannot measure this correctly, since different local

areas have different amount of translational error in the rendered view, and SSIM

may not work, since the local area in the rendered view can have the same spatial

structure as the ground truth but with translational error.

We propose a simple way to assess the localized rendered view distortion from

depth map quantization error based on MSE or PSNR metric. Note that this can be

simply extended to other existing methods such as VQM and SSIM. To distinguish

the localized distortion from general distortion, we simply apply a thresholding

technique. Since these localized distortion that can degrade subjective quality

would have larger magnitude than that of distortion in other area, we only count

the distortion larger than a preset threshold value.
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There can be two ways to calculate PSNR only with distortion larger than

the threshold value. First way is to calculate PSNR for a frame after making the

distortion smaller than the threshold zero. We name this as the Noticeable-PSNR

(N-PSNR) that is defined as

N-MSE =

∑N

i=1 α · |xi − x̃i|
2

N
.

N-PSNR = 10log10

x2
max

N-MSE
(dB), (2.3)

where α is 0 when |xi − x̃i| is less than or equal to the preset threshold value, Th,

otherwise, α is 1. In (2.3) it can be noticed that N-MSE is divided by total number

of pixels, N .

Second way is to calculate the PSNR only considering the local area of which

the deviation is larger than the threshold value. We denote this as n-PSNR:

s =

∑N

i=1 αi

N
,

n-MSE =

∑N

i=1 αi · |xi − x̃i|
2

s ·N
,

n-PSNR = 10log10

x2
max

n-MSE
(dB), (2.4)

where s denotes the portion of pixels with deviation larger than the threshold.

While N-PSNR can be used by itself, n-PSNR only provide quality measure-

ment of local area. Therefore, n-PSNR can be used together with s to measure the

distortion in the rendered view. Then, each can convey different information. For

example, if s is large, this means a large geometrical error occurred, and the ren-

dered view distortion will increase proportionally. If n-PSNR is large, this implies
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Table 2.1: PSNR and the proposed metric, N-PSNR, with threshold values of 5
and 10, generated by comparing the luminance (Y) component of the ground truth
and the rendered view using various test sequences, where both video and depth
map are compressed using H.264/AVC with QP set to 24 and 36.

Sequence QP PSNR (dB)
N-PSNR (dB)
Th=5 Th=10

Cafe
24 30.6 30.9 31.1
36 30.2 30.6 30.9

Mobile
24 35.7 36.6 37.5
36 31.9 32.3 33.4

Newspaper
24 28.4 28.6 29.5
36 28.0 28.2 29.0

Balloons
24 33.5 34.3 35.1
36 32.5 33.2 34.2

Champagne Tower
24 25.7 25.8 25.9
36 25.9 26.1 26.2

Pantomime
24 35.2 35.9 36.6
36 34.4 35.1 35.9

that large deviation occurred due to local video characteristics, e.g., high contrast

across object boundaries, and this will also increase the rendered view distortion

proportionally. N-PSNR will represent the amount of rendered view distortion as

combination of s and n-PSNR.

Fig. 2.11 shows the area where the distortion is larger than the threshold value.

It can be noticed that these area matches well with the temperature image in Fig.

2.9 in Section 2.4.

Table 2.1 shows the PSNR and the proposed metric, N-PSNR, and Table 2.2

shows s and n-PSNR, with threshold values of 5 and 10, generated by comparing the

luminance (Y) component of the rendered view and the ground truth using various

test sequences, where both video and depth map are compressed using H.264/AVC

with QP set to 24 and 36.
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(a) Th = 5

(b) Th = 10

Figure 2.11: Area where distortion is larger than a threshold value, Th, marked as
black; Champagne Tower, synthesized with both video and depth map quantized
using QP = 36.
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Table 2.2: Measurement of noticeable distortion using s (%) and n-PSNR (dB),
with threshold values of 5 and 10, generated by comparing the luminance (Y)
component of the ground truth and the rendered view using various test sequences,
where both video and depth map are compressed using H.264/AVC with QP set to
24 and 36.

Sequence QP
Th=5 Th=10

s n-PSNR s n-PSNR

Cafe
24 9.1 20.5 4.5 17.7
36 12.7 21.6 5.1 18.0

Mobile
24 6.5 24.8 1.7 19.7
36 21.8 25.7 8.0 22.4

Newspaper
24 40.9 24.7 13.4 20.7
36 45.6 24.8 16.6 21.2

Balloons
24 10.4 24.5 3.3 20.3
36 15.7 25.2 4.6 20.8

Champagne Tower
24 17.5 18.2 10.2 16.0
36 19.7 19.0 10.9 16.6

Pantomime
24 7.6 24.8 3.4 22.0
36 9.3 24.8 4.2 22.1
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From Table 2.1 it can be noticed that different sequences have different N-PSNR

value, which is combination of s and n-PSNR. This is because different sequences

have different amount of area with noticeable distortion, s, and different magnitude

of distortion reflected in n-PSNR, as can be noticed in Table 2.2. The size of the area

would depend on camera settings and the magnitude of distortion would depend

on local video characteristics. The relationship between the rendered view quality

and various factors is analyzed in detail in Chapters 3 and 4.

2.6 Flickering artifact

2.6.1 Flickering artifact due to temporal variation in depth

map

In the case of video, if sensor noise is negligible, the distortion at the decoder is

mainly due to quantization. In contrast, in the case of depth map estimated from

video data (i.e., not captured directly with special devices such as range cameras),

the estimated depth itself can be very noisy. For example, using stereo matching to

obtain depth will lead to more significant errors in the boundaries of near objects,

as compared to the background area. This is due to large differences in projec-

tion angles between left and right cameras for near objects, which leads to large

occlusion. Moreover, for areas in the scene that are predominantly flat and contain

limited amounts of texture, it will be difficult to find matching points between left

and right views, which will make the depth information less reliable. In addition,

if the depth maps are estimated on a frame by frame basis, i.e., depth/video in-

formation from other timestamps are not considered, unreliable estimates of depth

29



are more likely to lead to stronger temporal variations, i.e., depth estimates may

vary even when the “ground truth” does not.

Fig. 2.12 helps illustrate these issues. From Fig. 2.12 (b) and (d) (where the

absolute value of the temporal differences is scaled by 5 and inverted for easier

visualization), it can be easily noticed that temporal variation in the depth map is

very significant, even though there is practically no motion in this video. Most of

these changes in the depth map can be attributed to errors in the stereo matching

process. Note in particular that more errors can be observed around object bound-

aries and in the flat regions with less texture, where the stereo matching suffers due

to occlusion and lack of matching features, respectively. This temporal variation

in the depth map not only increases the coding bitrate but also deteriorates the

subjective quality of the synthesized views by creating flickering artifacts in the flat

region. However, as will be seen in Section 3.3, because these temporal variations

in depth estimates do not correspond to changes in actual depth, efficient coding of

depth can be achieved (e.g., by not coding many of these estimated depth changes),

without significant impact on interpolated view quality. Even though it would be

possible to improve depth map quality using more advanced systems such as range

cameras, it will be still useful for algorithms to be robust to errors in depth map

acquisition, which could be inherent to many acquisition systems.

2.6.2 Measurement of false temporal variation in depth map

We now propose a method to measure the amount of false temporal variation in

a depth map. The amount of temporal variation can be measured by taking the

absolute difference between two consecutive frames in temporal domain. This will

contain both true motion and false motion (noise). We assume that temporal
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(a) Video frame (b) Temporal difference

(c) Depth map (d) Temporal difference

Figure 2.12: Example of temporal variation in depth map. (a) frame in the ‘Door
Flowers’ video sequence, (b) difference between the first and second frame of the
video, (c) corresponding depth map, and (d) difference between the depth maps of
the first and second frames.
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variation in video is mostly from true motion and noise is negligible. Then, one

way to measure the false temporal variation in depth map would be subtracting

the temporal variation in video from the temporal variation in depth map, i.e.,

τDM,false = τDM,total − τvideo,total

= τDM,false + τDM,true − τvideo,true, (2.5)

where τDM and τvideo denote average temporal variation in depth map and video,

respectively.

However, since the variation ranges of depth map and video generally disagree,

(2.5) cannot provide a precise measurement. Instead, we can define the area of true

motion using video. For example, the pixels where the temporal difference is larger

than a threshold value can be set as the true motion area. Then, the temporal

variation in depth map excluding the true motion area can be averaged and used

as the amount of false temporal variation in depth map. The threshold value will

reflect the sensitivity of the true motion in video to noise. Below is the pseudo code

to calculate the amount of false temporal variation in depth map.

Table 2.3 lists the amount of false temporal variation generated using various

MPEG multiview test sequences according to the algorithm described above. 15

frames in one view is used for each sequence. Note that τvideo, τDM, and τDM,false are

per-pixel absolute temporal variation on average. τDM,false is calculated using three

threshold values of 0, 1, and 2. It can be noticed that the portion of false temporal

variation area increases as the threshold increases, since larger threshold will allow

less number of pixels to be included in the true motion area. However, it can be
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Algorithm 1 Pseudo-code to calculate the amount of false temporal variation in
depth map. xi,n and di,n are i-th pixel in n-th frame of video and depth map,
respectively, ǫ is the threshold to determine true motion in video, and m is number
of pixels in false motion area.

τDM,false ← 0
m← 0
loop

if |xi,n − xi,n+1| ≤ ǫ then

τDM,false ← τDM,false + |di,n − di,n+1|
m← m + 1

end if

end loop

τDM,false ← τDM,false/m

Table 2.3: List of temporal variation in video, τvideo,total, temporal variation in
depth map, τDM,total, and false temporal variation in depth map, τDM,false generated
using threshold value, ǫ = 0, 1, 2, where b represents the portion of false temporal
variation area in percentage (%).

Sequence τvideo τDM
ǫ = 0 ǫ = 1 ǫ = 2

b τDM,false b τDM,false b τDM,false

Balloons 1.6 0.7 23 0.7 61 0.7 82 0.7
Beergarden 3.7 0.7 62 0.1 69 0.1 74 0.2

Book Arrival 2.8 0.7 17 0.6 47 0.5 68 0.5
Cafe 2.9 1.2 23 0.6 58 0.6 80 0.6

Car Park 2.2 2.8 16 2.7 44 2.7 67 2.7
Champagne Tower 1.4 0.2 27 0.2 66 0.2 86 0.2

Hall1 2.1 1.6 17 1.6 48 1.6 71 1.6
Hall2 3.4 3.5 15 3.2 42 3.2 63 3.2
Kendo 4.1 3.4 20 3.0 51 3.1 70 3.2

Lovebird 1 0.3 1.2 92 1.0 93 1.0 98 1.1
Mobile 3.2 4.7 61 0.1 86 0.1 90 0.2

Newspaper 1.3 0.4 29 0.3 69 0.4 88 0.4
Pantomime 4.8 2.9 24 2.8 61 2.8 79 2.8

Street 2.3 1.5 16 1.4 44 1.4 65 1.4

noticed that the false temporal variation, τDM,false, is not sensitive to the threshold

value.
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When the false temporal variation in depth map, τDM,false, is used to represent

the overall amount of flickering artifact, not only per-pixel false temporal variation,

τDM,false, but also its portion, b, should be considered. In addition, according to the

depth range covered by depth map, the amount of flickering artifact due to depth

map can be different. For example, if a scene includes from near object to very far

object, e.g. as would happen in an outdoor scene, depth map will cover wide range

of depth, and temporal variation in depth map will also imply large variation in

actual depth value. On the other hand, in case of indoor scene where depth range is

restricted, temporal variation in depth map will imply less variation in actual depth

value than that of the outdoor scene case. Considering the relationship between

the actual depth value and the depth map value given in (2.1), a scaling factor, η,

can be set as

η =

(

1

Znear

−
1

Zfar

)

· f, (2.6)

where the focal length divided by the effective pixel size, f , is multiplied. Wide

range of depth will result in large scale factor, and accordingly more flickering

artifacts. Then, the amount of flickering artifact due to false temporal variation in

depth map, F , can be represented as

F = τDM,false · b · η. (2.7)

Table 2.4 lists the amount of flickering artifact due to false temporal variation in

depth map, F , and other values to calculate this such as b, η, and τDM,false with

threshold value ǫ set to 1.

We will use the proposed measurement of false temporal variation in depth

map and the resulting level of flickering in Section 3.3 to analyze test sequences
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Table 2.4: List of per-pixel false temporal variation, τDM,false, calculated with ǫ = 1,
b, η, and F .

Sequence τDM,false b η F

Balloons 0.7 61 4.8 2.0
Beergarden 0.1 69 66.7 6.8

Book Arrival 0.5 47 34.8 8.8
Cafe 0.6 58 0.9 0.3

Car Park 2.7 44 33.9 40.3
Champagne Tower 0.2 66 1.1 0.2

Hall1 1.6 48 33.9 26.0
Hall2 3.2 42 33.9 46.4
Kendo 3.1 51 4.8 7.6

Lovebird 1 1.0 93 0.9 0.8
Mobile 0.1 86 24.9 2.6

Newspaper 0.4 69 0.8 0.2
Pantomime 2.8 61 0.4 0.7

Street 1.4 44 33.9 20.7

and discuss the performance of the proposed coding tool to reduce the flickering

artifact.

2.7 Conclusion

In this chapter distortion in the rendered view is analyzed, and it is found that

depth map error can cause significant distortion in the rendered view. Specifically,

depth map quantization error can cause distortion along the object boundary in

the rendered view, which has non-linear and localized characteristics. Based on

this observation a noticeable distortion measurement method in the rendered view

is proposed. In addition, depth map estimation error can cause flickering artifact,

which reduces subjective quality of rendered video. It is also proposed to measure

the amount of false temporal variation in depth map. From these analyses it can
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be noticed that the distortion in the depth map would be very different from the

distortion incurred in the rendered view. Therefore, when a depth map is coded,

it will be desirable to consider the rendered view distortion from depth map error

rather than the depth map distortion itself. It will be also possible to think about

an efficient way to compensate the localized distortion by wisely spending bits to

provide additional information in those areas. In the following chapters, we propose

the depth map coding tools considering the rendered view distortion, and the new

data format which can efficiently compensate the localized distortion.
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Chapter 3

Depth Map Coding Tools Using New Distortion

Metric

As analyzed in the previous chapter, depth map errors can cause significant dis-

tortion in the rendered view. In standard video compression, quantization errors

directly affect the rendered view quality by adding noise to the luminance or chromi-

nance level of each pixel. In contrast, the distortion in the depth map affects indi-

rectly the rendered video quality: the depth map error leads to a geometric error

in the interpolation, which in turn is translated into errors in the luminance or

chrominance of the rendered view. In this chapter, first, the geometry error from

the depth map quantization error is derived, and the rendered view distortion due

to the geometry error is estimated. Then, this new distortion metric is applied

to an RD optimized mode selection scheme to improve the coding efficiency by

considering the rendered view quality. A new skip mode selection scheme is also

proposed to reduce the flickering artifact. In addition, a new transform using graph

representation is applied to depth map coding to achieve better coding efficiency.
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3.1 Effect of depth map distortion on rendered

view

In this section we derive the relationship between the depth map error and geom-

etry error using the global camera parameters, then propose a method to estimate

the rendered view distortion by taking into account local video characteristics. We

also show that computational complexity reduction is achieved by using an autore-

gressive model to model the video signal.

3.1.1 Derivation of geometry error from depth map distortion

When a depth map L is encoded using lossy compression, the resulting distortion in

the decoded map causes geometry errors when it is used for view interpolation. The

geometry error due to the depth map distortion can be calculated using intrinsic

and extrinsic camera parameters. Table 3.1 lists the symbol notations used in the

equations hereinafter.

A camera coordinate (x, y, z)T can be obtained from the world coordinate (X,Y,

Z)T as













x

y

z













= AM













X

Y

Z













, (3.1)

where A and M are respectively the intrinsic and extrinsic camera matrices, where

M consists of a rotation matrix R and a translation vector t [61]. The image

coordinate (xim, yim)T can be expressed from the camera coordinate (x, y, z)T as
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Table 3.1: Table of notations.

Symbol Explanation
(x, y, z)

camera coordinates
(x′, y′, z′)
(X,Y, Z) world coordinates
(xim, yim)

image coordinates
(x′

im, y′
im)

A intrinsic camera matrix
M extrinsic camera matrix
R rotation matrix
t translation vector

p, p′ view indices
Zp (xim, yim) depth value at (xim, yim) in p-th view
Lp (xim, yim) depth map value at (xim, yim) in p-th view

Znear the nearest depth value in the scene
Zfar the farthest depth value in the scene

∆P (xim, yim) translational geometry error at (xim, yim)
δx, δy translations in horizontal/vertical directions

kx, ky
scaling factors relating depth map error
to horizontal/vertical translations

(ox, oy)
the coordinates in pixel of the image center
(the principal point)

fx, fy
focal length divided by the effective pixel size
in horizontal/vertical direction

∆tx camera baseline distance
Xn a vector of video pixels with index n
N size of vector or number of pixels in a vector
T vector transpose operator
ρ correlation coefficient

cov( ) covariance
σ and σ2 standard deviation and variance
J and λ Lagrangian cost and Lagrange multiplier

D̃ estimated distortion
Ddepth and Rdepth depth map distortion and bitrate

w weight applied to a view
Q quantization step size
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. (3.2)

Therefore, if we know the per pixel depth value, z, we can map a pixel position into

a point in the world coordinate, and that position can be remapped into another

camera coordinate that belongs to the view to be rendered. Lai et al [24] derived

the geometry error from depth map distortion in the parallel camera case. In this

section, we propose a more precise representation of geometry error as a function

of distortion in the depth map under the assumption of approximately parallel

cameras, so that the depth values in different camera coordinates, z and z′, will be

approximately equal to the depth values in the world coordinate, Z, i.e., z ≈ z′ ≈ Z,

without translation factor in z-axis. First, a camera coordinate in the p-th view can

be mapped into a camera coordinate in the p′-th view using the camera intrinsic

parameters Ap and Ap′ , and extrinsic parameters Rp, Rp′ , tp, and tp′ of both

cameras as
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. (3.3)

Hence, the image coordinate in the p′-th view with the assumption of no translation

in z-axis, i.e. z = z′, can be computed as:
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1
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Ap′Rp′ {tp − tp′} . (3.4)
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When a depth map is quantized, this causes depth error, ∆z, and the corresponding

camera coordinate is













x + ∆x

y + ∆y

z + ∆z
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xim

yim
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(z + ∆z). (3.5)

If this is mapped to the p′-th view, the camera coordinates becomes
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, (3.6)

and the corresponding image coordinates are
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+
1

z′ + ∆z′
Ap′Rp′ {tp − tp′} . (3.7)

The relationship between the actual depth value, z, and 8-bit depth map value,

Lp(xim, yim), is given in (2.1). Then the position error due to a depth map error in

the p-th view, ∆Lp, can be calculated by subtracting (3.4) from (3.7) as follows:
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=

(

1

z′ −∆z′
−

1

z′

)

Ap′Rp′ {tp − tp′}

=
∆Lp (xim, yim)

255

(

1

Znear

−
1

Zfar

)

Ap′Rp′ {tp − tp′} . (3.8)

This reveals that there is a linear relationship between the depth map distortion

∆L, and the translational rendering position error ∆P in the rendered view as

∆P (xim, yim) =







δx (xim, yim)

δy (xim, yim)






= ∆Lp (xim, yim)







kx

ky






, (3.9)

where δx (xim, yim) and δy (xim, yim) are the resulting geometry error in horizontal

and vertical directions at (xim, yim), respectively, from the depth map distortion ∆L

at the camera position p, and kx and ky are the scale factors determined from the

camera parameters and the depth ranges as shown in (3.8).

When the cameras are in parallel positions, further simplification can be made,

as there will be no translation other than horizontal direction. In this case, there

will be a difference only in horizontal direction between the translation vectors. In

addition, the rotation matrix in (3.7) becomes an identity matrix. Neglecting radial

distortion in the camera intrinsic matrix, the scaling factor, kx, in (3.9) becomes

kx =
1

255

(

1

Znear

−
1

Zfar

)

fx∆tx, (3.10)

where fx is the focal length divided by the effective pixel size in horizontal direction,

and ∆tx is the camera baseline distance.
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Since the scale factors depend on the camera settings and depth ranges, the same

amount of depth map distortion can cause different amount of geometry error. For

example, if the distance between cameras, |tp − tp′ | is large, or the camera captures

a near object so that 1
Znear

becomes large, then the geometry error will increase as

kx and ky will be large. This indicates that a dense camera setting and a farther

away scene composition will tend to be more robust to depth coding distortion in

the rendering process.

In addition, the effect of geometry error on the quality of rendered view will

depend on local characteristics of the video. For example, in areas of a video frame

with complex textures and objects, the distortion caused by the geometry error will

be significant, as different positions should have quite different pixel values. On the

other hand, in the areas with simple textures or flat (homogeneous) regions, the

amount of the distortion due to geometry error will be small since pixels at different

positions are similar. Therefore, it is necessary to link the geometry error to the

rendered view distortion according to the local video characteristics, which will be

studied in the next subsections.

3.1.2 Estimation of distortion using reference video

In a DIBR system, a view can be rendered using a set of reference video frames and

their corresponding depth maps. The exact amount of distortion in the rendered

view can be measured if we compare the rendered view with the ground truth,

i.e., the captured video by a camera at that position. However, the ground truth

may not be available since the rendered view can be generated for any arbitrary

viewpoint. It would also be too much computationally complex if the actual view

rendering process have to be performed during the depth map coding process.
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Instead, we propose to estimate the rendered view distortion using the reference

video frame. The reference video is the captured and encoded video at the encoder

side, transmitted to the decoder along with the depth map, and can be used to

synthesize other views. Therefore, the reference video belonging to the same view-

point as the depth map is always available. As shown in the previous subsection,

when a depth map value is compressed with the quantization error, ∆L, this causes

geometry error, ∆P. Therefore, considering a depth map value at (xim, yim), the

video pixel value at the same location, (xim, yim), can be compared to the video

pixel value translated by the geometry error, i.e. the one at (xim + δx, yim + δy).

Fig. 3.1 illustrates this. Note that the two dimensional location index, (xim, yim),

is replaced with the one dimensional index, i, for simplicity.

Figure 3.1: Illustration of rendered view distortion estimation process using refer-
ence video.

When encoding a particular block of the depth map, the distortion of the ren-

dered view corresponding that block can be approximated using the reference video

frame by calculating the sum of squared error (SSE) between the block in the video

frame collocated with the depth map block to be coded, Xn = [xi, xi+1, · · · , xi+N ]T,
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and the block Xm = [xi+∆P(i), xi+1+∆P(i+1), · · · , xi+N+∆P(i+N)]
T, formed by trans-

lating each pixel in Xn by the corresponding geometry error vector ∆P calculated

in Section 3.1.1, i.e.:

SSE = (Xn −Xm)T (Xn −Xm) = XT
nXn − 2XT

nXm + XT
mXm, (3.11)

where the block in a video frame is represented as a column vector that consists of

pixels in the block. Note that each pixel xi in the video block can have a different

translation error ∆P(i), since the translation error for a given pixel depends on the

error in the corresponding position in the depth map.

The assumption underpinning this approach is that the local video characteris-

tics of the synthesized video would be very similar to those of the reference video, so

that the distortion due to the geometry error can be estimated using the reference

video. Therefore, a precise estimation of the rendered view distortion due to depth

map error can be achieved using both global camera parameters and local video

characteristics.

3.1.3 Estimation of distortion using autoregressive model

The distortion estimation method described in the previous subsection is concep-

tually straightforward, but it requires accessing the video frame pixel by pixel.

Because each pixel in the block Xn can have different amount of geometry error

∆P(i), the corresponding pixels after displacement (i.e., Xm) are not likely to be

located in consecutive memory positions. Access to non-consecutive memory loca-

tions can be expensive in many practical implementations. Let us take an example

of a random access memory to store video pixels, which can access 64 bits or 8 pixels
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with one addressing operation with 5 cycles and next successive 64 bits with 1 cycle

with a burst mode access. For 16×16 pixels, a total 16×16×5 = 1280 cycles will be

consumed when each pixel location is not successive, while only 16× (5 + 1) = 96

cycles will be required when pixels are in successive location for each row, a factor

of 13 difference in memory access time. In this section we propose a simpler method

to estimate the distortion in the rendered view, which does not require accessing

non-consecutive memory locations.

The problem is to estimate the distortion due to displacement caused by geom-

etry error. Instead of accessing video pixels in random location as in the previous

subsection, the difference between the video pixels with and without the displace-

ment can be estimated by calculating the correlation of spatially neighboring video

pixels and modeling video signal using autoregressive model. Under stationarity

and zero mean assumptions for the video signal, the correlation coefficient ρ be-

tween Xn and Xm can be expressed as:

ρ =
cov (Xn,Xm)

σXn
σXm

=
cov (Xn,Xm)

σ2
Xn

=
XT

nXm

XT
nXn

. (3.12)

Note that the zero mean condition, which can be achieved by removing the mean

from the video signal, will not change the resulting SSE. Therefore from (3.11) and

(3.12), the SSE can be expressed in terms of the correlation coefficient and the

variance of the video block as:

SSE = (N − 1) σ2
Xn
− 2 (N − 1) ρσ2

Xn
+ (N − 1) σ2

Xm

= 2 (N − 1) (1− ρ) σ2
Xn

, (3.13)
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where N represents the number of pixels in the block. Then, (3.13) can be ap-

proximated using the first order autoregressive model for the correlation coefficient

as

SSE ≈ 2 (N − 1)

(

1−
1

N

N
∑

i=1

ρ
|∆P(n)|
1

)

σ2
Xn

, (3.14)

where ρ1 represents the video correlation when translated by one pixel.

Note that in (3.14), based on the autoregressive model, the correlation decreases

as the geometry error increases. Local video characteristics are captured by the

correlation coefficient. Thus, it is expected that the distortion will be greater if

there is little spatial correlation in the video frame. This makes sense, since the

area with complex texture or object boundary area with high contrast between

objects have little correlation, and are sensitive to geometry error.

The correlation coefficient, ρ1, and the variance of the video block can be cal-

culated first for a given block, which involves consecutive memory access, then the

distortion in the rendered view can be estimated as in (3.14). The correlation coef-

ficient and variance for each block can be also calculated and stored beforehand to

ease the real time processing. But, the estimation will be less precise than with the

first method, since the local video characteristics are represented block by block

using the autoregressive model, while the first method accurately calculates the

error for each pixel. Thus, the second method provides good compromise between

estimation accuracy and computational complexity.
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3.2 Rate-distortion optimization for depth map

coding

In the previous section new distortion estimation methods are proposed to estimate

the rendered view distortion from depth map quantization error. In this section,

these new distortion metrics are applied to depth map coding to improve coding

efficiency by using Lagrange optimization to select optimal coding mode. In addi-

tion a new Lagrange multiplier is derived using the new distortion metric based on

the autoregressive model to improve coding efficiency.

3.2.1 Definition of rate and distortion

State of the art video codecs make use of various coding modes in order to improve

coding efficiency. For example, H.264 provides various spatial prediction directions

for intra prediction modes and various block sizes and temporal prediction directions

for inter prediction modes. To achieve the best coding performance, it is important

to select the optimal coding mode by considering bitrate and distortion at the same

time. For this purpose Lagrangian optimization has been widely used [35, 55] to

optimize video coding performance.

When Lagrangian techniques are applied to depth map coding, it is appropriate

to consider the rendered view distortion caused by depth map error rather than the

distortion in the depth map itself, since the depth map is not displayed and is only

used in order to help view synthesis. Therefore, instead of using the depth map

distortion directly, we propose to use the estimation of the distortion in the rendered

view to select the optimal coding mode for depth map compression. The estimation

of the rendered view distortion can be performed as described in Section 3.1, where
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the rendered view distortion is estimated from the depth map error using global

camera parameters and local video characteristics. In this subsection we discuss

how the new distortion metric can be applied to optimize depth map coding.

Let us start from a simple example. Assume that we wish to synthesize a view

using two reference frames, i.e. left and right coded views (video and depth map).

Though the rendered view distortion can be affected by various factors such as noise

in the reference video and occlusion artifacts (see Section 2.2), we want to consider

exclusively the distortion from the depth map quantization error, because what we

want to optimize here is the depth map coding. Similarly, we only consider the

bitrate to code the depth map. Then, the Lagrangian cost for depth map coding

can be computed using the distortion occurred in the rendered view due to depth

map error and the sum of the bitrates for two depth maps as:

J = D̃ (Ddepth,left, Ddepth,right) + λRdepth,left+right, (3.15)

where the estimated distortion in the rendered view, D̃, is expressed as a function of

the depth map distortion, Ddepth for both left and right images, and Rdepth,left+right

denotes the total bitrate to code left and right depth maps. In general, it is not

straightforward to estimate the rendered view distortion from two reference frames,

since the view synthesis procedure involves non-linear operations. For example, for

the occluded regions, only one reference frame may be used for view synthesis, while

other areas can be synthesized by a blending process such as weighted averaging

using both reference frames. Instead, when we code a single depth map, it is easier

to model the rendered view distortion caused by quantization error of the single

depth map. Thus, we propose to linearize the rendered view distortion caused from
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each depth map, so that the distortion in the rendered view can be represented as

a weighted sum of the distortion caused by each depth map as

D̃ (Ddepth,left, Ddepth,right) = wD̃ (Ddepth,left) + (1− w) D̃ (Ddepth,right) , (3.16)

where w denotes the weight applied to a view, w ∈ [0, 1]. The weight can be

determined based on the distance from the reference view to the target view. For

example, if the target view is located at the middle point between the left and the

right reference views, we can choose w = 0.5. In addition, we assume that the two

depth maps are coded independently from each other without inter-view prediction,

so that

Rdepth,left+right = Rdepth,left + Rdepth,right. (3.17)

By putting (3.16) and (3.17) into (3.15), the Lagrangian cost can be written as:

J = wD̃ (Ddepth,left) + (1− w) D̃ (Ddepth,right) + λ (Rdepth,left + Rdepth,right) . (3.18)

Finally, (3.18) can be separated for each view as

J = wD̃ (Ddepth) + λRdepth. (3.19)

Now, the estimated rendered view distortion caused by single depth map coding,

D̃ (Ddepth), can be represented using either (3.11) or (3.14).

This can be generalized when M views are synthesized using N coded views as
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J =
M
∑

j=1

D̃j (Ddepth,1, Ddepth,2, · · · , Ddepth,N ) + λRdepth,total

=
M
∑

j=1

N
∑

i=1

wi · D̃j (Ddepth,i) + λ

N
∑

i=1

Rdepth,i , (3.20)

where wi is the weight applied to each view indexed by i during the rendering

process. However, in practice the weight is difficult to determine since one depth

map can be used to synthesize multiple views at arbitrary locations. Therefore,

when we code a depth map, a simplified expression as in (3.19) can be used with a

fixed weight factor, e.g. one.

3.2.2 Derivation of Lagrange multiplier

The Lagrange multiplier can control the trade-off between the bitrate and distor-

tion to achieve optimal coding performance. In case of video coding, the optimal

Lagrange multiplier can be selected by taking derivative of distortion and bitrate

of the compressed video [72, 73]. When this is applied to the depth map coding,

it is necessary to consider the rendered view distortion instead of the depth map

distortion itself. In this subsection, we propose a new Lagrange multiplier selection

scheme using the estimated rendered view distortion with the autoregressive model.

If the distortion and the bitrate are expressed as a function of quantization step

size, Q, λ can be calculated by taking the derivative of (3.19) and setting it to zero

as

λ = −
dD̃ (Q) /dQ

dRdepth (Q) /dQ
. (3.21)
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The weight in (3.19) is set to one. Note that Ddepth is an absolute difference and

can be represented as a function of quantization step size, Q, under the uniform

distribution assumption as

Ddepth =
1

Q

∫ Q

2

−Q

2

|x| dx =
Q

4
. (3.22)

However, different depth map sequences can have different statistical properties,

which leads to different amounts of distortion due to quantization. This is because

what is quantized is usually a transformed version of the prediction residual signal.

For example, some depth maps can have large amount of temporal noise, which

will generate large residual signals after inter prediction, and potentially significant

quantization errors in turn. Alternatively, some depth maps may show little varia-

tion in depth, which will result in a small residual signal after intra prediction, and

lower quantization errors. We capture this by modeling

Ddepth = c1Q, (3.23)

where c1 is a scaling factor, which can be selected according to sequence charac-

teristics. Then, this can be used to estimate the distortion as squared error in the

rendered view. If the autoregressive model derived in (3.13) and (3.14) is used, this

becomes:

D̃ (Q) = 2
(

1− ρ
kDdepth(Q)
1

)

σ2
video

= 2
(

1− ρkc1Q
1

)

σ2
video. (3.24)

And the depth map bitrate can be expressed using the model proposed in [42] as:
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Rdepth (Q) =
c2σ

2
depth res

Q2
, (3.25)

where c2 is a scaling factor reflecting sequence characteristics, and σ2
depth res is the

variance of the depth map residual signal after intra or inter prediction. Hence, if

we put (3.24) and (3.25) into (3.21), we get:

λ = clnρ1 · ρ
kc1Q
1 ·Q3, (3.26)

where c = −
σ2
video

σ2
depth res

c1
c2

k. In our experiments in Section 3.5, c1 and c2 are calculated

by fitting the data points, quantization step size versus sum of absolute difference

and bitrate, respectively, using the least square method for each sequence.

3.3 New skip mode selection scheme for reduced

flickering artifact

In this section, the new skip mode decision process is proposed by considering

local video characteristics. As described in Chapter 2, distortion can occur during

depth map estimation. In particular, if there is lack of features to perform stereo

matching, the resulting depth map can be noisy, so that it would not be efficient

to spend more bits to achieve an accurate representation of the noisy depth map.

When the noise is not so much correlated in temporal domain, this can cause a

flickering artifact as described in Section 2.6. Therefore, coding such noise would

not only increase bitrate but also degrade subjective quality.

To solve this problem, it is necessary to make a decision whether temporal

variation in depth map is due to true motion or due to noise. To make this decision

we propose to use video data, which would be less noisy than depth map. Before

53



encoding a block of depth data we take into account how the corresponding block

of video data was encoded. We note that limited motion regions are also regions

where depth information is unlikely to vary over time (in particular if cameras

remain fixed). Since limited motion blocks are likely to be encoded using skip

mode especially at low rates, we propose to “force” skip mode in depth coding

in those blocks for which skip mode was chosen for the video data. Note that in

those blocks, skip mode may not have been selected by the conventional encoding

methods, because the differences in depth are non-negligible. But, since there is no

motion in video, these differences in depth are very likely to be due to unreliable

depth estimation, and therefore can be ignored. When a video block is not coded

using skip mode, the corresponding depth map block can use all the coding modes

including skip mode.

In this way, better coding efficiency can be achieved by taking into consideration

depth map unreliability. Flickering artifacts due to temporal variation in depth map

are also reduced, leading to overall improvements in perceptual quality. In addition,

with this strategy one can select temporal skip in depth automatically, whenever

temporal skip in video has been chosen, so that no skip mode information needs

to be inserted in the depth bitstream. This leads to reduction in not only bitrate

but also encoding complexity, since it is possible to skip the motion estimation and

mode decision processes for depth map coding.

The proposed method is simple but efficient to improve coding performance and

subjective quality. However, a drawback is that error can propagate by forcing skip

mode, if wrong depth value is copied from the previous depth map frame. Another

drawback is this scheme cannot detect error in the area of true motion. Therefore,

it would be possible to improve the performance by considering these drawbacks.

We leave this as future study.
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3.4 Graph based transform for depth map coding

DCT has been widely used for block based image and video compression. It pro-

vides an efficient way to represent the signal both in terms of coding efficiency and

computational complexity as an orthogonal 2-D separable transform. However, it

is known to be inefficient for coding blocks containing arbitrary shaped edges. For

example, if DCT is applied to a block containing an object boundary which is nei-

ther horizontal nor vertical line, e.g. diagonal or round shape, or mixture of these,

the resulting transform coefficients tend not to be sparse and high frequency com-

ponents can have significant energy. This leads to higher bitrate and potentially

highly visible coding artifacts if operating at low rate.

To solve this problem variations of DCT have been proposed, such as shape

adaptive DCT [37], directional DCT [14,78,79], spatially varying transform [81,82],

variable block-size transform [74], direction-adaptive partitioned block transform

[7], etc., in which the transform block size is changed according to edge location or

the signal samples are rearranged to be aligned to the main direction of dominant

edges in a block. Karhunen-Loève transform (KLT) is also used for shape adap-

tive transform [51] or intra prediction direction adaptive transform [77]. These

approaches can be applied efficiently to certain patterns of edge shapes such as

straight line with preset orientation angles; however, they are not efficient with

edges having arbitrary shapes. Radon transform is used for image coding [41, 53],

but perfect reconstruction is only for binary images. Platelets [75] are applied for

depth map coding [29], and approximate depth map images as piece-wise planar

signals. Since depth maps are not exactly piece-wise planar, this representation

will have a fixed approximation error.
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Wavelet based approaches have also been studied such as curvelets [5], bandelets

[36], contourlet [11, 39], directionlets [63], etc. Edge-adaptive wavelets have been

applied for depth map coding by using shape-adaptive lifting [27] and switching

between long filters in homogeneous areas and short filters over the edges [10].

Graph-based wavelets are proposed to preserve edge information in a depth map

[44]. All these approaches try not to apply transform across the edge; however, these

are not amenable to block based coding architecture, which has been widely adopted

in international standards for image and video coding such as JPEG, MPEG-2,

MPEG-4, H.264/AVC, etc.

To solve these problems, we propose the graph based transform (GBT) as an

edge adaptive block transform that represents signals using graphs, where no con-

nection between nodes (or pixels) is set across an image edge. Note that while

“edge” can refer to a link or connection between nodes in graph theory, we only

use the term “edge” to refer an image edge to avoid confusion. GBT works well

for depth map coding since depth map consists of smooth regions with sharp edges

between objects in different depths. In this section, it is described how to con-

struct the transform and apply it to depth map coding. Refer to [49] for detailed

properties and analysis of the transform.

3.4.1 Construction of graph based transform

The transform construction procedure consists of three steps: (i) edge detection on

a residual block, (ii) generation of a graph from pixels in the block using the edge

map (iii) construction of transform matrix from the graph.
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In the first step, after the intra/inter prediction, edges are detected in a residual

block based on the difference between the neighboring residual pixel values. A sim-

ple thresholding technique can be used to generate the binary edge map. Then, the

edge map is compressed and included into a bitstream, so that the same transform

matrix can be constructed at the decoder side.

In the second step, each pixel position is regarded as a node in a graph, G, and

neighboring nodes are connected either by 4-connectivity or 8-connectivity, unless

there is edge between them. From the graph, the adjacency matrix A is formed,

where A(i, j) = A(j, i) = 1 if pixel positions i and j are immediate neighbors not

separated by an edge. Otherwise A(i, j) = A(j, i) = 0. The adjacency matrix is

then used to compute the degree matrix D, where D(i, i) equals the number of

non-zero entries in the i-th row of A, and D(i, j) = 0 for all i 6= j.

In the third step, from the adjacency and the degree matrices, the Laplacian

matrix is computed as L = D − A [16]. Then, projecting a signal G onto the

eigenvectors of the Laplacian L yields a spectral decomposition of the signal, i.e.,

it provides a “frequency domain” interpretation of the signal on the graph. Thus,

a transform matrix can be constructed from the eigenvectors of the Laplacian of

the graph. Since the Laplacian L is symmetric, the eigenvector matrix E can

be efficiently computed using the well-known cyclic Jacobi method [43], and its

transpose, ET, is taken as GBT matrix. Note that the eigenvalues are sorted in

descending order, and corresponding eigenvectors are put in the matrix in order.

This leads to transform coefficients ordered in ascending order in frequency domain.

It is also possible to combine the first and second steps together. Instead of

generating the edge map explicitly, we can find the best transform kernel for the

given block signal by searching the optimal adjacency matrix. When 4-neighbor

connectivity is considered in a 4 × 4 block, there are 12 horizontal edges and 12
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vertical edges. Accordingly there are 224 possible adjacency matrices. Instead of

searching the whole space to find the optimal adjacency matrix, a greedy algorithm

can be applied. By defining a cost function, the cost for including each edge can

be calculated. Then, the number of edges are increased from zero to 24, leading to

stages 0 to 24. At stage 0 the cost is calculated when there is no edge. At stage 1

the cost is calculated for each edge location by setting one of them as an edge at

a time. The one with the minimal cost is selected as the optimal edge at stage 1.

Then at stage 2, the edge found in stage 1 is included, and an additional edge is

found as in the stage 1 excluding the edge found in stage 1. We can calculate the

cost for each stage by including additional edges, and choose the best stage which

results in the minimal cost. Then, this will give the optimal adjacency matrix.

The equations below show the cost function to search the optimal adjacency

matrix using the greedy algorithm.

Costcoeff = fTLf =
∑

i

λiα
2
i =

1

2

∑

i,j

aij(fi − fj)
2, (3.27)

Costcoeff rate = log2(

∑

i,j aij(fi − fj)
2

2Q2
), (3.28)

Cost = Costcoeff rate + kCostedge rate

= log2(

∑

i aij(fi − fj)
2

2Q2
) + km, (3.29)

where f is a vector of the input depth map block, fi is the i-th element in this vector,

aij is the corresponding element in the adjacency matrix, and Q is quantization

step size. The edge rate is that needed to code the adjacency matrix, which can be
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represented using 24 bits and further compressed using entropy coding. The scaling

factor k can be applied to balance the coefficient rate and edge rate.

Transform coefficients are computed as follows. For an N ×N block of residual

pixels, form a one-dimensional input vector x by concatenating the columns of the

block together into a single N2 × 1 dimensional vector, i.e., x(Nj + i) = X(i, j)

for all i, j = 0, 1, ..., N − 1. The GBT transform coefficients are then given by

y = ET · x, where y is also an N2 × 1 dimensional vector. The coefficients are

quantized with a uniform scalar quantizer followed by entropy coding. Unlike DCT

which uses zigzag scan of transform coefficients for entropy coding, GBT does not

need any such arrangement since its coefficients are already arranged in ascending

order in frequency domain.

To achieve the best performance one can choose between DCT and GBT. For

example for each block the RD cost can be calculated for both DCT and GBT, and

the best one can be selected. Overhead indicating the transform that was chosen

can be encoded into the bitstream for each block, and the edge map is provided

only for blocks coded using GBT.

3.4.2 Graph based two-channel transform

In the previous subsection, an image block is represented as a graph using an edge

map, and the transform matrix is formed using the eigenvector of Laplacian matrix,

which is a spectral representation of graph. Even though this approach can perform

better than the conventional DCT for blocks containing complex shape edges, one

drawback is the computational complexity of finding all the eigenvectors of the

Laplacian matrix. To resolve this issue we propose an alternative transform, which
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has similar performance to GBT in terms of the coding efficiency, but with less

computational complexity.

The transform bases of the GBT consist of eigenvectors of the Laplacian matrix

of a graph. Narang and Ortega [32] showed that an alternative transform can be

found by properly defining polynomial kernels and applying them to the Laplacian

matrix. One restriction is that this transform should be applied to a connected

graph. We propose applying this transform to image blocks as follows.

First, an image block is represented as a graph as described in Section 3.4.1.

Then, using its adjacency matrix, we find connected components, which are the

pixels not separated by an edge. For each group of connected components, the

Laplacian matrix is defined as in Section 3.4.1. For example, if there is one edge

in a block dividing the block into two regions, there will be two connected compo-

nents groups and two Laplacian matrices representing each group. Then, for each

Laplacian matrix a two-channel transform, Tlow and Thigh can be defined with low

pass and high pass operators as [32]:

Tlow = a1Li + a0I, (3.30)

Thigh = b1Li + b0I, (3.31)

where Li is the Laplacian matrix corresponding to each connected component, a0 =

1, a1 = −1/ (2× dmax + 1), b0 = 0, b1 = 1/ (2× dmax + 1), with dmax representing

the maximum element in the degree matrix of the group, and I is Ni ×Ni identity

matrix with Ni indicating number of components in the group.

Then this two-channel transform is applied to even and odd components of the

corresponding connected components in the graph. We define the first node in a
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connected component as the even node and others as the odd nodes. Then, the

transform matrix is formed by combining the first row of Tlow and the others from

Thigh. This implies that the first transform coefficient from the first row of the

transform matrix conveys weighted average of the connected components similar

to DC component in DCT, and other coefficients generate weighted difference of

the connected components similar to AC components in DCT, where the weights

relates to local connectivity. We call this as a graph based two-channel transform

(G2T). Since this is not an orthogonal transform, its inverse transform matrix can

be found by matrix inversion.

For entropy coding transform coefficients in each group is interleaved in as-

cending order of frequency, so that all the coefficients in a block can be efficiently

compressed using run-length coding. Fig. 3.2 shows an example of coefficient or-

dering for entropy coding, where there are 4 groups of connected components, and

7, 6, 2, and 1 components are in each group. The number in each square indicates

the order.

3.4.3 Application to depth map coding with sparsification

When a depth map is compressed, it is desirable to consider the distortion in the

rendered view from depth error. Cheung et al [8, 9] defined a “don’t care region”

based on the sensitivity of the rendered view distortion to depth map errors. Based

on this the input depth map signal can be modified to increase the coding gain.

A transform domain sparsification (TDS) technique is used to modify the signal

as described in [8]. While TDS tries to sparsify the signal by modifying the input

signal, GBT works to sparsify from the original signal by not applying transform
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Figure 3.2: Example of G2T transform coefficient ordering for entropy coding,
where a block consists of 4 connected component groups.

across the edges. Since they work in different manner, it is expected that additional

coding gain can be achieved by combining them.

To combine TDS and GBT, the quantized GBT coefficients are used for TDS

for the depth map blocks with prominent edges, which therefore would be coded

using GBT. For other blocks, quantized DCT coefficients are used for TDS. One

thing to consider is how to determine the GBT kernel on which to perform TDS.

Since the edges in the original signal can be modified by TDS, it will be desirable

to consider the edges which will not be affected by TDS.

Unlike typical edge detection in computer vision literature for semantic-related

tasks such as object segmentation or recognition, the goal here is strictly for coding;

i.e., identification of “edges” that cannot be efficiently coded using non-adaptive

transforms. For simplicity, we first detect prominent edges in depth maps based on
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the absolute difference between neighboring pixels; i.e., we check if the difference

exceeds a threshold θ [49]. Then, we evaluate each edge location to determine

whether it contributes to a sparser representation if included in the transform.

To identify a good transform at low computational complexity, we perform the

following simple procedure:

1. Given detected edges using threshold θ, construct a graph using all detected

edges and perform GBT on the block. This results in sparsity count ρ, which

is number of non-zero quantized coefficients.

2. Rank the importance of edges based on difference of depth pixel values across

the edges. Initialize a no-edge graph (nodes representing neighboring pixels

are all connected by links).

3. For given graph, sparsify the graph transform representation using TDS. If

sparsity count equals ρ, store the current graph and stop. Otherwise, proceed

to the next step.

4. Add the next most important edge to the graph (remove the link between

nodes representing neighboring pixels crossing the edge). Go to step 3.

Because TDS finds sparser representations easier as more edges are added, the

procedure tends to terminate with sparsity count ≥ ρ before all the detected edges

are added, resulting in a net-positive coding gain. Moreover, ρ is a sparsity count

that is demonstrably achievable, since it was the pre-set value for GBT-only. This

means the procedure is guaranteed to exit, in the worst case when all the detected

edges are specified.

63



3.5 Experimental results

3.5.1 New distortion metric and RD optimization

The new distortion metrics and RD optimized mode selection scheme are imple-

mented based on H.264/AVC (joint model reference software ver. 13.2), and verified

with experiments using various multiview test sequences. MPEG multiview video

test sequences are used to generate the depth map for each sequence using the

depth estimation reference software ver. 3.0 [59]. In addition, for the ‘Ballet’ and

‘Breakdancers’ sequences, color video and depth maps are provided by Microsoft

Research [83]. Each sequence has different characteristics and camera settings,

e.g., different amount of texture and object edges, parallel or non-parallel, dense or

sparse camera settings, capturing long or short range of distance, etc. Note that

different camera settings affect the amount of geometry error caused by depth map

distortion, which can be captured by the linear relationship in (3.9) introduced in

Section 3.1.1.

To generate the rendered view the view synthesis reference software (VSRS)

3.0 [58] is used. In our simulations, in order to compare rendering results with

ground truth (captured view), we select the target view to be positioned at the same

location as one of the captured views, and use its two neighboring views and the

corresponding depth maps as input for VSRS. For example, we can render view 4 of

Ballet using view 3 and view 5 as input. Since the target view is between these two

reference views, in order to derive the geometry error from depth coding distortion,

the distance between p and p′ is set to one camera distance (one baseline) in (3.8).

Both input color video and corresponding depth map are coded and decoded using

the same QP.
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First, in order to evaluate the accuracy of the proposed distortion estimation

methods, the new distortion metrics in Sections 3.1.2 and 3.1.3, which we now

refer to as ‘Video Ref’ and ‘AR Model’, respectively, are compared to the actual

distortion in the rendered view. Note that there are two sources of distortion in

the rendered view - depth map distortion and rendering process. Since we want

to consider only the effect due to depth map distortion, the actual distortion is

calculated by generating the rendered view with and without coding the depth map,

and then taking the sum of squared difference (SSD) between these two versions

for each macroblock (MB). Fig. 3.3 shows the comparison in terms of distortion in

the rendered view, distortion in the compressed depth map, and estimation result

based on ‘Video Ref’ and ‘AR Model’, respectively. For better visualization, total

SSD for all MBs in a row within a frame is computed and plotted (in log scale) as a

function of the row index. In Fig. 3.3 (a), the depth map distortion is much smaller

than that of the rendered view, on the other hand, this is the opposite in Fig. 3.3

(b). This is because ‘Champagne Tower’ captures a scene with content much closer

to the camera than that of ‘Dog’, which results in larger scaling factor in (3.9), and

consequently larger geometry error. At the same time the pixel intensity variance of

‘Champagne Tower’ is larger than that of ‘Dog’. Both factors together lead to the

different trends shown in Figs. 3.3 (a) and (b). In both cases, the proposed methods

more closely follows the actual distortion occurred in the rendered view than the

depth map distortion, i.e., they provide a more precise distortion estimation than

using the distortion of the depth map. Furthermore, ‘Video Ref’, which estimates

the rendering distortion by referring to the video with pixel by pixel geometry error,

gives better results than ‘AR Model’ which approximates the distortion with global

autoregressive model.
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(a) Champagne Tower

(b) Dog

Figure 3.3: Distortion estimation evaluation in comparison with the rendered view
distortion. x-axis: MB row index; y-axis: total SSD for all MBs in a row (in log
scale).

Secondly, the performance of the proposed distortion estimation method based

on local video characteristics is compared to the one based on global video char-

acteristics. In our previous work [18] the rendered view distortion is estimated
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using global video characteristics, in which the mapping from geometry error to

rendered view distortion is determined using a global parameter calculated from

a set of frames. However, local video characteristics can affect the rendered view

distortion. For example when a local area of a video frame contains complex tex-

ture, even a small amount of geometry error can cause large distortion. On the

other hand, geometry error would not result in much distortion in flat region in

a video frame. Since the proposed methods estimate the rendered view distortion

for each pixel in ‘Video Ref’ and for each block in ‘AR Model’, they can reflect

local video characteristics very well. Fig. 3.4 shows the performance comparison

between the global and local estimation methods when they are applied to the RD

optimized mode selection scheme, where ‘Global’ indicates the global estimation

method in [18], and ‘Local’ is the local estimation method as proposed in Sec-

tion 3.1.2 without applying the new Lagrange multiplier. Compared to ‘H.264’

where depth map distortion itself is used for mode decision, both global and local

distortion estimation methods show good performance. In both test sequences, the

local estimation method performs better than the global one. Note that the perfor-

mance gap between local and global methods is larger in ‘Breakdancers’ sequence

than in ‘Ballet’ sequence. The former contains a complex scene with many objects

and the scene in the latter is simple with flat regions in the background. Therefore,

the global estimation can match the performance of the local method in the latter

case, while the local method can work significantly better when the video contains

a complex scene (as in the former case).

Thirdly, the new Lagrange multiplier derived in Section 3.2.2 is applied along

with the new distortion metrics to the RD optimized mode selection. To generate

RD curves, two sets of video and depth map are coded using same QP values. Then,

using the decoded video and depth map, an intermediate view is rendered, which
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(a) Ballet

(b) Breakdancers

Figure 3.4: Comparison between global and local distortion estimation methods. x-
axis: total bitrate to code two depth maps; y-axis: PSNR of luminance component
between the rendered view and the ground truth.

can be compared with the ground truth (the captured view) to generate peak signal

to noise ratio (PSNR) of luminance component. Fig. 3.5 (a) is for ‘Video Ref’ and

Fig. 3.5 (b) is for ‘AR Model’, where RD curves are generated with and without the

new Lagrange multiplier. For both methods, the new Lagrange multiplier improved

the coding efficiency.
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(a) Pantomime

(b) Newspaper

Figure 3.5: Rate-distortion performances of the proposed methods with and without
new Lagrange multiplier.

Finally, the RD performance is compared to that of H.264/AVC as shown in

Fig. 3.6. The BD-PSNR and BD-bitrate [3] are calculated using various multiview

sequences, and listed in Table 3.2. On average, 0.6 dB BD-PSNR improvement

or 70% bitrate saving is observed by ‘Video Ref’, and 0.25 dB and 35% by ‘AR

Model’.
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(a) Lovebird2

(b) Doorflowers

Figure 3.6: Comparison of the rate-distortion curves between the proposed methods
and H.264/AVC.

From the RD curves in Figs. 3.4-3.6, it can be observed that the PSNR saturates

as bitrate increases. This is because the PSNR is calculated compared to the

ground truth, and there is distortion even without coding video and depth maps

due to various factors such as occlusion, depth estimation error, etc., as discussed in

Section 2.2. It would be possible to calculate PSNR compared to the synthesized

view without coding video and depth maps. However, we use the ground truth
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Table 3.2: BD-PSNR (dB) and BD-bitrate (%)results of the proposed methods,
‘Video Ref’ and ‘AR Model’.

Sequence
Video Ref AR Model

BD-PSNR BD-bitrate BD-PSNR BD-bitrate

Dog 0.56 61.84 0.32 45.53
Lovebird 1 0.28 71.86 0.01 -21.80
Lovebird 2 0.65 81.98 0.34 44.85

Door Flowers 1.64 94.29 0.64 72.16
Newspaper 0.22 78.86 0.10 37.88
Pantomime 0.54 49.84 0.14 19.38

Ballet 0.57 51.98 0.30 27.12
Breakdancers 0.14 64.77 0.12 54.94

Average 0.58 69.43 0.25 35.01

whenever it is available to calculate PSNR so that we can have better sense how

much the result is close to the original view.

3.5.2 New skip mode selection scheme

We now evaluate the new skip mode selection scheme. By using this new approach,

subjective quality can be improved because flickering artifacts are reduced. Flick-

ering artifacts occur in the synthesized views due to false temporal variation in

depth map. With the proposed method, false temporal variation in depth map can

be suppressed by use of skip mode, and as a result the flickering artifact can be

reduced.

To see the temporal variation in the static background region without and with

the proposed method, the bottom right quarter of the synthesized Ballet sequence is

taken from two temporally consecutive frames, and the difference image is shown in

Fig. 3.7. It can be easily noticed that the temporal variation has been significantly

reduced by the proposed method, leading to flickering artifact reduction. This
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also can lead to significant bitrate savings, since we are not coding the noise in

the erroneous depth map blocks and just copying them from the previous frame.

Table 3.3 lists the bitrate saving achieved using sequences with various amounts

of temporal variation in depth map. The proposed measurement for the amount

of flickering artifact due to depth map error, F , is also listed in Table 3.3. The

coding efficiency improvement does not always match F , since various factors affect

the coding efficiency improvement other than F , such as variance of depth map

block, baseline distance, contrast between foreground and background objects, etc.

However, it can be noticed that as F increases, better coding efficiency can be

achieved by not coding false temporal variation due to depth map error. This

shows that as false temporal variation increases the coding gain also increases, with

maximum bitrate saving of 66 % and on average, 25 %.

Table 3.3: BD-PSNR/bitrate results of the proposed new skip mode selection
scheme.

Temporal
Sequence F

BD-PSNR BD-bitrate
Variation (dB) (%)

Little

Champagne Tower 0.2 1.1 26.4
Newspaper 0.2 1.2 28.5

Cafe 0.3 0.1 6.5
Pantomime 0.7 0.5 19.2
Lovebird 1 0.8 0.3 6.9

Moderate

Balloons 2.0 1.7 39.7
Mobile 2.6 0.3 2.6

Beergarden 6.8 0.5 8.0
Kendo 7.6 1.2 28.5

Book Arrival 8.8 1.1 26.7

Large
Street 20.7 0.4 11.8
Hall 1 26.0 1.6 66.0

Car Park 40.3 2.4 52.4
Hall 2 46.4 0.5 20.5

Average 0.9 24.5
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(a) H.264/AVC

(b) Proposed methods

Figure 3.7: Example of flickering artifact reduction: (a) H.264/AVC and (b) pro-
posed method.

One possible drawback of the proposed scheme is that false depth map value

can propagate when using the skip mode if the reference depth map block which

is copied by the skip mode to the next frame contains wrong depth value. This

can be observed from the RD curves in Fig. 3.8, where large bitrate saving can be

noticed with negligible PSNR drop.
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(a) Balloons

(b) Hall 1

Figure 3.8: RD curves using the new skip mode selection scheme compared to
H.264/AVC: (a) Balloons (b) Hall 1.

While large bitrate saving can be achieved by not coding the detail of the

area with false temporal variation, part of the reason for little PSNR drop can be

propagation of wrong depth information. This problem can be solved by using the
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proposed RD optimized mode selection scheme in Section 3.1. Because the proposed

RD optimized mode selection scheme considers the rendered view distortion, this

will prevent propagation of wrong depth map value by using skip mode, if the

distortion is too large compared to bitrate saving. We leave study on combination

of the proposed tools as future study.

3.5.3 Graph based transform

In this subsection, the performance of GBT is evaluated using various test se-

quences. The implementation is based on H.264/AVC reference software JM17.1.

The transform mode is signaled for each 4 × 4 block to indicate the best transform

between the H.264/AVC integer transform which is a modification of DCT and the

proposed GBT. GBT kernel is generated in two ways. First, normal edge detection

scheme is applied to detect edges in a block. In this case, for the blocks coded using

GBT, the edge map is losslessly encoded and sent to the decoder. Secondly, instead

of finding edge map, we find optimal adjacency matrix using the method described

in Section 3.4.1, where the adjacency matrix is losslessly encoded and sent to the

decoder. We compare these two methods to the case where the depth maps are

encoded using H.264/AVC.

Fig. 3.9 shows the RD curve comparison between the proposed methods and

H.264/AVC, where the bitrates for GBT cases include transform selection bits and

edge map or adjacency matrix information bits in addition to depth map coding

bits. QP values of 24, 28, 32, and 36 are used to encode depth maps. PSNR is

calculated by comparing the ground truth video and the synthesized video using

the decoded depth maps.
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(a) Book Arrival

(b) Balloons

Figure 3.9: RD curve comparison between GBT and H.264/AVC, where GBT is
formed using edge detection or by finding optimal adjacency matrix: (a) Book
Arrival (b) Balloons.

From the RD curves in Fig. 3.9, it can be noticed the GBT generated using

optimal adjacency matrix performs better than H.264/AVC, while the GBT gener-

ated using edge detection scheme does not perform better than H.264/AVC most of

the cases. It is observed that significant amount of bitrate saving can be achieved
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(c) Champagne Tower

(d) Mobile

Figure 3.9: RD curve comparison between GBT and H.264/AVC, where GBT is
formed using edge detection or by finding optimal adjacency matrix: (c) Cham-
pagne Tower (d) Mobile.

by GBT, while there is little PSNR improvement. The bitrate saving increases as

overall bitrate increases. This is because more number of blocks are chosen to be

coded using GBT in high bitrate, since the portion of additional bits for adjacency

matrix in total bitrate reduces. It can be also noticed that different performance
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gain is achieved in each test sequence. The performance of GBT depends on the

amount of edges in a frame, and the strength of edge. If there is large amount of

noise around object boundary, GBT may not provide much gain over DCT. Among

various test sequences, Champagne Tower contains large amount of edges in a frame

with relatively strong edge strength. In case of Mobile sequence, there are strong

edges along the object boundary with relatively less amount of noise compared to

other sequences. Therefore, large gain can be achieved in these two sequences. All

the results for 11 test sequences are given in Table 3.4, where the coding efficiency

is represented using BD-PSNR and BD-bitrate.

Table 3.4: BD-PSNR/bitrate results of GBT compared to H.264/AVC.

Sequence BD-PSNR BD-bitrate

Lovebird 1 0.0 -7.1
Cafe 0.1 -39.6

Newspaper 0.1 -7.7
Book Arrival 0.3 -17.7

Balloons 0.2 -8.3
Champagne Tower 0.2 -76.2

Kendo 0.1 -6.3
Pantomime 0.1 -5.2

Mobile 3.6 -38.7
Car Park 0.1 -13.0

Street 0.2 -9.3

Average 0.4 -20.8

Secondly, the performance of GBT and G2T is compared to that of DCT in

terms of the depth map distortion. The RD curves are generated using Ballet and

Mobile sequence as can be seen in Fig. 3.10. Note that the PSNR is generated

by comparing the original and decoded depth maps. It can be noticed that GBT

and G2T show almost same performance, which is significantly better than that of

DCT.
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(a) Ballet

(b) Mobile

Figure 3.10: RD curves of GBT and G2T compared to DCT. x-axis: bitrate to
code a depth map; y-axis: PSNR of depth map.
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Next, the performance of GBT and combination of GBT and TDS are evaluated

using the test images, Teddy and Dolls, among Middlebury stereo datasets [46,

47], where the ground truth disparity maps for the left and the right view are

compressed, and the decoded disparity maps are used for synthesis of the middle

view between the left and right views. The original intensity image is used for the

view synthesis. Even though disparity maps are used for the experiments, similar

performance is expected when the proposed method is applied to depth map coding

considering the relationship between them [66]. The view synthesis is performed

by warping the left and right views to the target view position, then a blending

process is applied if more than one pixels are mapped to the same position, which

is weighted averaging using the distance from the reference view to the target view.

For example, the weight is half if the middle view is synthesized between the left

and right views. When there is no pixel mapped to a position, hole filling process

is applied for this position by copying the horizontally nearest neighboring pixel

value.

To compare the performance of the proposed method, which is the combination

of TDS and GBT (TDS+GBT), various conventional methods are applied such

as DCT, GBT, and TDS to compress the disparity maps. A block size of 4 ×

4 is used for the transforms, followed by uniform quantization and CABAC as

entropy coding. We used the integer transform in H.264/AVC as DCT, and the

reference software JM 17.1 is used for the experiments. The same software is used

to implement GBT and the proposed method. Note that for exploration purpose

neither intra nor inter prediction is performed in our experiments. The inter-view

prediction is not applied, either.

Fig. 3.11 shows the RD curves generated using various coding methods such

as DCT, GBT, TDS, and the proposed method, TDS+GBT. Fixed QP values
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Table 3.5: BD-PSNR (dB) and BD-bitrate (BDBR, %) results of GBT, TDS, and
the proposed methods, GBT+TDS, compared to DCT.

Sequence
Teddy Dolls

BD-PSNR BDBR BD-PSNR BDBR

GBT 0.7 -24 0.3 -7
TDS 1.0 -31 0.9 -19

TDS+GBT 1.6 -34 1.2 -32

of 24, 28, 32, and 36 are used to code left and right disparity maps, and the

bitrate is represented in the unit of bits per second assuming 30 frames per second

(fps). While both GBT and TDS performs better than DCT, TDS+GBT provides

additional coding gain for both test sequences, 0.6 dB and 0.3 dB for Teddy and

Dolls, respectively, in terms of BD-PSNR [3] as shown in Table 3.5. The shape of

the RD curves of TDS+GBT looks less straight compared to DCT or GBT, which

is inherited from TDS. One reason for this is during TDS procedure the same λ

value is applied for all QP values for TDS and TDS+GBT, 0.05 for Teddy and 0.5

for Dolls, respectively. It is expected that better performance can be achieved by

adapting λ to QP value as the Lagrange multiplier can be adapted to QP value for

optimization [19].

From the RD curves, it can be noticed that the bitrate is reduced, while the

PSNR is improved. The bitrate reduction is achieved by efficiently combining

TDS and GBT processes. While the PSNR improvement in GBT is achieved by

preserving well the object boundaries in disparity maps, that of TDS is achieved by

providing expanded smooth object boundaries for the foreground area. We leave

as a further study topic understanding exactly what causes this and how to achieve

optimal performance.
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Figure 3.11: Rate-distortion curves of DCT, GBT, TDS, and the proposed method,
TDS+GBT. x-axis: total bitrate to code two disparity maps; y-axis: PSNR of
luminance component between the rendered view and the ground truth.

Figure 3.12: Subjective quality comparison of synthesized view of Teddy using DCT
(left) and the proposed method, TDS+GBT (right).

Fig. 3.12 shows the subjective quality comparison between the synthesized

view using DCT coded disparity map (left) and the one with the proposed method,

TDS+GBT (right). In the DCT result it can be easily noticed that there is distor-

tion along the foreground object boundary. Using the TDS+GBT, the distortion

along the object boundary area is reduced. Both results are generated using QP

value of 24, in which the bitrate of TDS is 16% lower than that of DCT.
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3.6 Conclusion

In this chapter various coding algorithms are proposed to efficiently compress depth

maps. First, we propose new distortion estimation methods, which derive the

relationship between the depth map error to geometry error, and geometry error

to the distortion in the rendered view. These estimation methods are applied to

the RD optimized mode selection scheme along with the new Lagrange multiplier

derived using the autoregressive model. The experimental results show that the

proposed methods can provide accurate estimation of the rendered view distortion

due to depth map error, so that coding efficiency improvement of 0.6 dB or 70 %

bitrate savings on average can be achieved when it is applied to the depth map

coding mode decision scheme.

In addition, the new skip mode selection scheme improves the subjective quality

by suppressing the flickering artifact, which occurred by temporal inconsistency in

depth map. This also results in significant bitrate savings by not coding noise in

depth map. Experimental results shows 0.9 dB PSNR gain or 25 % bitrate savings

on average.

Also the graph based transform (GBT) is proposed for depth map coding, which

not only reduces bitrate but also improves the rendered view quality by preserving

edges from transform coding. It is observed 0.4 dB PSNR coding gain or 20 %

bitrate savings can be achieved when applied to depth map coding.

All these algorithms are developed considering depth map specific character-

istics. To achieve the optimal performance it will be necessary to study how to

combine these tools together. We leave this as a future study topic.
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Chapter 4

New 3-D Video Format

4.1 Depth transition data

As discussed in Chapter 2, depth map coding distortion can lead to significant

subjective quality degradation, and it is found that the distortion in the rendered

view due to depth map quantization error has non-linear and localized features. In

this section we propose a new 3-D video format to improve the subjective quality

of the rendered view. Since the cause for the artifact is depth map coding error,

we can solve this problem by providing additional information which can provide

more precision to the depth data.

One possible approach to compensate the rendered view distortion would be

to provide additional information for each intermediate rendered view. A simple

example of this would be to synthesize views at the encoder and transmit a residue

between the synthesized view and the original captured video. However, this so-

lution is not feasible to synthesize an arbitrary view position if the ground truth

video for this position is not available. Moreover, even though the ground truth

video is available, this solution is not attractive because the required overhead will

increase with the desired number of possible interpolated views. Instead, our goal
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is to provide auxiliary data that complements depth information and can be used

to improve rendering of multiple intermediate views. With this approach the same

auxiliary data can be sent, giving users maximum flexibility in determining which

view should be interpolated.

To achieve these goals, we propose transmitting depth transition data (DTD) for

specific pixel locations. Consider a pixel location in two different views. Because

of the different camera position the depth value at the same image coordinate can

be different in each view. DTD is the view position in between the two existing

views at which the depth value for a given pixel location will change from that of

the same pixel location in the right view to that of the same pixel location in the

left view. Note that this implies that we do not need to send DTD if a given pixel

has the same depth in both left and right views. Fig. 4.1 shows an example of this,

where a cube object is captured with three horizontally different camera positions

as shown in Fig. 4.1 (a). As the view index increases, the cube object moves to the

left in the image frame. Therefore, for a given pixel location, we can trace how the

depth value for that pixel location changes as a function of the chosen intermediate

camera position as shown in Fig. 4.1 (b).

Note that conventional depth map information is provided for each reference

view and is available for every pixel position, while DTD is associated to view

pairs and is only transmitted for certain pixel locations. Since both standard depth

information and DTD are transmitted, DTD allows us to spend additional bits in

specific locations in order to improve view interpolation. Thus, we transmit DTD

only for the subjectively important portions of the video, exploiting the highly

localized nature of regions that are more sensitive to view interpolation errors (as

shown in Figs. 2.9 and 2.10). The coding precision of DTD can also be easily

adjusted depending on the desired density of intermediate views to be generated
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(a)

(b)

Figure 4.1: Depth transition example (a) cube object captured in horizontally
different camera positions (b) depth value transition curve at a specific image co-
ordinates
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at the decoder (i.e., coarser quantization can be used if the number of interpolated

views is small).

Beside the DTD precision to represent the intermediate view location, another

precision of DTD is how precisely represent depth information. For example, if it is

represented like an 8 bit depth map, DTD can trace depth transition of every single

depth level change. If it is represented as 1 bit data, DTD can trace depth change

between two depth layers, i.e., foreground and background. Therefore, it is possi-

ble to represent any depth level precision using DTD. The other precision related

to DTD is how many number of transition between two views can be recorded.

It is possible there are more than one transition at a pixel position between two

views. This will be more likely when baseline distance is large. For simplicity in

our research the precision of DTD is limited to represent one intermediate view

position between two reference views with tracing transition between two depth

layers, i.e., foreground and background, and to record only the first transition hap-

pened between two reference views. In the next section a more detailed description

is provided to explain how to generate DTD.

4.2 Generation of depth transition data

DTD is generated for each pixel location by tracing its depth map value change.

For simplification only transition from foreground to background or vice versa is

recorded instead of exact depth map value change. However, this can be easily

extended to more number of depth layers.

First, it is necessary to set a criterion for depth layer determination for the

reference views. There have been various researches on object separation, e.g.

using video motion information, segmentation based method, etc. In this work, as
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a preliminary approach the depth map is used for the separation. For example,

the depth map value range can be divided according to the number of depth layers

represented by DTD. If DTD represents two depth layers, i.e., foreground and

background, a middle point of the depth map value range, i.e. the average of

maximum and minimum depth map values can be used as a threshold value, and

for each pixel location, if its depth map value is smaller than the threshold, it will

belong to the background, and vice versa. The threshold value can be adjusted for

better separation of depth layers. Note that more advanced algorithms will help to

improve the performance of our proposed method.

Next, if the depth maps for the intermediate views between reference views are

available at the encoder side, they can be used to generate the depth transition

data by thresholding the depth map values and generating the binary map using

the same scheme applied to the reference views. Then, it is easy and precise to

trace the transition in this case.

However, the depth maps are not always available for the target view at an

arbitrary view position. Therefore, we derive how to estimate the camera position

where the depth transition happens using the camera parameters. Refer to Table 3.1

for the notations used in this section. As shown in Section 3.1.1, camera coordinates

(x, y, z) can be mapped into the world coordinates (X,Y, Z) using (3.1), and the

image coordinates (xim, yim) can be expressed from the camera coordinates as in

(3.2). Then, we can derive the point mapping from the reference view to the target

view using camera parameters. Specifically, if we map a point in the p-th view of

which the camera parameters are Ap , Rp , and Tp , to the p′-th view with parameters

of Ap′ , Rp′ , and Tp′ , the camera coordinates in the p′-th view can be represented

as in (3.3). Then, the image coordinates in the p′-th view can be represented as in

(3.4).
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Now, based on the derivation of point mapping, we show how to calculate the

camera position at which depth transition happens. We assume that the cameras

are arranged in a horizontally parallel position, which implies that Rp′ = R−1
p =

Rp′R
−1
p = I (identity matrix). To calculate Ap′A

−1
p , we define the intrinsic matrix

A as

A =













fx 0 ox

0 fy oy

0 0 1













, (4.1)

where fx and fy are the focal length divided by the effective pixel size in horizontal

and vertical direction, respectively, and (ox, oy) is the coordinates in pixel of the

image center (the principal point). Then, A−1 can be calculated as

A−1 =













1/fx 0 −ox/fx

0 1/fy −oy/fy

0 0 1













. (4.2)

Therefore, if we assume the same focal length for both cameras at p-th and p′-th

views, (3.4) will become
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1
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xim + ox,p − ox,p′

yim + oy,p − oy,p′

1













+
1

z′
Ap′ {Tp −Tp′} . (4.3)
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Under the parallel camera setting assumption, there will be no disparity change

other than in horizontal or x-direction. Therefore, the disparity ∆xim can be ex-

pressed as

∆xim = x′
im − xim = ox,p − ox,p′ +

1

z′
· fx · tx, (4.4)

where tx indicates the camera distance in horizontal direction. The relationship

between the actual depth value and 8-bit depth map value is given in (2.1). By

plugging this into (4.4), we can get

∆xim = x′
im − xim

= ox,p − ox,p′ +

(

Lp (xim, yim)

255
·

(

1

Znear

−
1

Zfar

)

+
1

Zfar

)

· fx · tx. (4.5)

Therefore, if we know the camera distance, tx, we can calculate the disparity, ∆xim,

and vice-versa.

To find the exact view position where transition happens, we set the disparity

as the horizontal distance from the given pixel location to where depth transition

happens. The horizontal distance is the number of pixels from the given pixel to

the first pixel of which the depth map value difference with respect to the original

pixel exceeds a preset threshold value. Then using this distance as the disparity,

∆xim, we can estimate the view position at which depth transition occurs as:

tx =
∆xim + ox,p′ − ox,p

fx

·
255

a · Lp (xim, yim) + 255b
, (4.6)

where a = 1
Znear

− 1
Zfar

and b = 1
Zfar

. Then, tx can be quantized to the desired

precision and transmitted as auxiliary data.
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4.3 Rate-distortion analysis of depth transition

data

The performance of DTD depends on various factors. If the rendered view quality

using depth map without DTD is very high, there would be not so much room for

improvement when DTD is applied. Therefore, the performance of DTD is closely

related to factors affecting the rendered view quality such as baseline distance,

intensity contrast between objects at different depths, depth range in a scene, fore-

ground object size, etc. For example if the baseline distance is large and the object

is close to the camera, there will be large amount of occlusion which will result

in low rendered view quality. Also, if there is high contrast between the intensity

values of neighboring objects at different depths, a small amount of depth map

error will cause significant distortion in the rendered view. The performance also

depends on bitrate to code DTD, as compared to overall bitrate. In this section we

analyze the performance of DTD considering these factors to find an optimal way

to utilize DTD.

DTD is used in combination with a depth map of a neighboring view. The

RD performance of DTD can be compared to that achieved when using the depth

map only case. The depth map is quantized using quantization step size, Q, and

DTD is losslessly coded. The RD performance can be compared by computing the

difference between the Lagrangian costs achieved without and with DTD, LDM and

LDM+DTD, respectively, as
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LDM = D(Q) + λR(Q)

LDM+DTD = D(Q)− δ + λ (R(Q) + RDTD)

LDM − LDM+DTD = δ − λRDTD, (4.7)

where D(Q) is the rendered view distortion with the depth map quantized using Q,

R(Q) is the bitrate to code the quantized depth map, δ is the amount of distortion

reduced by applying DTD, and RDTD is the bitrate to code DTD.

Note that this comparison can be made for various size of units according to

user’s intention, such as a block, macroblock, slice, frame, group of pictures, and

the whole sequence. The variables used hereinafter stand for a representative value

for the chosen size of unit, e.g. an average over the unit.

Now, we model δ as the size of corrected area multiplied by the square of

corrected intensity value, which can be represented as

δ = ∆P · S · l2FB (4.8)

where ∆P is the amount of transition caused by depth map error, S is the boundary

size of the foreground object, and l2FB is the square of difference between foreground

and background intensity level, l(F) and l(B), respectively, as

l2FB = |l(F)− l(B)|2 . (4.9)

∆P is the amount of transition occurred by depth map distortion, Ddepth, and

can be calculated using the camera parameters under the parallel camera setting

assumption as
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∆P =
1

255

(

1

Znear

−
1

Zfar

)

fxtxDdepth

= kDdepth, (4.10)

where Znear and Zfar is the nearest and farthest depth value in the scene, respec-

tively, fx is the focal length divided by the effective pixel size in horizontal direction,

and tx is the camera distance in horizontal direction. Note that Ddepth is absolute

difference and can be represented as a function of quantization step size, Q, under

the uniform distribution assumption as

Ddepth =
1

Q

∫ Q

2

−Q

2

|x| dx

=
Q

4
. (4.11)

Since different sequences can have different statistical properties and result in dif-

ferent amounts of distortion due to quantization, we represent this as

Ddepth = c1Q, (4.12)

where c1 is a scaling factor, which can be set as 1/4 as in (4.11), or can be found us-

ing a linear regression for better fitting for the characteristics of the given sequence.

Now, the boundary size S can be represented as a number of pixels as

S = αN (4.13)
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where N is the total number of pixel to be coded, and α is the portion the boundary

pixel occupies (0 ≤ α ≤ 1). Therefore, δ can be represented as

δ = k · c1 ·Q · α ·N · l
2
FB. (4.14)

Next, we model the bitrate to code DTD, RDTD. This can be modeled as a

multiplication between the area where DTD is provided and the per-pixel bitrate

of DTD. Since DTD is provided where the transition happens between two neigh-

boring views, the size of area where DTD is provided is directly proportional to the

disparity size, which is a function of camera parameters such as baseline distance,

and depth value. And, it is also proportional to the size of the foreground object

given in (4.13). The disparity between two views at depth Z can be calculated as in

(4.4). By considering both foreground and background movement with assumption

of ox,p = ox,p′ , the translated foreground area can be calculated as

∆xim =

(

1

Znear

−
1

Zfar

)

· fx · tx

= 255k. (4.15)

Then, RDTD becomes

RDTD = ∆xim · α ·N · rDTD

= 255k · α ·N · rDTD, (4.16)

where rDTD is the per-pixel bitrate to code DTD, which depends on entropy coding

method such as arithmetic coding, Huffman coding, etc.
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Now, if these results are put into (4.7), it becomes

δ − λRDTD = kαN(c1Ql2FB − 255λrDTD). (4.17)

This reveals that if the intensity contrast between the foreground and background

is large enough, we can achieve coding efficiency improvement by providing DTD.

This gain scales up linearly with k and the boundary size, αN .

If we consider the λ factor according to our previous model in (3.26),

λ(Q) =
σ2

video

σ2
DM

c1

c2

k · lnρ1 · ρ
kc1Q
1 ·Q3, (4.18)

then, (4.17) becomes

δ − λRDTD = kαNQ(c1l
2
FB + 255

σ2
video

σ2
DM

c1

c2

klnρ1ρ
kc1Q
1 Q2rDTD). (4.19)

Now, if we consider the maximum video variance, which can be achieved when there

are equal number of foreground and background pixels with a difference between

them equal to lFB, σ2
video can be expressed in terms of l2FB as

σ2
video =

1

4
l2FB. (4.20)

In addition, in this case the first order correlation coefficient can be calculated by

calculating the covariance as

95



cov(xm, xn) =
1

N

∑

i

(xm,i − µ)(xn,i − µ)

=
1

N

{

(1− α)N
(l(F)− l(B))2

4
+ αN(−

(l(F)− l(B))2

4

}

= (1− 2α)σ2
video, (4.21)

and then,

ρ1 =
cov(xm, xn)

σ2
video

= 1− 2α. (4.22)

Then, (4.19) becomes

δ − λRDTD = kαNQc1l
2
FB(1 +

255

4

1

σ2
DM

1

c2

klnρ1ρ
kc1Q
1 Q2rDTD), (4.23)

which leads to positive gain when

255

4

1

σ2
DM

1

c2

klnρ1ρ
kc1Q
1 Q2rDTD > −1. (4.24)

Now we denote (4.23) as a gain function, G(Q, k). The gain functions are plotted

by varying these parameters, Q and k in addition to lFB. Other values are set

using some practical values as c1 = 1/4, c2 = 1, σ2
DM = σ2

video/2, α = 1/16, ρ1 =

1− 2α, rDTD = 1/5, and N = 1280× 720. Fig. 4.2 shows 2-D mesh plot of the gain

function in terms of Q and k.

Fig. 4.3 shows the curve of G(Q) when lFB is 50 and 80, with different values of

k, which reveals the relationship between the quantization step size and the gain.

As Q increases the coding gain can increase as there is larger room to reduce the
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Figure 4.2: Mesh plot of the DTD coding gain function in terms of k and quanti-
zation step size, G(k,Q), when lFB = 80.

distortion using DTD. However, beyond certain point, coding gain decreases due

to the bitrate to code DTD, since it is losslessly compressed and not scalable to

Q, while depth map bitrate reduces as Q increases. Fig. 4.3 also shows how the

contrast between the foreground and background affects the performance. Large

contrast, lFB leads to large magnitude of gain, and at the same time leads to a

larger range of Q for which gain can be achieved. Fig. 4.3 also shows different

value of k makes the maximum coding gain be achieved at different Q.

Fig. 4.4 shows the curve of G(k) with different values of Q. This shows that

when Q is not too large, the coding gain scales up with k. This is because the
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Figure 4.3: Plot of the DTD coding gain function in terms of quantization step
size, G(Q), with different values of k and lFB; top: lFB = 50, bottom: lFB = 80.
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amount of occlusion scales up with k, which means the amount of distortion reduc-

tion using DTD also scales up with k. However, as the bitrate to code DTD scales

up with k, too, the gain decreases when both k and Q are large.

From these analyses it is possible to choose optimal parameters to get the max-

imum coding gain. For example it would be possible to adjust camera settings to

adjust k by changing baseline distance, focal length, and/or distance to the objects

in the scene. However, in many cases it is possible that the multiview sequence with

depth map is just given with fixed camera parameters. Then, it will be possible

to choose the depth map quantization step size using the RD analysis above given

certain camera parameters which determine k.

Fig. 4.5 depicts the experimental results using the Mobile sequence. In the

RD curves, the PSNR is calculated using the synthesized view compared to the

original view, where the view synthesis is performed using decoded depth maps.
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Figure 4.5: RD curves generated using different k values for Mobile sequence.

The bitrate is the total bitrate including DTD bitrate when DTD is applied during

the view synthesis as described in Section 4.4.2. Among various parameters those

that can be easily controlled at the encoder side are the baseline distance and the

quantization step size. Therefore, the RD curves are generated using variation of

these parameters. When k = 0.1, it can be noticed that the coding gain (the gap

between two RD curves) increases as quantization step size decreases. This gain

vanishes when k is reduced to 0.05. Thus, the result matches with the theoretical

analysis.

4.4 Application of depth transition data

4.4.1 Correcting erosion artifact

We now describe a procedure to correct erosion artifacts described in Section 2.3

using the proposed DTD. To render a view at an arbitrary view point, we can use

DTD to determine whether each pixel belongs to the foreground or background.
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For example, at a specific pixel location, if it belongs to the foreground in the

left reference and to the background in the right reference, we know that the depth

transition happened between these two views. If DTD indicates that this transition

happens before the target view to be rendered, the pixel location would belong to

the background in the target view. If DTD indicates the transition happens after

the target view, the pixel location would belong to the foreground in the target

view. When the transition happens in the other way, i.e., from background to

foreground, this decision will be reversed. We assume that DTD records the first

transition happened between the two reference views.

Once the foreground/background map for the target view is generated using

DTD, the erosion correction can be performed for a given local area, e.g., 8 × 8

block in the rendered view with erosion artifact. Each area can overlap and/or

have adaptive size for better performance. First, for the given block a background

average is calculated using the pixels belonging to the background. Then, each

foreground pixel is compared to the background average. If a pixel is close to the

background average, it is classified as an outlier or eroded pixel. Then, foreground

average is calculated using the foreground pixels without outliers. Finally, the

eroded pixel values are replaced with the foreground average. To replace the eroded

pixel value, it would be also possible to use the nearest foreground pixel value which

is not an outlier, or utilize the pixel values in the reference video. We will further

investigate how to improve this procedure as a future work. Fig. 4.6 shows the flow

chart of the proposed erosion correction process.
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Figure 4.6: Flow chart for the proposed erosion artifact correction method using
the depth transition data as in Section 4.4.1
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Figure 4.7: Illustration of view synthesis process with possible depth error.

4.4.2 View synthesis using depth transition data

In the previous section, DTD is used to correct erosion artifacts that occur in the

rendered view, by using a post-processing after view rendering is completed. Since

this is done as a post-processing, DTD is not fully utilized to correct the distortion.

For example, if the erosion is large, the inpainted region would not look natural.

Also it cannot fix distortions other than the erosion along object boundaries. This

can be improved by directly applying DTD during the view synthesis process rather

than correcting the distortion after the rendering process.

Fig. 4.7 illustrates the view synthesis process for a specific pixel location. When

a reference pixel is warped into the target view, it is possible that a wrong pixel

will be mapped to the target due to the depth map distortion (e.g., (x′′
im, y′′

im) is

used for interpolation instead of (xim, yim) as in Fig. 4.7).

The non-linear nature of the rendered view distortion discussed in Section 2.4

can be understood from the example in Fig. 4.7: significant errors are produced

if the chosen reference pixel belongs to a different object layer, e.g., a background
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pixel is used as reference for a pixel belonging to a foreground object. Thus similar

depth errors may lead to very different errors in interpolation.

DTD information allows us to signal explicitly that a specific pixel belongs to

one of the two possible depth layers (corresponding to left and right images). Thus,

in the example of Fig. 4.7 DTD will indicate that the intermediate pixel belongs to

a foreground object.

Without knowing the true depth map value at the decoder side due to quantiza-

tion, it is impossible to verify whether the reference is correct or not. However, by

using DTD we can verify whether it belongs to the same object layer as the target

pixel.

As described in Section 4.4.1, an object layer map can be generated from DTD

for any intermediate view, indicating which object layer each pixel belongs to in

the target view. The object layer can be formed according to the depth level of

different objects. In the simulation, two object layers are used, which indicate

foreground and background level. Note that this approach operates independently

of view synthesis algorithms trying to generate depth layers in the reference views

without providing additional information, since the proposed method generates the

layer map in the target view by wisely spending additional bits to provide this to

many intermediate views.

A view synthesis is performed by warping reference pixels to the target view.

When there is more than one reference pixel mapped to the same position in the

target view, the synthesis can be done by a blending process. The blending process

can be a weighted averaging using the distance between the reference and the

target views as a weight. Or it is also possible to use the pixel which is nearer to

the camera. If there is only one reference pixel mapped to the target view pixel

position, its value can be directly copied to the target. If no reference pixel is
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mapped to a target pixel position, that location is regarded as a hole, and can be

filled using an in-painting scheme.

Now, we describe how DTD is applied for each step of view synthesis process.

Fig. 4.8 provides the flowchart for this procedure.

When a pixel in the target view is synthesized, first the availability of DTD for

that pixel location is checked. If available, by using DTD it is determined which

object layer the pixel belongs to. Then, the pixels in the reference views are warped

to the target view.

When a pixel is warped, we can know which object layer it belongs to in the

reference view using its corresponding depth value. Therefore, it can be checked

whether this warped pixel from the reference view (reference pixel) belongs to the

same object layer as that of the target view pixel. If the reference pixels belong

to the same object layer as the target, they are regarded as valid and used for the

view synthesis. Conversely, if the reference pixel does not belong to the same object

layer as the target pixel, this implies it is not safe to use this reference pixel for the

view synthesis.

Note that there can be some pixel positions in the target view, for which no

reference pixel is mapped from the reference views. In this case, it is allowed to use

the reference pixels in different object layer only when its corresponding depth value

is close to that of the other reference view. This is the case where the transition

has happened but with a small amount of depth change, which can be set as a

threshold value to indicate the tolerance range with a unit of depth map value. In

our simulation, a fixed threshold value is applied for all the sequences to simplify

the simulation; however, it would be possible to adapt the threshold value according

to global and local sequence characteristics such as camera parameters, contrast in

local area, etc., to improve the performance. Note that in this case DTD does not
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Figure 4.8: Flowchart of the view synthesis procedure using the depth transition
data of Section 4.4.2.
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need to be provided, therefore, we do not need to code and transmit it, but the

encoder and decoder should use the same threshold value.

4.5 Experimental results

4.5.1 Erosion artifact correction

To evaluate the proposed DTD and its application to erosion artifact correction

as described in Section 4.4.1, experiments are performed using Ballet and Break-

dancers test sequences [83]. Fig. 4.9 shows the RD curve comparison where the 5th

view is synthesized using 4th and 6th views as references. The reference video and

depth maps are coded using H.264 with same QP values of 24, 28, 32, and 36 to

generate the curve, and Y PSNR is calculated by comparing the synthesized view

to the original 5th view. For ‘synthesized view with AUX’, the same synthesis is

performed followed by the erosion correction using the depth transition data de-

scribed in Section 4.4.1. For the erosion artifact correction, block size of 8 × 8 is

used without overlapping.

The bitrate to code the depth transition data is approximately estimated by

coding the foreground/background binary map of the target view, and added to

the bitrate to code two sets of reference video and depth map. It may be possible

to reduce the bitrate required to encode DTD by exploiting the reference depth

map information. This will be further investigated and implemented as a future

work.

From the curves, we can notice that there are moderate bitrate increases due to

DTD, while there are noticeable PSNR gains for the Ballet sequence, and smaller
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(a) Ballet

(b) Breakdancers

Figure 4.9: Rate-distortion curves with and without depth transition data applied
for erosion artifact correction in Section 4.4.1.
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Figure 4.10: Synthesized Ballet sequence with depth map compressed using
H.264/AVC without DTD applied to correct erosion artifact.

gains for the Breakdancers sequence. The reason for the smaller gain in the Break-

dancers sequence is that some objects in the scene are close to the background in

depth, so that not many portions of the scene belong to the foreground. In addi-

tion, the difference between the foreground and background pixel values is not as

significant as compared to the Ballet sequence, which reduces the PSNR gain.

Figs. 4.10 and 4.11 show the subjective quality comparison with and without the

proposed method. In Fig. 4.10 the erosion artifact is clearly visible which degrades

the subjective quality greatly, and in Fig. 4.11 it can be noticed that the eroded area

is fixed using the proposed method, thus noticeable subjective quality improvement

is achieved.
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Figure 4.11: Synthesized Ballet sequence with the erosion artifact correction using
the depth transition data as in Section 4.4.1
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4.5.2 View synthesis using depth transition data of Section

4.4.2

The proposed method is evaluated with experiments using various test sequences.

In this section, the test procedure is described and the results are discussed. Table

4.1 lists the test sequences used in the experiments with the view indices of left

and right reference views and the target view. dx,im in (4.4) is also calculated with

setting ox,p = ox,p′ and z = Znear for each sequence, and included in Table 4.1 to

compare different camera settings among various sequences.

Table 4.1: View index of test sequences used for view synthesis using DTD of
Section 4.4.2.

Sequence Left Target Right dx,im

Cafe 1 3 5 180.0
Mobile 3 5 7 43.5

Champagne Tower 37 39 41 146.1
Balloons 1 3 5 50.0

Newspaper 2 4 6 100.0
Pantomime 37 39 41 76.2
Lovebird1 4 6 8 67.1

Kendo 1 3 5 50.0

DTD is calculated using the left and right reference views first by generat-

ing their object layer maps with two levels (foreground and background) followed

by calculating the transition position using (4.6) for the region where transition

happened between the reference views. The foreground/background determination

is performed based on the depth map value using k-means clustering. The fixed

threshold value of the tolerance range described in Section 4.4.2 is set to 30 for all

the sequences. For the area where transition happens more than once between the

reference views, only the first transition position is recorded. Then, it is quantized
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to represent the mid-position between the reference views, and losslessly compressed

using H.264 with CABAC encoding.

The proposed method to apply DTD to view synthesis is implemented using the

MPEG view synthesis reference software (VSRS) 3.0 [58]. Fig. 4.12 shows the RD

curves with and without DTD, where both depth map and video are compressed

using H.264 with QP values of 24, 28, 32, and 36. Inter-view prediction is used to

code both video and depth maps to reduce the bitrate. Two reference views are

coded and the middle point view between them is synthesized. The PSNR of the

rendered view is calculated compared to the ground truth. The x-axis is the bitrate

to code reference video and depth maps. In case of “Depth transition data”, the

bitrate to code DTD is added. The y-axis is the PSNR of Y component.

In Fig. 4.12, it can be observed maximum PSNR improvement of 2 dB in Cham-

pagne Tower, and 1.5, 0.6, and 0.5 dB in Mobile, Cafe, and Balloons, respectively.

Also there are smaller PSNR improvements in the Newspaper and Pantomime se-

quences. No gain is observed in the Lovebird1 and Kendo sequences.

For Cafe and Champagne Tower, large value of dx,im contributes to the im-

provement, and large size of foreground objects in Champagne Tower increases the

performance improvement. For the Mobile sequence, high contrast across the ob-

ject boundary contributes to the improvement. In case of Lovebird1, the foreground

object is small and the contrast is not strong, so no improvement is observed. For

the Kendo sequence, the depth map is noisy, so it does not provide clear object

boundary. In this case, it would be possible to improve the performance by gen-

erating DTD using other information such as reference video. We leave this as a

future study.

Counter intuitively, in the RD curves of Pantomime and Champagne tower,

PSNR decrement can be observed even though the bitrate is increased. This is
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Figure 4.12: Rate-distortion curves with and without depth transition data applied
to view synthesis process as in Section 4.4.2.
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because the original depth map contains noise. Even though the bitrate is in-

creased by coding more accurately the depth map (including noise), this does not

help to increase PSNR. If the rendered view without compression is used as an

anchor to calculate PSNR, this phenomenon will not occur. However, we used the

ground truth video as the anchor, so that PSNR can represent comparison between

the original video and the rendered view including various distortions described in

Section 2.2.

In all the sequences, the bitrate is increased a little for the DTD case due to the

bitrate to code DTD. Table 4.2 shows the relative percentage of the total bitrate

used for DTD. Since it is coded losslessly, the percentage of rate used for DTD

increases as QP increases.

Table 4.2: Bitrate occupancy of video, depth map, and DTD in total bitrate for
two reference views.

Sequence QP
Bitrate distribution (%)

Video Depth map DTD

Cafe

24 58 37 2
28 53 39 4
32 51 37 6
36 49 33 9

Mobile

24 84 14 2
28 80 16 3
32 77 18 5
36 72 20 8

Champagne Tower

24 75 23 2
28 69 27 4
32 66 28 6
36 63 28 9

Figs. 4.13 to 4.15 show the subjective quality comparison between the rendered

view without and with DTD. In Cafe, it can be noticed the wrong pixel map-

ping in man’s hair area is corrected using the proposed method. Again, in Mobile
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Figure 4.13: Subjective quality comparison: conventional method (left) and the
proposed method with depth transition data applied to view synthesis process as
in Section 4.4.2 (right); Cafe (QP 24).

Figure 4.14: Subjective quality comparison: conventional method (left) and the
proposed method with depth transition data applied to view synthesis process as
in Section 4.4.2 (right); Mobile (QP 24).

and Champagne Tower, wrong reference pixel mapping in the foreground object is

corrected, and clear object boundary can be observed.

Table 4.3 shows PSNR (dB) and N-PSNR (dB) results of various test sequences.

N-PSNR is defined in Section 2.5, where threshold value of 10 is used. PSNR and
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Figure 4.15: Subjective quality comparison: conventional method (top) and the
proposed method with depth transition data applied to view synthesis process as
in Section 4.4.2 (bottom); Champagne Tower (QP 24).
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Table 4.3: PSNR (dB) and N-PSNR (dB) results with DTD, generated by com-
paring the luminance (Y) component of the ground truth and the rendered view
using various test sequences, where both video and depth map are compressed using
H.264/AVC with QP set to 24 and 36. Threshold value of 10 is used for N-PSNR.
Difference is generated compared to PSNR and N-PSNR without DTD.

Sequence QP
with DTD Difference

PSNR N-PSNR PSNR N-PSNR

Cafe
24 31.1 31.8 0.6 0.7
36 30.7 31.5 0.5 0.6

Mobile
24 37.2 39.9 1.4 2.4
36 32.5 34.4 0.7 1.0

Newspaper
24 28.6 29.7 0.2 0.3
36 28.1 29.2 0.2 0.2

Balloons
24 34.0 35.8 0.5 0.7
36 32.9 34.7 0.4 0.6

Champagne Tower
24 27.8 28.2 2.1 2.3
36 27.2 27.6 1.3 1.4

Pantomime
24 35.3 36.8 0.1 0.1
36 34.5 36.0 0.1 0.1

Average
24 32.3 33.7 0.8 1.1
36 31.0 32.2 0.5 0.6

N-PSNR are generated by comparing the luminance (Y) component of the ground

truth and the rendered view, where both video and depth map are compressed using

H.264/AVC with QP set to 24 and 36, and DTD is applied during the view synthesis

procedure. Difference is generated compared to PSNR and N-PSNR without DTD,

which is listed in Table 2.1. From this table it can be noticed that DTD can improve

the objective quality for the area which is more noticeable.

Table 4.4 shows the results of noticeable distortion in terms of s and n-PSNR

defined in Section 2.5, where the threshold value of 10 is used, and difference is

calculated compared to s and n-PSNR without DTD, which is listed in Table 2.2.
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Table 4.4: Results of noticeable distortion in terms of s (%) and n-PSNR (dB)
generated by comparing the luminance (Y) component of the ground truth and the
rendered view with DTD using various test sequences, where both video and depth
map are compressed using H.264/AVC with QP set to 24 and 36. Threshold value
of 10 is used for s and n-PSNR. Difference is generated compared to s and n-PSNR
generated without DTD.

Sequence QP
with DTD Difference
s n-PSNR s n-PSNR

Cafe
24 4.0 17.8 -0.5 0.1
36 4.6 18.1 -0.5 0.2

Mobile
24 1.4 21.3 -0.3 1.6
36 7.7 23.2 -0.2 0.8

Newspaper
24 13.2 20.9 -0.2 0.2
36 16.2 21.3 -0.3 0.1

Balloons
24 3.3 21.0 0.0 0.6
36 4.5 21.3 0.0 0.6

Champagne Tower
24 9.0 17.7 -1.2 1.7
36 10.1 17.6 -0.8 1.1

Pantomime
24 3.4 22.1 0.0 0.1
36 4.1 22.1 0.0 0.1

Average
24 5.7 20.1 -0.4 0.7
36 7.9 20.6 -0.3 0.5

This reveals that different factor, s or n-PSNR, or combination of these causes

coding efficiency improvement in different sequences.

4.6 Conclusion

In this chapter, the depth transition data is proposed as a new 3-D video data

format to achieve better coding efficiency with improved rendered view quality by

exploiting localized and non-linear characteristics of the rendered view distortion.

While the conventional DIBR based scheme needs to provide the depth map infor-

mation to every reference views, the advantage of the proposed depth transition
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data is that one such data set can be applied to multiple views at an arbitrary posi-

tion. The experimental results show that the subjective quality can be significantly

improved with maximum PSNR gain of 2 dB.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

When depth map is coded, it is more appropriate to consider the effect of coding

on the rendered view quality instead of the distortion in compressed depth map

itself. Therefore, in Chapter 2, we first analyzed the distortion that occurs in the

rendered view.

In Chapter 3, new depth map coding tools were proposed, which take the ren-

dered view quality into account. First, new distortion estimation methods were

proposed, which derive the relationship between the depth map error to geometry

error, and geometry error to the distortion in the rendered view. It was found that

there is linear relationship between depth map error and geometry error, which

depends on global camera setting parameters. To estimate the distortion in the

rendered view, an approach to use the reference video frame was proposed, which

can reflect the local video characteristics. We also proposed a simpler estimation

method using autoregressive model. These estimation methods were applied to

the RD optimized mode selection scheme along with the new Lagrange multiplier

derived using the autoregressive model. The experimental results show that the
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proposed methods can provide accurate estimation of the rendered view distortion

due to depth map error, so that coding efficiency can be achieved when it is applied

to the depth map coding mode decision scheme. In addition, the new skip mode

selection scheme improves the subjective quality by suppressing the flickering arti-

fact, due to temporal inconsistencies in depth map. Also the graph based transform

(GBT) was applied to depth map coding, which not only reduces bitrate but also

improves the rendered view quality by preserving edges from transform coding.

In Chapter 4, we have developed the new 3-D video format by providing the

depth transition data in addition to the existing video plus depth data. The depth

transition data indicates where the background/foreground transition happens,

therefore is applicable to correct the depth map distortion. While the conven-

tional DIBR based scheme needs to provide the depth map information to every

reference views, the advantage of the proposed depth transition data is that one

such data set can be applied to multiple views at an arbitrary position. By using

the proposed depth transition data, the subjective quality of the rendered view is

improved significantly with maximum PSNR gain of 2 dB.

5.2 Future Work

As a future work, it can be investigated how to combine the proposed methods

together to achieve optimal performance in terms of the subjective quality of the

rendered view and bitrate saving. Then, it can be further investigated how to

efficiently represent and encode the depth transition data, and how to apply it to

improve the rendered view quality.

The following recommendations are suggested for future work:

• Efficient representation of depth information.
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A depth map is used to synthesize an intermediate view, and we have shown

that the depth transition data can help to improve the rendered view quality.

Since they both serve the rendering process, it will be possible to consider

one unified data format for such purpose. We will investigate how to combine

these two types of data together, and how to efficiently compress it. One

example can be performing prediction of DTD using the decoded depth maps.

• Improving rendered view quality using depth transition data.

It is important to provide precise DTD to achieve improvement in rendered

view quality. If DTD is generated from depth maps of neighboring views,

it may not be possible to provide exact transition position due to occlusion

artifact. Also when depth map is noisy, the errors in depth map would lead

to errors in DTD. In this case better quality of DTD can be achieved if video

information is utilized. Also when there are more than one transition between

two views, indicating multiple transition position can help improve rendered

view quality. Providing multiple levels of depth change rather than binary

level (e.g., foreground and background) can also be considered for future

study.

• Optimization considering combination of the proposed methods.

According to our analysis of rendered view distortion, there are various factors

which affect the rendered view quality. We have developed methods that can

serve different aspect of the problem. Therefore, it is important to find a way

to arrange these methods together to achieve optimal performance. In the

future it can be investigated how to optimize these for improved subjective

quality of the rendered view under bitrate constraints.

122



References

[1] J. Berent and P. L. Dragotti. Plenoptic manifolds. IEEE Signal Proc. Maga-
zine, 24(6):34–44, Nov. 2007.

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting.
In Proc. of 27th Conf. Computer Graphics and Interactive Techniques, SIG-
GRAPH 2000, New Orleans, LA, USA, Jul. 2000.

[3] G. Bjøntegaard. Calculation of average PSNR differences between RD-curves.
Document VCEG-M33, ITU-T SG16 Q.6, Apr. 2001.

[4] F. Blais. Review of 20 years of range sensor development. Journal of Electronic
Imaging, 13(1):231–240, Jan. 2004.

[5] E. Candès and D. Donoho. Curvelets - a surprisingly effective nonadaptive
representation for objects with edges. Vanderbilt University Press, 1999.

[6] S. C. Chan, H.-Y. Shum, and K.-T. Ng. Image-based rendering and synthesis.
IEEE Signal Proc. Magazine, 24(6):22–33, Nov. 2007.

[7] C.-L. Chang, M. Makar, S. S. Tsai, and B. Girod. Direction-adaptive par-
titioned block transform for color image coding. IEEE Trans. Image Proc.,
19(7):1740–1755, Jul. 2010.

[8] G. Cheung, J. Ishida, A. Kubota, and A. Ortega. Transform domain spar-
cification of depth maps using iterative quadratic programming. In Proc. of
IEEE Int. Conf. Image Proc., ICIP 2011, Brussels, Belgium, Sep. 2011.

[9] G. Cheung, A. Kubota, and A. Ortega. Sparse representation of depth maps
for efficient transform coding. In IEEE Picture Coding Symposium, Nagoya,
Japan, Dec. 2010.

[10] I. Daribo, C. Tillier, and B. Pesquet-Popescu. Adaptive wavelet coding of the
depth map for stereoscopic view synthesis. In Proc. of 2008 IEEE 10th Work-
shop on Multimedia Signal Processing, pages 413–417, Queensland, Australia,
Oct. 2008.

123



[11] M. N. Do and M. Vetterli. The contourlet transform: An efficient directional
multiresolution image representation. IEEE Trans. Image Proc., 14(12):2091–
2106, Dec. 2005.

[12] E. Ekmekcioglu, M. Mrak, S. Worrall, and A. Kondoz. Utilisation of edge
adaptive upsampling in compression of depth map videos for enhanced free-
viewpoint rendering. In Proc. of IEEE Int. Conf. Image Proc., ICIP 2009,
Cairo, Egypt, Nov. 2009.
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